
Network Working Group I. Hickson
Internet-Draft Google, Inc.
Intended status: Standards Track October 13, 2009
Expires: April 16, 2010

The Web Socket protocol
draft-hixie-thewebsocketprotocol-47

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 16, 2010.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Hickson Expires April 16, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft The Web Socket protocol October 2009

Abstract

 This protocol enables two-way communication between a user agent
 running untrusted code running in a controlled environment to a
 remote host that understands the protocol. It is designed to be easy
 to implement on the server side.

Hickson Expires April 16, 2010 [Page 2]

Internet-Draft The Web Socket protocol October 2009

Author's note

 This document is automatically generated from the same source
 document as the HTML5 specification. [HTML5]

 Please send feedback to either the hybi@ietf.org list or the
 whatwg@whatwg.org list.

Table of Contents

1. Introduction . 4
1.1. Background . 4
1.2. Protocol overview . 4
1.3. Design philosophy . 6
1.4. Security model . 6
1.5. Relationship to TCP/IP and HTTP 6
1.6. Establishing a connection 7

2. Conformance requirements 8
2.1. Terminology . 8

3. Web Socket URLs . 9
3.1. Parsing Web Socket URLs 9
3.2. Constructing Web Socket URLs 10

4. Client-side requirements 11
4.1. Handshake . 11
4.2. Data framing . 19
4.3. Closing the connection 20
4.4. Handling errors in UTF-8 20

5. Server-side requirements 22
5.1. Minimal handshake . 22
5.2. Handshake details . 23
5.3. Data framing . 24

6. Closing the connection . 25
7. Security considerations 26
8. IANA considerations . 27
8.1. Registration of ws: scheme 27
8.2. Registration of wss: scheme 28
8.3. Registration of the "WebSocket" HTTP Upgrade keyword . . . 29
8.4. WebSocket-Origin . 29
8.5. WebSocket-Protocol . 30
8.6. WebSocket-Location . 30

9. Using the Web Socket protocol from other specifications . . . 32
10. Normative References . 33

 Author's Address . 35

Hickson Expires April 16, 2010 [Page 3]

Internet-Draft The Web Socket protocol October 2009

1. Introduction

1.1. Background

 This section is non-normative.

 Historically, creating an instant messenger chat client as a Web
 application has required an abuse of HTTP to poll the server for
 updates while sending upstream notifications as distinct HTTP calls.

 This results in a variety of problems:

 o The server is forced to use a number of different underlying TCP
 connections for each client: one for sending information to the
 client, and a new one for each incoming message.

 o The wire protocol has a high overhead, with each client-to-server
 message having an HTTP header.

 o The client-side script is forced to maintain a mapping from the
 outgoing connections to the incoming connection to track replies.

 A simpler solution would be to use a single TCP connection for
 traffic in both directions. This is what the Web Socket protocol
 provides. Combined with the Web Socket API, it provides an
 alternative to HTTP polling for two-way communication from a Web page
 to a remote server. [WSAPI]

 The same technique can be used for a variety of Web applications:
 games, stock tickers, multiuser applications with simultaneous
 editing, user interfaces exposing server-side services in real time,
 etc.

1.2. Protocol overview

 This section is non-normative.

 The protocol has two parts: a handshake, and then the data transfer.

 The handshake from the client looks as follows:

 GET /demo HTTP/1.1
 Upgrade: WebSocket
 Connection: Upgrade
 Host: example.com
 Origin: http://example.com
 WebSocket-Protocol: sample

Hickson Expires April 16, 2010 [Page 4]

Internet-Draft The Web Socket protocol October 2009

 The handshake from the server looks as follows:

 HTTP/1.1 101 Web Socket Protocol Handshake
 Upgrade: WebSocket
 Connection: Upgrade
 WebSocket-Origin: http://example.com
 WebSocket-Location: ws://example.com/demo
 WebSocket-Protocol: sample

 Once the client and server have both sent their handshakes, and if
 the handshake was successful, then the data transfer part starts.
 This is a two-way communication channel where each side can,
 independently from the other, send data at will.

 Data is sent in the form of UTF-8 text. Each frame of data starts
 with a 0x00 byte and ends with a 0xFF byte, with the UTF-8 text in
 between.

 The Web Socket protocol uses this framing so that specifications that
 use the Web Socket protocol can expose such connections using an
 event-based mechanism instead of requiring users of those
 specifications to implement buffering and piecing together of
 messages manually.

 The protocol is designed to support other frame types in future.
 Instead of the 0x00 byte, other bytes might in future be defined.
 Frames denoted by bytes that do not have the high bit set (0x00 to
 0x7F) are treated as described above (a stream of bytes terminated by
 0xFF). Frames denoted by bytes that have the high bit set (0x80 to
 0xFF) have a leading length indicator, which is encoded as a series
 of 7-bit bytes stored in octets with the 8th bit being set for all
 but the last byte. The remainder of the frame is then as much data
 as was specified.

 The following diagrams summarise the protocol:

 Handshake
 |
 \|/
 Frame type byte <-------------------------------------.
 | | |
 | `-- (0x00 .. 0x7F) --> Data... --> 0xFF -->-+
 | |
 `-- (0x80 .. 0xFF) --> Length --> Data... ------->-'

Hickson Expires April 16, 2010 [Page 5]

Internet-Draft The Web Socket protocol October 2009

1.3. Design philosophy

 This section is non-normative.

