
Network Working Group B. Hoeneisen
Internet-Draft Ucom.ch
Intended status: Standards Track H. Marques
Expires: May 3, 2020 K. Bristol
 pEp Foundation
 October 31, 2019

pretty Easy privacy (pEp): Key Synchronization Protocol (KeySync)
draft-hoeneisen-pep-keysync-01

Abstract

 This document describes the pEp KeySync protocol, which is designed
 to perform secure peer-to-peer synchronization of private keys across
 devices belonging to the same user.

 Modern users of messaging systems typically have multiple devices for
 communicating, and attempting to use encryption on all of these
 devices often leads to situations where messages cannot be decrypted
 on a given device due to missing private key data. Current
 approaches to resolve key synchronicity issues are cumbersome and
 potentially unsecure. The pEp KeySync protocol is designed to
 facilitate this personal key synchronization in a user-friendly
 manner.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 3, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Hoeneisen, et al. Expires May 3, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 3
1.2. Terms . 3
1.3. Problem Statement . 5
1.4. Main Challenge . 5
1.5. Approach . 5

2. General Description . 5
2.1. Use Cases for pEp KeySync 6
2.1.1. Form Device Group 6
2.1.2. Add New Device to Existing Device Group 7
2.1.3. Exchange Private Keys 7
2.1.4. Leave Device Group 7
2.1.5. Remove other Device from Device Group 8

2.2. Interaction Diagrams 8
2.2.1. Form Device Group 9
2.2.2. Add New Device to Existing Device Group 17
2.2.3. Exchange Private Keys 24
2.2.4. Leave Device Group 24
2.2.5. Remove other Device from Device Group 24

3. Security Considerations 24
4. Privacy Considerations 24
5. IANA Considerations . 24
6. Acknowledgments . 24
7. References . 25
7.1. Normative References 25
7.2. Informative References 25

Appendix A. Reference Implementation 26
A.1. Full Finite-State Machine Diagram 26
A.1.1. States . 26
A.1.2. Actions . 35
A.1.3. Transitions . 39

A.2. Messages . 39
A.2.1. Format . 40
A.2.2. List of Messages Used in Finite-State Machine 40
A.2.3. Example Messages 43

Appendix B. Finite-State Machine Code 43

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Hoeneisen, et al. Expires May 3, 2020 [Page 2]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

Appendix C. Document Changelog 54
Appendix D. Open Issues . 55

 Authors' Addresses . 55

1. Introduction

 The pretty Easy privacy (pEp) [I-D.birk-pep] protocols describe a set
 of conventions for the automation of operations traditionally seen as
 barriers to the use and deployment of secure end-to-end interpersonal
 messaging. These include, but are not limited to, key management,
 key discovery, and private key handling.

 This document specifies the pEp KeySync protocol, a means for secure,
 decentralized, peer-to-peer synchronization of private keys across
 devices belonging to the same user, allowing that user to send and
 receive encrypted communications from any of their devices.

 For pEp implementations, pEp KeySync is a critical part of the
 broader pEp Sync protocol, which is designed to be extensible to
 allow for the synchronization of additional user data, such as
 configuration settings and peer trust status information across a
 user's devices.

 This document will provide a general description of pEp KeySync,
 including idealized use cases, diagrams, and examples of messages
 that may be generated during the KeySync process.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Terms

 The following terms are defined for the scope of this document:

 o pEp Handshake: The process of one user contacting another over an
 independent channel in order to verify Trustwords (or fingerprints
 as a fallback). This can be done in-person or through established
 verbal communication channels, like a phone call.
 [I-D.marques-pep-handshake]

 Note: In pEp KeySync, the Handshake is used to authenticate own
 devices (the user normally compares the Trustwords directly by
 looking at the screens of the devices involved).

https://datatracker.ietf.org/doc/html/rfc2119

Hoeneisen, et al. Expires May 3, 2020 [Page 3]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 o Trustwords: A scalar-to-word representation of 16-bit numbers (0
 to 65535) to natural language words. When doing a Handshake,
 peers are shown combined Trustwords of both public keys involved
 to ease the comparison. [I-D.birk-pep-trustwords]

 o Trust On First Use (TOFU): cf. [RFC7435], which states: "In a
 protocol, TOFU calls for accepting and storing a public key or
 credential associated with an asserted identity, without
 authenticating that assertion. Subsequent communication that is
 authenticated using the cached key or credential is secure against
 an MiTM attack, if such an attack did not succeed during the
 vulnerable initial communication."

 o Man-in-the-middle (MITM) attack: cf. [RFC4949], which states: "A
 form of active wiretapping attack in which the attacker intercepts
 and selectively modifies communicated data to masquerade as one or
 more of the entities involved in a communication association."

 o Identity: The combination of a unique user identifier plus a
 specific address (email, network ID, URI, etc.). A single user
 may have multiple identities. See also [RFC4949].

 o Device Group: All of a user's devices which have successfully
 completed the KeySync process, and are now configured to share
 user data, such as cryptographic keys, trust information,
 calendars, configurations, and other data as a result of that
 process. This data is synchronized through a common channel for a
 given identity. For example, an identity might be a specific
 email address, and the common channel would be a mailbox for that
 email address.

 o Sole Device: A device which is not part of a Device Group.

 o Grouped Device: A device which is already part of a Device Group.

 o Beacon (message): A technical text message that is broadcast by
 Sole Devices and transmitted through a message sent to the channel
 of an identity. Other Sole Devices, or a Grouped Device of the
 same unique identity and using that identity's channel, can
 interpret this Beacon in order to initiate negotiation for the
 formation of a Device Group.

 o Transaction ID (TID): A UUID version 4, variant 1 number generated
 by each device during the pEp KeySync process in order to identify
 the respective devices involved.

 o Default Key: A key which is actually used for a given identity.

https://datatracker.ietf.org/doc/html/rfc7435
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949

Hoeneisen, et al. Expires May 3, 2020 [Page 4]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 o Own Key: A Default Key for an own identity.