 The Web Socket protocol is designed on the principle that there
 should be minimal framing (the only framing that exists is to make
 the protocol frame-based instead of stream-based, and to support a
 distinction between Unicode text and binary frames). It is expected
 that metadata would be layered on top of Web Socket by the
 application layer, in the same way that metadata is layered on top of
 TCP/IP by the application layer (HTTP).

 Conceptually, Web Socket is really just a layer on top of TCP/IP that
 adds a Web "origin"-based security model for browsers; adds an
 addressing and protocol naming mechanism to support multiple services
 on one port and multiple host names on one IP address; and layers a
 framing mechanism on top of TCP to get back to the IP packet
 mechanism that TCP is built on, but without length limits. Other
 than that, it adds nothing. Basically it is intended to be as close
 as possible to just exposing raw TCP/IP to script as possible given
 the constraints of the Web. It's also designed in such a way that its
 servers can share a port with HTTP servers, by having its handshake
 be a valid HTTP Upgrade handshake also.

1.4. Security model

 This section is non-normative.

 The Web Socket protocol uses the origin model used by Web browsers to
 restrict which Web pages can contact a Web Socket server when the Web
 Socket protocol is used from a Web page. Naturally, when the Web
 Socket protocol is used directly (not from a Web page), the origin
 model is not useful, as the client can provide any arbitrary origin
 string.

 This protocol is intended to fail to establish a connection with
 servers of pre-existing protocols like SMTP or HTTP, while allowing
 HTTP servers to opt-in to supporting this protocol if desired. This
 is achieved by having a strict and elaborate handshake, and by
 limiting the data that can be inserted into the connection before the
 handshake is finished (thus limiting how much the server can be
 influenced).

1.5. Relationship to TCP/IP and HTTP

 This section is non-normative.

 The Web Socket protocol is an independent TCP-based protocol. Its

Hickson Expires April 16, 2010 [Page 6]

Internet-Draft The Web Socket protocol October 2009

 only relationship to HTTP is that its handshake is interpreted by
 HTTP servers as an Upgrade request.

 Based on the expert recommendation of the IANA, the Web Socket
 protocol by default uses port 80 for regular Web Socket connections
 and port 443 for Web Socket connections tunneled over TLS.

1.6. Establishing a connection

 This section is non-normative.

 There are several options for establishing a Web Socket connection.

 The simplest method is to use port 80 to get a direct connection to a
 Web Socket server. Port 80 traffic, however, will often be
 intercepted by HTTP proxies, which can lead to the connection failing
 to be established.

 The second simplest method is to use TLS encryption and port 443 to
 connect directly to a Web Socket server. This has the advantage of
 being more secure; however, TLS encryption can be computationally
 expensive.

 When a connection is to be made to a port that is shared by an HTTP
 server (a situation that is quite likely to occur with traffic to
 ports 80 and 443), the connection will appear to the HTTP server to
 be a regular GET request with an Upgrade offer. In relatively simple
 setups with just one IP address and a single server for all traffic
 to a single hostname, this might allow a practical way for systems
 based on the Web Socket protocol to be deployed. In more elaborate
 setups (e.g. with load balancers and multiple servers), a dedicated
 set of hosts for Web Socket connections separate from the HTTP
 servers is probably easier to manage.

Hickson Expires April 16, 2010 [Page 7]

Internet-Draft The Web Socket protocol October 2009

2. Conformance requirements

 All diagrams, examples, and notes in this specification are non-
 normative, as are all sections explicitly marked non-normative.
 Everything else in this specification is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this
 document are to be interpreted as described in RFC2119. For
 readability, these words do not appear in all uppercase letters in
 this specification. [RFC2119]

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("must", "should", "may", etc) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps may
 be implemented in any manner, so long as the end result is
 equivalent. (In particular, the algorithms defined in this
 specification are intended to be easy to follow, and not intended to
 be performant.)

 Implementations may impose implementation-specific limits on
 otherwise unconstrained inputs, e.g. to prevent denial of service
 attacks, to guard against running out of memory, or to work around
 platform-specific limitations.

 The conformance classes defined by this specification are user agents
 and servers.

2.1. Terminology

 Converting a string to ASCII lowercase means replacing all
 characters in the range U+0041 .. U+005A (i.e. LATIN CAPITAL LETTER
 A to LATIN CAPITAL LETTER Z) with the corresponding characters in the
 range U+0061 .. U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL
 LETTER Z).

 The term "URL" is used in this section in a manner consistent with
 the terminology used in HTML, namely, to denote a string that might
 or might not be a valid URI or IRI and to which certain error
 handling behaviors will be applied when the string is parsed.
 [HTML5]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Hickson Expires April 16, 2010 [Page 8]

Internet-Draft The Web Socket protocol October 2009

3. Web Socket URLs

3.1. Parsing Web Socket URLs

 The steps to *parse a Web Socket URL's components* from a string
 /url/ are as follows. These steps return either a /host/, a /port/,
 a /resource name/, and a /secure/ flag, or they fail.

 1. If /protocol/ is specified but is either the empty string or
 contains characters that are not in the range U+0021 .. U+007E,
 then fail this algorithm.

 2. If the /url/ string is not an absolute URL, then fail this
 algorithm. [WEBADDRESSES]

 3. Resolve the /url/ string using the resolve a Web address
 algorithm defined by the Web addresses specification, with the
 URL character encoding set to UTF-8. [WEBADDRESSES] [RFC3629]

 NOTE: It doesn't matter what it is resolved relative to, since
 we already know it is an absolute URL at this point.

 4. If /url/ does not have a <scheme> component whose value is
 either "ws" or "wss", when compared in an ASCII case-insensitive
 manner, then fail this algorithm.

 5. If the <scheme> component of /url/ is "ws", set /secure/ to
 false; otherwise, the <scheme> component is "wss", set /secure/
 to true.

 6. Let /host/ be the value of the <host> component of /url/,
 converted to ASCII lowercase.

 7. If /url/ has a <port> component, then let /port/ be that
 component's value; otherwise, there is no explicit /port/.

 8. If there is no explicit /port/, then: if /secure/ is false, let
 /port/ be 80, otherwise let /port/ be 443.

 9. Let /resource name/ be the value of the <path> component (which
 might be empty) of /url/.

 10. If /resource name/ is the empty string, set it to a single
 character U+002F SOLIDUS (/).

 11. If /url/ has a <query> component, then append a single U+003F
 QUESTION MARK character (?) to /resource name/, followed by the
 value of the <query> component.

https://datatracker.ietf.org/doc/html/rfc3629

Hickson Expires April 16, 2010 [Page 9]

Internet-Draft The Web Socket protocol October 2009

 12. Return /host/, /port/, /resource name/, and /secure/.

3.2. Constructing Web Socket URLs

 The steps to *construct a Web Socket URL* from a /host/, a /port/, a
 /resource name/, and a /secure/ flag, are as follows:

 1. Let /url/ be the empty string.

 2. If the /secure/ flag is false, then append the string "ws://" to
 /url/. Otherwise, append the string "wss://" to /url/.

 3. Append /host/ to /url/.

 4. If the /secure/ flag is false and port is not 80, or if the
 /secure/ flag is true and port is not 443, then append the string
 ":" followed by /port/ to /url/.

 5. Append /resource name/ to /url/.

 6. Return /url/.

Hickson Expires April 16, 2010 [Page 10]

Internet-Draft The Web Socket protocol October 2009

4. Client-side requirements

 This section only applies to user agents, not to servers.

 NOTE: This specification doesn't currently define a limit to the
 number of simultaneous connections that a client can establish to a
 server.

4.1. Handshake

 When the user agent is to *establish a Web Socket connection* to a
 host /host/, on a port /port/, from an origin whose ASCII
 serialization is /origin/, with a flag /secure/, with a string giving
 a /resource name/, and optionally with a string giving a /protocol/,
 it must run the following steps. The /resource name/ string must
 start with a U+002F SOLIDUS character (/). [ORIGIN]

 1. If the user agent already has a Web Socket connection to the
 remote host (IP address) identified by /host/, even if known by
 another name, wait until that connection has been established or
 for that connection to have failed.

 NOTE: This makes it harder for a script to perform a denial of
 service attack by just opening a large number of Web Socket
 connections to a remote host.

 NOTE: There is no limit to the number of established Web Socket
 connections a user agent can have with a single remote host.
 Servers can refuse to connect users with an excessive number of
 connections, or disconnect resource-hogging users when suffering
 high load.

 2. _Connect_: If the user agent is configured to use a proxy when
 using the Web Socket protocol to connect to host /host/ and/or
 port /port/, then connect to that proxy and ask it to open a
 TCP/IP connection to the host given by /host/ and the port given
 by /port/.

 EXAMPLE: For example, if the user agent uses an HTTP proxy
 for all traffic, then if it was to try to connect to port 80
 on server example.com, it might send the following lines to
 the proxy server:

 CONNECT example.com:80 HTTP/1.1
 Host: example.com

 If there was a password, the connection might look like:

Hickson Expires April 16, 2010 [Page 11]

Internet-Draft The Web Socket protocol October 2009

 CONNECT example.com:80 HTTP/1.1
 Host: example.com
 Proxy-authorization: Basic ZWRuYW1vZGU6bm9jYXBlcyE=

 Otherwise, if the user agent is not configured to use a proxy,
 then open a TCP/IP connection to the host given by /host/ and
 the port given by /port/.

 NOTE: Implementations that do not expose explicit UI for
 selecting a proxy for Web Socket connections separate from other
 proxies are encouraged to use a SOCKS proxy for Web Socket
 connections, if available, or failing that, to prefer the proxy
 configured for HTTPS connections over the proxy configured for
 HTTP connections.

 For the purpose of proxy autoconfiguration scripts, the URL to
 pass the function must be constructed from /host/, /port/,
 /resource name/, and the /secure/ flag using the steps to
 construct a Web Socket URL.

 NOTE: The WebSocket protocol can be identified in proxy
 autoconfiguration scripts from the scheme ("ws:" for unencrypted
 connections and "wss:" for encrypted connections).

 3. If the connection could not be opened, then fail the Web Socket
 connection and abort these steps.

 4. If /secure/ is true, perform a TLS handshake over the
 connection. If this fails (e.g. the server's certificate could
 not be verified), then fail the Web Socket connection and abort
 these steps. Otherwise, all further communication on this
 channel must run through the encrypted tunnel. [RFC2246]

 5. Send the following bytes to the remote side (the server):

 47 45 54 20

 Send the /resource name/ value, encoded as US-ASCII.

 Send the following bytes:

 20 48 54 54 50 2F 31 2E 31 0D 0A 55 70 67 72 61
 64 65 3A 20 57 65 62 53 6F 63 6B 65 74 0D 0A 43
 6F 6E 6E 65 63 74 69 6F 6E 3A 20 55 70 67 72 61
 64 65 0D 0A

 NOTE: The string "GET ", the path, " HTTP/1.1", CRLF, the string
 "Upgrade: WebSocket", CRLF, and the string "Connection:

https://datatracker.ietf.org/doc/html/rfc2246

Hickson Expires April 16, 2010 [Page 12]

Internet-Draft The Web Socket protocol October 2009

 Upgrade", CRLF.