1.3. Problem Statement

 Secure and private digital communication is becoming a necessity for
 many people. Encryption protocols which utilize key pairs are the
 most popular and easily implemented methods to ensure a message is
 authentic and can be trusted.

 However, most modern users have multiple devices for communicating,
 and attempting to use encryption on all of these devices often leads
 to situations where messages cannot be decrypted on a given device
 due to missing private key data. For example, Alice sends an
 encrypted message to Bob, using the public key of a key pair that Bob
 generated on his laptop. When Bob attempts to decrypt the message on
 his mobile phone, the private key that he generated on his laptop is
 not available. As a result, Bob must either use his laptop to
 decrypt the message, or attempt to copy the correct private key to
 his mobile device, which may expose his private key to potential
 leaks or theft.

1.4. Main Challenge

 The main challenge that pEp KeySync is designed to overcome is to
 perform the synchronization in a secure manner so that private keys
 are not leaked or exposed to theft.

 Note: The case of an adversary getting physical access to the device
 itself is beyond the scope of this document.

1.5. Approach

 The basic approach to solving the multiple-device decryption problem
 is to synchronize private keys among the devices of a user in a
 secure manner. pEp achieves this by having a user form a Device Group
 among their devices. During this process, a Handshake process
 occurs, and the user will be presented with a Trustwords dialog
 between any two devices at a time for pairing purposes. (cf.
 [I-D.birk-pep-trustwords]) Simply put, a user MUST manually complete
 the Trustwords dialog before the automatic and security-sensitive
 transfer of private key information can occur.

2. General Description

 The pEp KeySync protocol allows a user to securely synchronize
 private key data for multiple identities across their various
 devices.

Hoeneisen, et al. Expires May 3, 2020 [Page 5]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 This synchronization process is decentralized and performed as a two-
 phase commit protocol structure (2PC). This structure ensures
 consensus among the devices at all stages of the KeySync process.

 KeySync's 2PC transaction is accomplished through the implementation
 of a Finite-State Machine (FSM) on each pEp-enabled device. This FSM
 not only sends and receives network traffic, which allows devices to
 communicate with each other throughout the KeySync process, but also
 interacts with the pEp engine itself.

 Once activated, the pEp KeySync protocol initiates the formation of a
 Device Group, and the user is guided through a Handshake process on
 their respective devices. A user can choose to reject or cancel this
 process at any time, from either device, and private key data is not
 exchanged until the group formation process is verified on both
 devices.

 Once a Device Group is formed, a user can add additional devices to
 their group through the same joining procedure. Upon adding the new
 device to the existing Device Group, key data is synchronized among
 all Grouped Devices, allowing a user to communicate privately from
 any of their secure identities.

2.1. Use Cases for pEp KeySync

 This section describes ideal-condition use cases for pEp KeySync.
 The focus is on the core procedures and on the scenarios where
 everything works. Unexpected user behavior, error handling, race
 conditions, etc., are generally omitted from this section in order to
 focus on the general concepts of pEp KeySync. Additional use cases
 will be discussed in further detail throughout Appendix A.

2.1.1. Form Device Group

 Our user, Alice, has two devices that are configured with pEp-
 implementing messaging clients and share the same identity for her
 preferred communication channel. In our example, this is a
 communication channel with an email address. Let us call these
 devices Alice_Mobile and Alice_Tablet. Each device already has its
 own key pair, which was automatically generated by the pEp protocol.
 Neither device knows anything about the other.

 Alice wants full communication capability from both of her devices,
 but currently cannot do so, as the devices do not know about each
 other. Alice will use pEp KeySync to form a Device Group and add her
 devices to it. This allows for the exchange of private key data
 among its devices, allowing Alice to have full communication
 capability on both of her devices.

Hoeneisen, et al. Expires May 3, 2020 [Page 6]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

2.1.2. Add New Device to Existing Device Group

 Sometime after devices Alice_Mobile and Alice_Tablet have formed a
 Device Group (cf. Section 2.1.1), Alice buys another device,
 Alice_Laptop, which is also configured with pEp-implementing
 messaging clients and shares the same identity for her preferred
 communication channel (the aforementioned email address).
 Alice_Laptop also has a key pair, which was automatically generated
 by the pEp protocol, just as the Grouped Devices Alice_Mobile and
 Alice_Tablet have. But while the Grouped Devices know each other and
 have exchanged private keys, Alice_Laptop and the Grouped Devices
 don't know each other. Thus, Alice does not have full communication
 capability across the three devices.

 As before with devices Alice_Mobile and Alice_Tablet, Alice will use
 pEp KeySync to add device Alice_Laptop to the existing Device Group,
 allowing all three devices to exchange private key information, and
 Alice to have access to her messages from any of them.

2.1.3. Exchange Private Keys

 All devices from Alice are part of a Device Group (cf. Section 2.1.1
 and Section 2.1.2). However, as keys may expire or get reset, it is
 inevitable that new key pairs will be generated. For Alice to
 maintain her ability to read all encrypted messages on all devices,
 any new private key needs to be shared with the other devices in the
 device group. All devices in Alice's Device Group will share the
 latest private keys as they are generated, keeping all of her devices
 up to date and functioning as desired.