 6. Send the following bytes:

 48 6F 73 74 3A 20

 Send the /host/ value, converted to ASCII lowercase, and encoded
 as US-ASCII.

 If /secure/ is false, and /port/ is not 80, or if /secure/ is
 true, and /port/ is not 443, then send an 0x3A byte (ASCII :)
 followed by the value of /port/, expressed as a base-ten
 integer, encoded as US-ASCII.

 Send the following bytes:

 0D 0A

 NOTE: The string "Host: ", the host, and CRLF.

 7. Send the following bytes:

 4F 72 69 67 69 6E 3A 20

 Send the /origin/ value, converted to ASCII lowercase, encoded
 as US-ASCII. [ORIGIN]

 NOTE: The /origin/ value is a string that was passed to this
 algorithm.

 Send the following bytes:

 0D 0A

 NOTE: The string "Origin: ", the origin, and CRLF.

 8. If there is no /protocol/, then skip this step.

 Otherwise, send the following bytes:

 57 65 62 53 6F 63 6B 65 74 2D 50 72 6F 74 6F 63
 6F 6C 3A 20

 Send the /protocol/ value, encoded as US-ASCII.

 Send the following bytes:

 0d 0a

Hickson Expires April 16, 2010 [Page 13]

Internet-Draft The Web Socket protocol October 2009

 NOTE: The string "WebSocket-Protocol: ", the protocol, and CRLF.

 9. If the client has any authentication information or cookies that
 would be relevant to a resource accessed over HTTP, if /secure/
 is false, or HTTPS, if it is true, on host /host/, port /port/,
 with /resource name/ as the path (and possibly query
 parameters), then HTTP headers that would be appropriate for
 that information should be sent at this point. [RFC2616]
 [RFC2109] [RFC2965]

 Each header must be on a line of its own (each ending with a CR
 LF sequence). For the purposes of this step, each header must
 not be split into multiple lines (despite HTTP otherwise
 allowing this with continuation lines).

 EXAMPLE: For example, if the server had a username and
 password that applied to |http://example.com/socket|, and the
 Web Socket was being opened to |ws://example.com/socket|, it
 could send them:

 Authorization: Basic d2FsbGU6ZXZl

 10. Send the following bytes:

 0d 0a

 NOTE: Just a CRLF (a blank line).

 11. Read bytes from the server until either the connection closes,
 or a 0x0A byte is read. Let /header/ be these bytes, including
 the 0x0A byte.

 If /header/ is not at least two bytes long, or if the last two
 bytes aren't 0x0D and 0x0A respectively, then fail the Web
 Socket connection and abort these steps.

 User agents may apply a timeout to this step, failing the Web
 Socket connection if the server does not send back data in a
 suitable time period.

 12. If /header/ consists of 44 bytes that exactly match the
 following, then let /mode/ be _normal_.

 48 54 54 50 2F 31 2E 31 20 31 30 31 20 57 65 62
 20 53 6F 63 6B 65 74 20 50 72 6F 74 6F 63 6F 6C
 20 48 61 6E 64 73 68 61 6B 65 0D 0A

 NOTE: The string "HTTP/1.1 101 Web Socket Protocol Handshake"

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2109
https://datatracker.ietf.org/doc/html/rfc2965

Hickson Expires April 16, 2010 [Page 14]

Internet-Draft The Web Socket protocol October 2009

 followed by a CRLF pair.

 Otherwise, let /code/ be the substring of /header/ that starts
 from the byte after the first 0x20 byte, and ends with the byte
 before the second 0x20 byte. If there are not at least two 0x20
 bytes in /header/, then fail the Web Socket connection and abort
 these steps.

 If /code/, interpreted as ASCII, is "401", then let /mode/ be
 authenticate.

 Otherwise, fail the Web Socket connection and abort these steps.

 13. If /mode/ is _normal_, then read 41 bytes from the server.

 If the connection closes before 41 bytes are received, or if the
 41 bytes aren't exactly equal to the following bytes, then fail
 the Web Socket connection and abort these steps.

 55 70 67 72 61 64 65 3A 20 57 65 62 53 6F 63 6B
 65 74 0D 0A 43 6F 6E 6E 65 63 74 69 6F 6E 3A 20
 55 70 67 72 61 64 65 0D 0A

 NOTE: The string "Upgrade: WebSocket", CRLF, the string
 "Connection: Upgrade", CRLF.

 User agents may apply a timeout to this step, failing the Web
 Socket connection if the server does not respond with the above
 bytes within a suitable time period.

 NOTE: This step is skipped if /mode/ is _authenticate_.

 14. Let /headers/ be a list of name-value pairs, initially empty.

 15. _Header_: Let /name/ and /value/ be empty byte arrays.

 16. Read a byte from the server.

 If the connection closes before this byte is received, then fail
 the Web Socket connection and abort these steps.

 Otherwise, handle the byte as described in the appropriate entry
 below:

 -> If the byte is 0x0D (ASCII CR)
 If the /name/ byte array is empty, then jump to the headers
 processing step. Otherwise, fail the Web Socket connection
 and abort these steps.

Hickson Expires April 16, 2010 [Page 15]

Internet-Draft The Web Socket protocol October 2009

 -> If the byte is 0x0A (ASCII LF)
 Fail the Web Socket connection and abort these steps.

 -> If the byte is 0x3A (ASCII :)
 Move on to the next step.