2.1.4. Leave Device Group

 Alice decides that her mobile phone, Alice_Mobile, should no longer
 have access to all private keys of the Device Group. Alice can
 manually tell her mobile phone to leave the Device Group by turning
 off the pEp Sync feature on her device, which deactivates KeySync.
 The Device Group is dissolved, and Sync is disabled on her mobile
 phone. This action also initiates the pEp KeyReset protocol, which
 resets keys for all own identities.

 In the future, if Alice desires, she can re-add her mobile phone to a
 Device Group, but she will first have to re-enable Sync, and then
 initiate the joining procedure again (cf. Section 2.1.1 and

Section 2.1.2).

Hoeneisen, et al. Expires May 3, 2020 [Page 7]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

2.1.5. Remove other Device from Device Group

 One of Alice's devices may be stolen or become otherwise compromised.
 She needs to ensure that the affected device no longer receives
 updates to private keys from the other devices in her Device Group.
 Using one of her remaining Grouped Devices, Alice can disable pEp
 Sync (and thus KeySync) on her remaining devices. This action
 dissolves the Device Group and initiates the pEp KeyReset protocol.

2.2. Interaction Diagrams

 The following interaction diagrams depict what happens during Alice's
 KeySync scenarios in a simplified manner. For each scenario, we
 first present a successful case, then an unsuccessful case and,
 finally, a case that has been interrupted, or discontinued. Some
 details are skipped here for the sake of readability. Descriptions
 of the interactions are included after each diagram.

 Each pEp-enabled device runs its own Finite-State Machine (FSM),
 which interact with each other throughout the KeySync process, and
 drive the UI options presented to the user. All messages are
 'broadcast' between devices. The TIDs added to each message allow
 the identification of received messages which pertain to the ongoing
 transaction and its sender.

 For events requiring user interaction in order to proceed, it does
 not matter which device has the specified option chosen first unless
 otherwise indicated. For example, if an event states that the
 'Offerer' chooses 'Accept' to continue, the process will be
 unaffected if the 'Requester' device does so first. The only
 difference is that the order of the roles for the remainder of the
 given scenario will be swapped.

Hoeneisen, et al. Expires May 3, 2020 [Page 8]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

2.2.1. Form Device Group

2.2.1.1. Successful Case

 ,-.
 `-'
 /|\
 ,----------------. | ,------------------.
 |'Offerer' device| / \ |'Requester' device|
 `-------+--------' User `--------+---------'
 | | |
 | | |
 | 1(r). Beacon (challenge TID) |
 |<--|
 | | |
 | 1(o). Beacon (challenge TID) |
 |-->|
 | | |
 | 2. NegotiationRequest |
 |<--|
 | | |
 | | 3. Display Trustwords|
 | |<- - - - - - - - - - -|
 | | |
 | 4. NegotiationOpen |
 |-->|
 | | |
 | 5. Display Trustwords| |
 | - - - - - - - - - - >| |
 | | |
 | ,-----------------------------. |
 | |Handshake (user comparison | |
 | |of Trustwords) successful | |
 | `-----------------------------' |
 ,-----------------------------------. |
 |User presses 'Accept' button | |
 |on 'Requester' device | |
 `-----------------------------------' |
 | | 6. Accept |
 | | - - - - - - - - - - >|
 | | |
 | 7. CommitAcceptRequester |
 |<--|
 | | |
 ,-----------------------------------. |
 |User presses 'Accept' button | |
 |on 'Offerer' device | |
 `-----------------------------------' |

Hoeneisen, et al. Expires May 3, 2020 [Page 9]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 | 8. Accept | |
 |<- - - - - - - - - - -| |
 | | |
 | 9. CommitAcceptOfferer |
 |-->|
 | | |
 | 10. OwnKeysOfferer + keys |
 |-->|
 | | |
 | | ,----------------------.
 | | |Requester is Grouped |
 | | `----------------------'
 | 11. OwnKeysRequester + keys |
 |<--|
 | | |
 ,--------------------. | |
 |Offerer is Grouped | | |
 `--------------------' | |
 | | |
 ,-------+--------. User ,--------+---------.
 |'Offerer' device| ,-. |'Requester' device|
 `----------------' `-' `------------------'
 /|\
 |
 / \

Hoeneisen, et al. Expires May 3, 2020 [Page 10]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 As depicted above, a user intends to form a Device Group in order to
 securely share key material among its members. The group is formed
 by an 'Offerer' device and a 'Requester' device. The names 'Offerer'
 and 'Requester' are derived from the FSM, in which the device roles
 are defined during the start sequence, which is necessary for the FSM
 to work as intended.

 During initialization of pEp KeySync, each device generates a
 Transaction-ID (TID). These TIDs are sent as a challenge in a Beacon
 over the mutual channel, and the device roles of 'Offerer' and
 'Requester' are determined by the numeric value of each device's
 unique TID.

 1. Every device sends a Beacon message containing a challenge TID.
 Upon receipt of a Beacon message from another device, the
 received challenge TID is compared with the device's own
 challenge TID. The device which has a TID with a lower
 numerical value is assigned as the 'Requester', and the other
 device is automatically assigned as the 'Offerer'.

 Note: The 'Offerer' device MUST NOT start a negotiation. In the
 event the earlier Beacon message is lost, the 'Offerer' device
 re-sends its own Beacon and waits for a response. Message 1(r)
 depicts the Beacon message sent by the 'Requester' device and is
 not required for the process to continue.

 2. After determination of the role, the 'Requester' device sends a
 NegotiationRequest message.

 3. The 'Requester' device displays the Trustwords to the user.

 4. Upon receipt of the NegotiationRequest message, the 'Offerer'
 device sends a NegotiationOpen message.

 5. The 'Offerer' device displays the Trustwords to the user.

 6. The user compares the Trustwords of both devices. As the
 Trustwords are the same on both devices, the user chooses the
 'Accept' option on the 'Requester' device.

 7. On receipt of the user's 'Accept', the 'Requester' device sends
 a CommitAcceptRequester message.

 The 'Offerer' device receives this message and waits for the
 user to choose 'Accept'.

 8. The user compares the Trustwords of both devices and chooses the
 'Accept' option on the 'Offerer' device.

Hoeneisen, et al. Expires May 3, 2020 [Page 11]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 9. Once the user chooses 'Accept', the 'Offerer' device sends a
 CommitAcceptRequester message.

 10. The 'Offerer' device then sends an OwnKeysOfferer message along
 with the user's local key pairs (private and public keys) to
 to be synchronized.

 11. Upon receipt of the OwnKeysOfferer message, the 'Requester'
 device is grouped and sends an OwnKeysRequester message along
 with the user's local key pairs (private and public keys) to be
 synchronized.

 Upon receipt of the OwnKeysRequester message, the 'Offerer'
 device is also grouped. The formation of the Device Group has
 been successful.

Hoeneisen, et al. Expires May 3, 2020 [Page 12]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

2.2.1.2. Unsuccessful Case

 ,-.
 `-'
 /|\
 ,----------------. | ,------------------.
 |'Offerer' device| / \ |'Requester' device|
 `-------+--------' User `--------+---------'
 | | |
 | | |
 ,--!.
 |Messages (1-5) are same as in the successful case (see above) |_\
 `--'
 | | |
 | | |
 | ,-----------------------------. |
 | |Handshake (user comparison | |
 | |of Trustwords) unsuccessful | |
 | `-----------------------------' |
 | ,------------------------------------.
 | |User presses 'Reject' button |
 | |on 'Requester' device |
 | `------------------------------------'
 | | R6. Reject |
 | | - - - - - - - - - - >|
 | | |
 | R7. CommitReject |
 |<---|
 | | |
 ,--!.
 | Devices (still not grouped) will not try again |_\
 `--'
 | | |
 ,-------+--------. User ,--------+---------.
 |'Offerer' device| ,-. |'Requester' device|
 `----------------' `-' `------------------'
 /|\
 |
 / \

Hoeneisen, et al. Expires May 3, 2020 [Page 13]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 For unsuccessful KeySync attempts, messages 1-5 are the same as in a
 successful attempt (see above), but once the Trustwords are shown,
 events are as follows:

 R6. The user compares the Trustwords of both devices. As the
 Trustwords do not match, the user chooses the 'Reject' option
 on the 'Requester' device.

 R7. On receipt of the user's 'Reject', the 'Requester' device sends
 a CommitReject message.

 Once the CommitReject message is sent or received, respectively, the
 devices cannot form a Device Group, and pEp KeySync is disabled on
 both devices. As a result, there are no further attempts to form a
 Device Group involving either of these two devices. KeySync may be
 re-enabled in the pEp settings on the affected device(s).

Hoeneisen, et al. Expires May 3, 2020 [Page 14]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

2.2.1.3. Discontinuation Case

 ,-.
 `-'
 /|\
 ,----------------. | ,------------------.
 |'Offerer' device| / \ |'Requester' device|
 `-------+--------' User `--------+---------'
 | | |
 | | |
 ,--!.
 |Messages (1-5) are same as in the successful case (see above) |_\
 `--'
 | | |
 | | |
 | ,-----------------------------. |
 | |Handshake (user comparison | |
 | |of Trustwords) discontinued | |
 | `-----------------------------' |
 | ,------------------------------------.
 | |User presses 'Cancel' button |
 | |on 'Requester' device |
 | `------------------------------------'
 | | C6. Cancel |
 | | - - - - - - - - - - >|
 | | |
 | C7. Rollback |
 |<---|
 | | |
 ,--!.
 | Devices (still not grouped) will try again |_\
 `--'
 | | |
 ,-------+--------. User ,--------+---------.
 |'Offerer' device| ,-. |'Requester' device|
 `----------------' `-' `------------------'
 /|\
 |
 / \

Hoeneisen, et al. Expires May 3, 2020 [Page 15]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 For discontinued (canceled) KeySync attempts, messages 1-5 are the
 same as in a successful attempt (see above), but once the Trustwords
 are shown, events are as follows:

 C6. The user decides to discontinue the process and chooses the
 'Cancel' option on the 'Requester' device.

 C7. On receipt of the user's 'Cancel', the 'Requester' device sends
 a rollback message.

 The devices do not form a Device Group. KeySync remains enabled on
 both devices, and forming a Device Group can start again.

Hoeneisen, et al. Expires May 3, 2020 [Page 16]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

2.2.2. Add New Device to Existing Device Group

2.2.2.1. Successful Case

 ,-------. ,-.
 |New | `-' ,--------. ,--------.
 |device | /|\ |Active | |Passive |
 |to join| | |device | |devices |
 |group | / \ |in group| |in group|
 `---+---' User `---+----' `---+----'
 | | | |
 | | | |
 | 1. Beacon | |
 |--------------------------------->| |
 | | | |
 | | 1. Beacon | |
 |--->|
 | | | |
 | 2(p). NegotiationRequest |
 |<---|
 | | | |
 | | 3(p) Display Trustwords |
 | |<- - - - - - - - - - - - - - - - - - |
 | | | |
 | 4(p) NegotiationOpen |
 |--->|
 | | | | |
 | 2(a). NegotiationRequest | |
 |<---------------------------------| |
 | | | |
 | | 3(a). Display | |
 | | Trustwords | |
 | |<- - - - - - - - | |
 | | | |
 | 4(a). NegotiationOpen | |
 |--------------------------------->| |
 | | | |
 | 5. Display | | |
 | Trustwords | | |
 | - - - - - - - >| | |
 | | | |
 | ,-----------------------------. | |
 | |Handshake (user comparison | | |
 | |of Trustwords) successful | | |
 | `-----------------------------' | |
 | ,------------------------------. |
 | |User presses 'Accept' button | |
 | |on a device in group | |