 -> If the byte is in the range 0x41 .. 0x5A (ASCII A .. Z)
 Append a byte whose value is the byte's value plus 0x20 to
 the /name/ byte array and redo this step for the next byte.

 -> Otherwise
 Append the byte to the /name/ byte array and redo this step
 for the next byte.

 NOTE: This reads a header name, terminated by a colon,
 converting upper-case ASCII letters to lowercase, and aborting
 if a stray CR or LF is found.

 17. Read a byte from the server.

 If the connection closes before this byte is received, then fail
 the Web Socket connection and abort these steps.

 Otherwise, handle the byte as described in the appropriate entry
 below:

 -> If the byte is 0x20 (ASCII space)
 Ignore the byte and move on to the next step.

 -> Otherwise
 Treat the byte as described by the list in the next step,
 then move on to that next step for real.

 NOTE: This skips past a space character after the colon, if
 necessary.

 18. Read a byte from the server.

 If the connection closes before this byte is received, then fail
 the Web Socket connection and abort these steps.

 Otherwise, handle the byte as described in the appropriate entry
 below:

 -> If the byte is 0x0D (ASCII CR)
 Move on to the next step.

Hickson Expires April 16, 2010 [Page 16]

Internet-Draft The Web Socket protocol October 2009

 -> If the byte is 0x0A (ASCII LF)
 Fail the Web Socket connection and abort these steps.

 -> Otherwise
 Append the byte to the /value/ byte array and redo this step
 for the next byte.

 NOTE: This reads a header value, terminated by a CRLF.

 19. Read a byte from the server.

 If the connection closes before this byte is received, or if the
 byte is not a 0x0A byte (ASCII LF), then fail the Web Socket
 connection and abort these steps.

 NOTE: This skips past the LF byte of the CRLF after the header.

 20. Append an entry to the /headers/ list that has the name given by
 the string obtained by interpreting the /name/ byte array as a
 UTF-8 byte stream and the value given by the string obtained by
 interpreting the /value/ byte array as a UTF-8 byte stream.

 21. Return to the "Header" step above.

 22. _Headers processing_: Read a byte from the server.

 If the connection closes before this byte is received, or if the
 byte is not a 0x0A byte (ASCII LF), then fail the Web Socket
 connection and abort these steps.

 NOTE: This skips past the LF byte of the CRLF after the blank
 line after the headers.

 23. If /mode/ is _normal_, then: If there is not exactly one entry
 in the /headers/ list whose name is "websocket-origin", or if
 there is not exactly one entry in the /headers/ list whose name
 is "websocket-location", or if the /protocol/ was specified but
 there is not exactly one entry in the /headers/ list whose name
 is "websocket-protocol", or if there are any entries in the
 /headers/ list whose names are the empty string, then fail the
 Web Socket connection and abort these steps. Otherwise, handle
 each entry in the /headers/ list as follows:

 -> If the entry's name is "websocket-origin"
 If the value is not exactly equal to /origin/, converted to
 ASCII lowercase, then fail the Web Socket connection and
 abort these steps. [ORIGIN]

Hickson Expires April 16, 2010 [Page 17]

Internet-Draft The Web Socket protocol October 2009

 -> If the entry's name is "websocket-location"
 If the value is not exactly equal to a string obtained from
 the steps to construct a Web Socket URL from /host/, /port/,
 /resource name/, and the /secure/ flag, then fail the Web
 Socket connection and abort these steps.

 -> If the entry's name is "websocket-protocol"
 If there was a /protocol/ specified, and the value is not
 exactly equal to /protocol/, then fail the Web Socket
 connection and abort these steps. (If no /protocol/ was
 specified, the header is ignored.)

 -> If the entry's name is "set-cookie" or "set-cookie2" or
 another cookie-related header name
 Handle the cookie as defined by the appropriate
 specification, with the resource being the one with the host
 /host/, the port /port/, the path (and possibly query
 parameters) /resource name/, and the scheme |http| if
 /secure/ is false and |https| if /secure/ is true. [RFC2109]
 [RFC2965]

 -> Any other name
 Ignore it.

 If /mode/ is _authenticate_, then: If there is not exactly one
 entry in the /headers/ list whose name is "www-authenticate",
 then fail the Web Socket connection and abort these steps.
 Otherwise, handle each entry in the /headers/ list as follows:

 -> If the entry's name is "www-authenticate"
 Obtain credentials in a manner consistent with the
 requirements for handling the |WWW-Authenticate| header in
 HTTP, and then close the connection (if the server has not
 already done so) and jump back to the step labeled _connect_,
 including the relevant authentication headers in the new
 request. [RFC2616]

 -> Any other name
 Ignore it.

 24. The *Web Socket connection is established*. Now the user agent
 must send and receive to and from the connection as described in
 the next section.

https://datatracker.ietf.org/doc/html/rfc2109
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc2616

Hickson Expires April 16, 2010 [Page 18]

Internet-Draft The Web Socket protocol October 2009

4.2. Data framing

 Once a Web Socket connection is established, the user agent must run
 through the following state machine for the bytes sent by the server.

 1. Try to read a byte from the server. Let /frame type/ be that
 byte.

 If no byte could be read because the Web Socket connection is
 closed, then abort.

 2. Handle the /frame type/ byte as follows:

 If the high-order bit of the /frame type/ byte is set (i.e. if
 /frame type/ _and_ed with 0x80 returns 0x80)
 Run these steps. If at any point during these steps a read is
 attempted but fails because the Web Socket connection is
 closed, then abort.

 1. Let /length/ be zero.

 2. _Length_: Read a byte, let /b/ be that byte.

 3. Let /b_v/ be integer corresponding to the low 7 bits of
 /b/ (the value you would get by _and_ing /b/ with 0x7F).

 4. Multiply /length/ by 128, add /b_v/ to that result, and
 store the final result in /length/.

 5. If the high-order bit of /b/ is set (i.e. if /b/ _and_ed
 with 0x80 returns 0x80), then return to the step above
 labeled _length_.

 6. Read /length/ bytes.

 7. Discard the read bytes.

 If the high-order bit of the /frame type/ byte is _not_ set (i.e.
 if /frame type/ _and_ed with 0x80 returns 0x00)
 Run these steps. If at any point during these steps a read is
 attempted but fails because the Web Socket connection is
 closed, then abort.

 1. Let /raw data/ be an empty byte array.

 2. _Data_: Read a byte, let /b/ be that byte. If the client
 runs out of resources for buffering the incoming data, or
 hits an artificial resource limit intended to avoid

Hickson Expires April 16, 2010 [Page 19]

Internet-Draft The Web Socket protocol October 2009

 resource starvation, then it must fail the Web Socket
 connection and abort these steps.

 3. If /b/ is not 0xFF, then append /b/ to /raw data/ and
 return to the previous step (labeled _data_).

 4. Interpret /raw data/ as a UTF-8 string, and store that
 string in /data/.

 5. If /frame type/ is 0x00, then *a message has been
 received* with text /data/. Otherwise, discard the data.

 3. Return to the first step to read the next byte.

 If the user agent is faced with content that is too large to be
 handled appropriately, then it must fail the Web Socket connection.

 Once a Web Socket connection is established, the user agent must use
 the following steps to *send /data/ using the Web Socket*:

 1. Send a 0x00 byte to the server.

 2. Encode /data/ using UTF-8 and send the resulting byte stream to
 the server.

 3. Send a 0xFF byte to the server.

 If at any point there is a fatal problem with sending data to the
 server, the user agent must fail the Web Socket connection.

4.3. Closing the connection

 To *fail the Web Socket connection*, the user agent must close the
 Web Socket connection, and may report the problem to the user (which
 would be especially useful for developers). However, user agents
 must not convey the failure information to the script that attempted
 the connection in a way distinguishable from the Web Socket being
 closed normally.

 Except as indicated above or as specified by the application layer
 (e.g. a script using the Web Socket API), user agents should not
 close the connection.

4.4. Handling errors in UTF-8

 When a client is to interpret a byte stream as UTF-8 but finds that
 the byte stream is not in fact a valid UTF-8 stream, then any bytes

Hickson Expires April 16, 2010 [Page 20]

Internet-Draft The Web Socket protocol October 2009

 or sequences of bytes that are not valid UTF-8 sequences must be
 interpreted as a U+FFFD REPLACEMENT CHARACTER.

Hickson Expires April 16, 2010 [Page 21]

Internet-Draft The Web Socket protocol October 2009

5. Server-side requirements

 This section only applies to servers.

5.1. Minimal handshake

 NOTE: This section describes the minimal requirements for a server-
 side implementation of Web Sockets.

 Listen on a port for TCP/IP. Upon receiving a connection request,
 open a connection and send the following bytes back to the client:

 48 54 54 50 2F 31 2E 31 20 31 30 31 20 57 65 62
 20 53 6F 63 6B 65 74 20 50 72 6F 74 6F 63 6F 6C
 20 48 61 6E 64 73 68 61 6B 65 0D 0A 55 70 67 72
 61 64 65 3A 20 57 65 62 53 6F 63 6B 65 74 0D 0A
 43 6F 6E 6E 65 63 74 69 6F 6E 3A 20 55 70 67 72
 61 64 65 0D 0A

 Send the string "WebSocket-Origin" followed by a U+003A COLON (:) and
 a U+0020 SPACE, followed by the ASCII serialization of the origin
 from which the server is willing to accept connections, followed by a
 CRLF pair (0x0D 0x0A). [ORIGIN]

 For instance:

 WebSocket-Origin: http://example.com

 Send the string "WebSocket-Location" followed by a U+003A COLON (:)
 and a U+0020 SPACE, followed by the URL of the Web Socket script,
 followed by a CRLF pair (0x0D 0x0A).

 For instance:

 WebSocket-Location: ws://example.com/demo

 NOTE: Do not include the port if it is the default port for Web
 Socket protocol connections of the type in question (80 for
 unencrypted connections and 443 for encrypted connections).

 Send another CRLF pair (0x0D 0x0A).

 Read data from the client until four bytes 0x0D 0x0A 0x0D 0x0A are
 read. This data must either be discarded or handled as described in
 the following section describing the handshake details.

 If the connection isn't dropped at this point, go to the data framing
 section.

Hickson Expires April 16, 2010 [Page 22]

Internet-Draft The Web Socket protocol October 2009

5.2. Handshake details

 The previous section ignores the data that is transmitted by the
 client during the handshake.

 The data sent by the client consists of a number of fields separated
 by CR LF pairs (bytes 0x0D 0x0A).

 The first field consists of three tokens separated by space
 characters (byte 0x20). The middle token is the path being opened.
 If the server supports multiple paths, then the server should echo
 the value of this field in the initial handshake, as part of the URL
 given on the |WebSocket-Location| line (after the appropriate scheme
 and host).

 If the first field does not have three tokens, the server should
 abort the connection as it probably represents an errorneous client.