Hoeneisen, et al. Expires May 3, 2020 [Page 17]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 | `------------------------------' |
 | | 6. Accept | |
 | | - - - - - - - ->| |
 | | | |
 | | | 7. GroupTrust |
 | | | ThisKey |
 | | |------------------>|
 | | | |
 | 8. CommitAcceptForGroup | |
 |<---------------------------------| |
 | | | |
 ,------------------------------. | |
 |User presses 'Accept' button | | |
 |on new device | | |
 `------------------------------' | |
 | 9. Accept | | |
 |<- - - - - - - -| | |
 | | | |
 | 10. CommitAccept | |
 |--------------------------------->| |
 | | | |
 | 11. GroupKeys (key data) | |
 |<---------------------------------| |
 | | | |
 ,------------. | | |
 |New device | | | |
 |is grouped | | | |
 `------------' | | |
 | 12. GroupKeys (key data) | | |
 |--------------------------------->| |
 | | | |
 | | 12. GroupKeys (key data) |
 |--->|
 | | | |
 | | | |
 ,---+---. User ,---+----. ,---+----.
 |New | ,-. |Active | |Passive | |
 |device | `-' |device | |devices |
 |to join| /|\ |in group| |in group|
 |group | | `--------' `--------'
 `-------' / \

Hoeneisen, et al. Expires May 3, 2020 [Page 18]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 As depicted above, a user intends to add a new device to an existing
 Device Group.

 1. During initialization of pEp KeySync, the new device sends a
 Beacon message.

 Note: In the diagram, all messages marked "1. Beacon" are a
 single message, but drawn separately in order to convey that the
 message is sent to all devices in the Device Group.

 2. Upon receipt of a Beacon message from a device not part of a
 Device Group, all Grouped Devices send a NegotiationRequest
 message.

 Note: Messages 2(a) and 2(p) are different instances of the
 NegotiationRequest message type.

 3. All Grouped Devices display the Trustwords to the user.

 4. Upon receipt of every NegotiationRequest message, the New Device
 sends a NegotiationOpen message.

 Note: Messages 4(a) and 4(p) are different instances of the
 NegotiationOpen message type.

 5. The new device displays the Trustwords to the user.

 6. The user compares the Trustwords of both devices and chooses the
 'Accept' option on one of the Grouped Devices.

 Note 1: The Grouped Device that the user chooses the 'Accept'
 option from assumes the role of the active device for the Device
 Group.

 7. On receipt of the user's 'Accept', the Active Grouped Device
 sends a TrustThisKey message to the passive Grouped Devices.

 8. The Active Grouped Device also sends a CommitAcceptForGroup
 message to the new device. Upon receipt, the new device waits
 for the user to choose 'Accept'.

 9. The user compares the Trustwords of both devices and chooses the
 'Accept' option on the new device.

 10. Once the user chooses 'Accept', the new device sends a
 CommitAccept message to the Device Group.

Hoeneisen, et al. Expires May 3, 2020 [Page 19]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 11. The new device then sends a GroupKeys message which contains its
 own private keys.

 12. Upon receipt of the GroupKeys message from the new device, the
 Active Grouped Device FSM transitions to state Grouped, adds the
 new device's keys to the GroupKeys, and sends a GroupKeys
 message to the entire Device Group. The new device has
 successfully joined the Device Group and all keys are
 synchronized among the devices.

 Note: In the diagram, all messages marked "12. GroupKeys + keys" are
 a single message, but drawn separately in order to convey that the
 message is sent to all devices in the Device Group.

Hoeneisen, et al. Expires May 3, 2020 [Page 20]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

2.2.2.2. Unsuccessful Case

 ,-------. ,-.
 |New | `-' ,--------. ,--------.
 |device | /|\ |Active | |Passive |
 |to join| | |device | |devices |
 |group | / \ |in group| |in group|
 `---+---' User `---+----' `---+----'
 | | | |
 | | | |
 ,---!.
 |Messages (1-5) are same as in the successful case (see above) |_\
 `---'
 | | | | |
 | | | |
 | ,-----------------------------. | |
 | |Handshake (user comparison | | |
 | |of Trustwords) unsuccessful | | |
 | `-----------------------------' | |
 | ,------------------------------. |
 | |User presses 'Reject' button | |
 | |on a device in group | |
 | `------------------------------' |
 | | R6. Reject | |
 | | - - - - - - - ->| |
 | | | |
 | R7. CommitReject | |
 |<---------------------------------| |
 | | | |
 | | | R7. CommitReject |
 | | |------------------>|
 | | | |
 ,----------!. | | |
New device	_\		
(still not			
grouped)			
will not			
try again			
 `------------' | | |
 | | | |
 ,---+---. User ,---+----. ,---+----.
 |New | ,-. |Active | |Passive | |
 |device | `-' |device | |devices |
 |to join| /|\ |in group| |in group|
 |group | | `--------' `--------'
 `-------' / \

Hoeneisen, et al. Expires May 3, 2020 [Page 21]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 For unsuccessful KeySync attempts, messages 1-5 are the same as in a
 successful attempt (see above), but once the Trustwords are shown,
 events are as follows:

 R6. The user compares the Trustwords displayed on both devices.
 If the Trustwords do not match, the user chooses the 'Reject'
 option on one of the Grouped Devices. This issues a
 'CommitReject' message to the FSM as well as all devices in the
 Device Group.

 R7. Upon receiving the 'Reject' message from the Device Group, the
 'Requester' device sends a 'CommitReject' message to the FSM.

 Note: In the diagram, all messages marked "R7. CommitReject"
 are a single message, but drawn separately in order to convey
 that the message is sent to all devices in the Device Group.

 Once the CommitReject message is sent or received, respectively, the
 new device cannot join the Device Group, and pEp KeySync is disabled
 on the new device. As a result, there are no further attempts to
 join a Device Group by the new device. pEp KeySync may be re-enabled
 in the pEp settings on the affected device.

Hoeneisen, et al. Expires May 3, 2020 [Page 22]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

2.2.2.3. Discontinuation Case

 ,-------. ,-.
 |New | `-' ,--------. ,--------.
 |device | /|\ |Active | |Passive |
 |to join| | |device | |devices |
 |group | / \ |in group| |in group|
 `---+---' User `---+----' `---+----'
 | | | |
 | | | |
 ,---!.
 |Messages (1-5) are same as in the successful case (see above) |_\
 `---'
 | | | | |
 | | | |
 | ,-----------------------------. | |
 | |Handshake (user comparison | | |
 | |of Trustwords) discontinued | | |
 | `-----------------------------' | |
 | ,------------------------------. |
 | |User presses 'Cancel' button | |
 | |on a device in group | |
 | `------------------------------' |
 | | C6. Cancel | |
 | | - - - - - - - ->| |
 | | | |
 | C7. Rollback | |
 |<---------------------------------| |
 | | | |
 | | | C7. Rollback |
 | | |------------------>|
 | | | |
 ,----------!. | | |
New device	_\		
(still not			
grouped)			
will try			
again			
 `------------' | | |
 | | | |
 ,---+---. User ,---+----. ,---+----.
 |New | ,-. |Active | |Passive | |
 |device | `-' |device | |devices |
 |to join| /|\ |in group| |in group|
 |group | | `--------' `--------'
 `-------' / \

Hoeneisen, et al. Expires May 3, 2020 [Page 23]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 For discontinued (canceled) KeySync attempts, messages 1-5 are the
 same as in a successful attempt (see above), but once the Trustwords
 are shown, events are as follows:

 C6. The user decides to discontinue the process and chooses the
 'Cancel' option on one of the Grouped Devices.

 C7. On receipt of the 'Cancel' from the 'Offerer' device, the
 'Requester' device sends a rollback message to the FSM.

 Note: In the diagram, all messages marked "C7. Rollback"
 are a single message, but drawn separately in order to convey
 that the message is sent to all devices in the Device Group.

 The new device does not join the Device Group. KeySync remains
 enabled and joining a Device Group can start again at any time.

2.2.3. Exchange Private Keys

 [[TODO]]

2.2.4. Leave Device Group

 [[TODO]]

2.2.5. Remove other Device from Device Group

 [[TODO]]

3. Security Considerations

 [[TODO]]

4. Privacy Considerations

 [[TODO]]

5. IANA Considerations

 This document has no actions for IANA.

6. Acknowledgments

 The authors would like to thank the following people who have
 provided significant contributions to actual Running Code and the
 development of this document: Volker Birk and Krista Bennett.

Hoeneisen, et al. Expires May 3, 2020 [Page 24]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 Furthermore, the authors would like to thank the following people who
 provided helpful comments and suggestions for this document: Claudio
 Luck, Damian Rutz, Damiano Boppart, and Nana Karlstetter.

 This work was initially created by pEp Foundation, and then reviewed
 and extended with funding by the Internet Society's Beyond the Net
 Programme on standardizing pEp. [ISOC.bnet]

7. References

7.1. Normative References

 [I-D.birk-pep]
 Marques, H., Luck, C., and B. Hoeneisen, "pretty Easy
 privacy (pEp): Privacy by Default", draft-birk-pep-04
 (work in progress), July 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/info/rfc7435>.

7.2. Informative References

 [I-D.birk-pep-trustwords]
 Hoeneisen, B. and H. Marques, "IANA Registration of
 Trustword Lists: Guide, Template and IANA Considerations",

draft-birk-pep-trustwords-04 (work in progress), July
 2019.

 [I-D.marques-pep-handshake]
 Marques, H. and B. Hoeneisen, "pretty Easy privacy (pEp):
 Contact and Channel Authentication through Handshake",

draft-marques-pep-handshake-03 (work in progress), July
 2019.

https://datatracker.ietf.org/doc/html/draft-birk-pep-04
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/rfc7435
https://www.rfc-editor.org/info/rfc7435
https://datatracker.ietf.org/doc/html/draft-birk-pep-trustwords-04
https://datatracker.ietf.org/doc/html/draft-marques-pep-handshake-03

Hoeneisen, et al. Expires May 3, 2020 [Page 25]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 [ISOC.bnet]
 Simao, I., "Beyond the Net. 12 Innovative Projects
 Selected for Beyond the Net Funding. Implementing Privacy
 via Mass Encryption: Standardizing pretty Easy privacy's
 protocols", June 2017, <https://www.internetsociety.org/

blog/2017/06/12-innovative-projects-selected-for-beyond-
the-net-funding/>.

Appendix A. Reference Implementation

 [[Note: The full Finite-State Machine code can be found in
Appendix B. This section is not a complete reference at this time.