 The remaining fields consist of name-value pairs, with the name part
 separated from the value part by a colon and a space (bytes 0x3A
 0x20). Of these, several are interesting:

 Host (bytes 48 6F 73 74)
 The value gives the hostname that the client intended to use when
 opening the Web Socket. It would be of interest in particular to
 virtual hosting environments, where one server might serve
 multiple hosts, and might therefore want to return different data.

 The right host has to be output as part of the URL given on the
 |WebSocket-Location| line of the handshake described above, to
 verify that the server knows that it is really representing that
 host.

 Origin (bytes 4F 72 69 67 69 6E)
 The value gives the scheme, hostname, and port (if it's not the
 default port for the given scheme) of the page that asked the
 client to open the Web Socket. It would be interesting if the
 server's operator had deals with operators of other sites, since
 the server could then decide how to respond (or indeed, _whether_
 to respond) based on which site was requesting a connection.

 If the server supports connections from more than one origin, then
 the server should echo the value of this field in the initial
 handshake, on the |WebSocket-Origin| line.

Hickson Expires April 16, 2010 [Page 23]

Internet-Draft The Web Socket protocol October 2009

 Other fields
 Other fields can be used, such as "Cookie" or "Authorization", for
 authentication purposes.

 Any fields that lack the colon-space separator should be discarded
 and may cause the server to disconnect.

5.3. Data framing

 NOTE: This section only describes how to handle content that this
 specification allows user agents to send (text). It doesn't handle
 any arbitrary content in the same way that the requirements on user
 agents defined earlier handle any content including possible future
 extensions to the protocols.

 The server must run through the following steps to process the bytes
 sent by the client:

 1. Read a byte from the client. Assuming everything is going
 according to plan, it will be a 0x00 byte. If the byte is not a
 0x00 byte, then the server may disconnect.

 2. Let /raw data/ be an empty byte array.

 3. _Data_: Read a byte, let /b/ be that byte.

 4. If /b/ is not 0xFF, then append /b/ to /raw data/ and return to
 the previous step (labeled _data_).

 5. Interpret /raw data/ as a UTF-8 string, and apply whatever
 server-specific processing is to occur for the resulting string.

 6. Return to the first step to read the next byte.

 The server must run through the following steps to send strings to
 the client:

 1. Send a 0x00 byte to the client to indicate the start of a string.

 2. Encode /data/ using UTF-8 and send the resulting byte stream to
 the client.

 3. Send a 0xFF byte to the client to indicate the end of the
 message.

Hickson Expires April 16, 2010 [Page 24]

Internet-Draft The Web Socket protocol October 2009

6. Closing the connection

 To *close the Web Socket connection*, either the user agent or the
 server closes the TCP/IP connection. There is no closing handshake.
 Whether the user agent or the server closes the connection, it is
 said that the *Web Socket connection is closed*.

 When a user agent is to close the Web Socket connection, it must drop
 all subsequent data from the server and must act as if the server had
 immediately closed its side of the connection.

 When a user agent notices that the Web Socket connection is closed,
 it must immediately close its side of the connection.

 Servers may close the Web Socket connection whenever desired.

 User agents should not close the Web Socket connection arbitrarily.

Hickson Expires April 16, 2010 [Page 25]

Internet-Draft The Web Socket protocol October 2009

7. Security considerations

 While this protocol is intended to be used by scripts in Web pages,
 it can also be used directly by hosts. Such hosts are acting on
 their own behalf, and can therefore send fake "Origin" headers,
 misleading the server. Servers should therefore be careful about
 assuming that they are talking directly to scripts from known
 origins, and must consider that they might be accessed in unexpected
 ways. In particular, a server should not trust that any input is
 valid.

 EXAMPLE: For example, if the server uses input as part of SQL
 queries, all input text should be escaped before being passed to the
 SQL server, lest the server be susceptible to SQL injection.

 Servers that are not intended to process input from any Web page but
 only for certain sites should verify the "Origin" header is an origin
 they expect, and should only respond with the corresponding
 "WebSocket-Origin" if it is an accepted origin. Servers that only
 accept input from one origin can just send back that value in the
 "WebSocket-Origin" header, without bothering to check the client's
 value.

 If at any time a server is faced with data that it does not
 understand, or that violates some criteria by which the server
 determines safety of input, or when the server sees a handshake that
 does not correspond to the values the server is expecting (e.g.
 incorrect path or origin), the server should just disconnect. It is
 always safe to disconnect.

Hickson Expires April 16, 2010 [Page 26]

Internet-Draft The Web Socket protocol October 2009

8. IANA considerations

8.1. Registration of ws: scheme

 A |ws:| URL identifies a Web Socket server and resource name.

 URI scheme name.
 ws

 Status.
 Permanent.

 URI scheme syntax.
 In ABNF terms using the terminals from the URI specifications:
 [RFC5234] [RFC3986]

 "ws" ":" hier-part ["?" query]

 The path and query components form the resource name sent to the
 server to identify the kind of service desired. Other components
 have the meanings described in RFC3986.

 URI scheme semantics.
 The only operation for this scheme is to open a connection using
 the Web Socket protocol.

 Encoding considerations.
 Characters in the host component that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by applying
 the IDNA ToASCII algorithm to the Unicode host name, with both the
 AllowUnassigned and UseSTD3ASCIIRules flags set, and using the
 result of this algorithm as the host in the URI. [RFC3490]

 Characters in other components that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by first
 encoding the characters as UTF-8 and then replacing the
 corresponding bytes using their percent-encoded form as defined in
 the URI and IRI specification. [RFC3986] [RFC3987]

 Applications/protocols that use this URI scheme name.
 Web Socket protocol.