 The authors intend to refine this section in future revisions of this
 document.]]

 The pEp KeySync Finite-State Machine is based on a two-phase commit
 protocol (2PC) structure. This section describes the states,
 actions, events, and messages which comprise the pEp KeySync FSM, and
 are intended to allow readers to understand the general functionality
 and message flow of the FSM.

 States are used to direct actions, events, and messages. Actions
 describe internal FSM functions, and fall into two general types.
 The first action type directs the state transitions within the FSM,
 and the second type drives UI functionality. Events are exchanged
 both between negotiation partners as well as the pEp engine itself to
 trigger actions and send messages. Messages contain information to
 ensure the integrity of the KeySync session as well as additional
 data, depending on the type of message (cf. Appendix A.2).

A.1. Full Finite-State Machine Diagram

 A full diagram of the implemented pEp KeySync FSM can be found at the
 following URL:

https://pep.foundation/dev/repos/internet-drafts/raw-
file/tip/misc/figures/sync/sync_fsm_full.svg

A.1.1. States

A.1.1.1. InitState

 On initialization, the FSM enters InitState, which evaluates and
 determines a device's group status. If the device is detected to
 belong to a Device Group, the FSM transitions to state Grouped.
 Otherwise, the FSM transitions to state Sole (cf. Appendix A.1.2.1).

https://www.internetsociety.org/blog/2017/06/12-innovative-projects-selected-for-beyond-the-net-funding/
https://www.internetsociety.org/blog/2017/06/12-innovative-projects-selected-for-beyond-the-net-funding/
https://www.internetsociety.org/blog/2017/06/12-innovative-projects-selected-for-beyond-the-net-funding/
https://pep.foundation/dev/repos/internet-drafts/raw-file/tip/misc/figures/sync/sync_fsm_full.svg
https://pep.foundation/dev/repos/internet-drafts/raw-file/tip/misc/figures/sync/sync_fsm_full.svg

Hoeneisen, et al. Expires May 3, 2020 [Page 26]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

A.1.1.2. Sole

 This is the default FSM state for an ungrouped device.

 On initialization, a challenge TID is created and sent out inside of
 a Beacon message along with the device's current state. The FSM also
 listens for Beacons from other devices. Upon receipt of a Beacon
 message from another device, the received challenge TID is compared
 with the own challenge. The device with the lower challenge TID is
 assigned the 'Requester' role, and the other device is automatically
 assigned the 'Offerer' role.

 If a device is determined to be the 'Requester', it issues a
 NegotiationRequest event to the 'Offerer'.

 When the 'Offerer' device receives this NegotiationRequest message,
 it responds with a NegotiationOpen message, and the 'Offerer' FSM
 transitions to state HandshakingOfferer while it awaits the
 'Requester' device response.

 On receipt of the 'Offerer' device's NegotiationOpen message, the
 'Requester' FSM proceeds in one of two ways, depending on the
 'Offerer' device state:

 o Sole: The 'Requester' FSM transitions to state
 HandshakingRequester.

 o Grouped: The 'Requester' FSM transitions to state
 HandshakingToJoin.

A.1.1.3. HandshakingOfferer

 This state can only be entered by the 'Offerer' device in a Sole
 state, and drives user interface options, including the Trustwords
 dialog. The user is prompted to compare Trustwords and choose from
 the following options:

 o Accept: A CommitAcceptOfferer message is sent to the 'Requester'
 device, and the FSM transitions to state HandshakingPhase1Offerer
 while it waits for a response.

 o Reject: A CommitReject message is sent to the 'Requester' device,
 pEp KeySync is disabled, and the FSM transitions to state End.

 o Cancel: A Rollback message is sent to the 'Requester' device, and
 the FSM transitions to state Sole.

Hoeneisen, et al. Expires May 3, 2020 [Page 27]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 Once the user selects one of the above options on the 'Offerer'
 device, the FSM waits for a response from the 'Requester' device.
 When this response is received, the 'Offerer' FSM performs a
 sameNegotiationAndPartner conditional check to verify the session
 integrity. If this conditional returns 'true', the FSM proceeds as
 follows, depending on the message received:

 o CommitAcceptRequester: The 'Requester' device public key is
 trusted, and the FSM transitions to state
 HandshakingPhase2Offerer.

 o CommitReject: pEp KeySync is disabled, and the FSM transitions to
 state End.

 o Rollback: The FSM transitions to state Sole.

A.1.1.4. HandshakingRequester

 This state can only be entered by the 'Requester' device in a Sole
 state, and drives user interface options, including the Trustwords
 dialog. The user is prompted to compare Trustwords, and choose from
 the following options:

 o Accept: A CommitAcceptRequester message is sent to the 'Offerer'
 device, the 'Offerer' public key is trusted, and the FSM
 transitions to state HandshakingPhase1Requester while it waits for
 a response.

 o Reject: A CommitReject message is sent to the 'Offerer' device,
 pEp KeySync is disabled, and the FSM transitions to state End.

 o Cancel: A Rollback message is sent to the 'Offerer' device, and
 the FSM transitions to state Sole.

 Once the user selects one of the above options on the 'Requester'
 device, the FSM waits for a response from the 'Offerer' device. When
 this response is received, the 'Requester' FSM performs a
 sameNegotiationAndPartner conditional check to verify the session
 integrity. If this conditional returns 'true', the FSM proceeds as
 follows, depending on the message received:

 o CommitAcceptOfferer: The FSM transitions to state
 HandshakingPhase2Requester.

 o CommitReject: pEp KeySync is disabled, and the FSM transitions to
 state End.

 o Rollback: The FSM transitions to state Sole.