 Interoperability considerations.
 None.

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987

Hickson Expires April 16, 2010 [Page 27]

Internet-Draft The Web Socket protocol October 2009

 Security considerations.
 See "Security considerations" section above.

 Contact.
 Ian Hickson <ian@hixie.ch>

 Author/Change controller.
 Ian Hickson <ian@hixie.ch>

 References.
 This document.

8.2. Registration of wss: scheme

 A |wss:| URL identifies a Web Socket server and resource name, and
 indicates that traffic over that connection is to be encrypted.

 URI scheme name.
 wss

 Status.
 Permanent.

 URI scheme syntax.
 In ABNF terms using the terminals from the URI specifications:
 [RFC5234] [RFC3986]

 "wss" ":" hier-part ["?" query]

 The path and query components form the resource name sent to the
 server to identify the kind of service desired. Other components
 have the meanings described in RFC3986.

 URI scheme semantics.
 The only operation for this scheme is to open a connection using
 the Web Socket protocol, encrypted using TLS.

 Encoding considerations.
 Characters in the host component that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by applying
 the IDNA ToASCII algorithm to the Unicode host name, with both the
 AllowUnassigned and UseSTD3ASCIIRules flags set, and using the
 result of this algorithm as the host in the URI. [RFC3490]

 Characters in other components that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by first
 encoding the characters as UTF-8 and then replacing the
 corresponding bytes using their percent-encoded form as defined in

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3490

Hickson Expires April 16, 2010 [Page 28]

Internet-Draft The Web Socket protocol October 2009

 the URI and IRI specification. [RFC3986] [RFC3987]

 Applications/protocols that use this URI scheme name.
 Web Socket protocol over TLS.

 Interoperability considerations.
 None.

 Security considerations.
 See "Security considerations" section above.

 Contact.
 Ian Hickson <ian@hixie.ch>

 Author/Change controller.
 Ian Hickson <ian@hixie.ch>

 References.
 This document.

8.3. Registration of the "WebSocket" HTTP Upgrade keyword

 Name of token.
 WebSocket

 Author/Change controller.
 Ian Hickson <ian@hixie.ch>

 Contact.
 Ian Hickson <ian@hixie.ch>

 References.
 This document.

8.4. WebSocket-Origin

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 WebSocket-Origin

 Applicable protocol
 http

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3864

Hickson Expires April 16, 2010 [Page 29]

Internet-Draft The Web Socket protocol October 2009

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

8.5. WebSocket-Protocol

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 WebSocket-Protocol

 Applicable protocol
 http

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

8.6. WebSocket-Location

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 WebSocket-Location

 Applicable protocol
 http

https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/rfc3864

Hickson Expires April 16, 2010 [Page 30]

Internet-Draft The Web Socket protocol October 2009

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

Hickson Expires April 16, 2010 [Page 31]

Internet-Draft The Web Socket protocol October 2009

9. Using the Web Socket protocol from other specifications

 The Web Socket protocol is intended to be used by another
 specification to provide a generic mechanism for dynamic author-
 defined content, e.g. in a specification defining a scripted API.

 Such a specification first needs to "establish a Web Socket
 connection", providing that algorithm with:

 o The destination, consisting of a /host/ and a /port/.

 o A /resource name/, which allows for multiple services to be
 identified at one host and port.

 o A /secure/ flag, which is true if the connection is to be
 encrypted, and false otherwise.

 o An ASCII serialization of an origin that is being made responsible
 for the connection. [ORIGIN]

 o Optionally a string identifying a protocol that is to be layered
 over the Web Socket connection.

 The /host/, /port/, /resource name/, and /secure/ flag are usually
 obtained from a URL using the steps to parse a Web Socket URL's
 components. These steps fail if the URL does not specify a Web
 Socket.

 If a connection can be established, then it is said that the "Web
 Socket connection is established".

 If at any time the connection is to be closed, then the specification
 needs to use the "close the Web Socket connection" algorithm.

 When the connection is closed, for any reason including failure to
 establish the connection in the first place, it is said that the "Web
 Socket connection is closed".

 While a connection is open, the specification will need to handle the
 cases when "a Web Socket message has been received" with text /data/.

 To send some text /data/ to an open connection, the specification
 needs to "send /data/ using the Web Socket".

Hickson Expires April 16, 2010 [Page 32]

Internet-Draft The Web Socket protocol October 2009

10. Normative References

 [HTML5] Hickson, I., "HTML5", October 2009.

 [ORIGIN] Barth, A., Jackson, C., and I. Hickson, "The HTTP Origin
 Header", September 2009.

 [RFC2109] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2109, February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965, October 2000.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",

RFC 3490, March 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [WEBADDRESSES]
 Connolly, D. and C. Sperberg-McQueen, "Web addresses in
 HTML 5", May 2009.

https://datatracker.ietf.org/doc/html/rfc2109
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc5234

Hickson Expires April 16, 2010 [Page 33]

Internet-Draft The Web Socket protocol October 2009

 [WSAPI] Hickson, I., "The Web Sockets API", October 2009.

Hickson Expires April 16, 2010 [Page 34]

Internet-Draft The Web Socket protocol October 2009

Author's Address

 Ian Hickson
 Google, Inc.

 Email: ian@hixie.ch
 URI: http://ln.hixie.ch/

Hickson Expires April 16, 2010 [Page 35]

http://ln.hixie.ch/