Hoeneisen, et al. Expires May 3, 2020 [Page 28]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

A.1.1.5. HandshakingPhase1Offerer

 This state can only be entered by the 'Offerer' device in a Sole
 state.

 This state awaits and processes the response from a 'Requester'
 device in state HandshakingRequester. When this response is
 received, the 'Offerer' FSM performs a sameNegotiationAndPartner
 conditional check to verify the session integrity. If this
 conditional returns 'true', the FSM proceeds as follows, depending on
 the message received:

 o CommitAcceptRequester: The FSM transitions to state
 FormingGroupOfferer.

 o CommitReject: The 'Requester' public key is mistrusted, pEp
 KeySync is disabled, and the FSM transitions to state End.

 o Rollback: The 'Requester' public key is mistrusted, and the FSM
 transitions to state Sole.

A.1.1.6. HandshakingPhase1Requester

 This state can only be entered by the 'Requester' device in a Sole
 state.

 This state awaits and processes the response from an 'Offerer' device
 in state HandshakingOfferer. When this response is received, the
 'Requester' FSM performs a sameNegotiationAndPartner conditional
 check to verify the session integrity. If this conditional returns
 'true', the FSM proceeds as follows, depending on the message
 received:

 o CommitAcceptOfferer: The FSM transitions to state
 FormingGroupRequester.

 o CommitReject: The 'Offerer' public key is mistrusted, pEp KeySync
 is disabled, and the FSM transitions to state End.

 o Rollback: The 'Offerer' public key is mistrusted, and the FSM
 transitions to state Sole.

A.1.1.7. HandshakingPhase2Offerer

 This state can only be entered by the 'Offerer' device in a Sole
 state.

Hoeneisen, et al. Expires May 3, 2020 [Page 29]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 The FSM waits for the 'Offerer' device in state
 HandshakingPhase1Offerer to process the 'Requester' device response.
 Once that is done, the following UI options are displayed for the
 'Offerer' device:

 o Accept: The 'Requester' public key used in the Handshake is marked
 'trusted', a CommitAcceptOfferer message is issued to the
 'Requester', and the FSM transitions to state FormingGroupOfferer.

 o Reject: A CommitReject message is issued to the 'Requester'
 device, pEp KeySync is disabled, and the FSM transitions to state
 End.

 o Cancel: A Rollback message is issued to the 'Requester' device,
 and the FSM transitions to state Sole.

A.1.1.8. HandshakingPhase2Requester

 This state can only be entered by the 'Requester' device in a Sole
 state.

 The FSM waits for the 'Requester' device in state
 HandshakingPhase1Requester to process the 'Offerer' device response.
 Once that is done, the following UI options are displayed for the
 'Requester' device:

 o Accept: The 'Offerer' public key used in the Handshake is marked
 'trusted', a CommitAcceptRequester message is issued to the
 'Offerer' device, and the FSM transitions to state
 FormingGroupRequester.

 o Reject: A CommitReject message is issued to the 'Offerer' device,
 pEp KeySync is disabled, and the FSM transitions to state End.

 o Cancel: A Rollback message is issued to the 'Offerer' device, and
 the FSM transitions to state Sole.

A.1.1.9. FormingGroupOfferer

 This state can only be entered by the 'Offerer' device in a Sole
 state.

 In this state, the user is given two options: Initialize the final
 step of the KeySync process (exchange of private key information), or
 Cancel.

 o Init: The FSM prepares the Own Keys on the 'Offerer' device for
 synchronization. The FSM then issues an OwnKeysOfferer message

Hoeneisen, et al. Expires May 3, 2020 [Page 30]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 which contains these keys, triggers a UI event to indicate that
 Device Group formation is in progress, and awaits a response from
 the 'Requester' device.

 Once the 'Requester' responds with a OwnKeysRequester message, the
 'Requester' device keys are received, combined with the 'Offerer'
 keys, and saved in a shared GroupKeys array (saveGroupKeys). The
 'Requester' device keys are marked as default for those respective
 identities (receivedKeysAreDefaultKeys). A UI event
 (showGroupCreated) indicates that the Device Group process is
 complete, and the FSM transitions to state Grouped.

 o Cancel: A Rollback message is issued to the 'Requester' device,
 and the FSM transitions to state Sole. No private key data is
 exchanged.

A.1.1.10. FormingGroupRequester

 This state can only be entered by the 'Requester' device in a Sole
 state.

 In this state, the user is given two options: Initialize the final
 step of the KeySync process (exchange of private key information), or
 Cancel.

 o Init: The FSM triggers a UI event to indicate that Device Group
 formation is in progress, and awaits an OwnKeysOfferer response
 from the 'Offerer' device.

 o Cancel: A Rollback message is issued to the 'Requester' device,
 and the FSM transitions to state Sole. No private key data is
 exchanged.

 Once an OwnKeysOfferer message is received, the 'Requester' FSM saves
 the 'Offerer' keys in a shared GroupKeys array (saveGroupKeys), and
 prepares the device's Own Keys for synchronization. The 'Requester'
 device keys are marked as default for those respective identities
 (ownKeysAreDefaultKeys). The FSM then issues an OwnKeysRequester
 message which contains these keys. A UI event (showGroupCreated)
 indicates that the Device Group process is complete, and the FSM
 transitions to state Grouped.

A.1.1.11. Grouped

 This is the default state for any Grouped Device.

 On initialization, this state generates a new challenge TID and shows
 the device as being in the Grouped state. This device state also

Hoeneisen, et al. Expires May 3, 2020 [Page 31]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 listens for Beacons from other devices that are not yet part of the
 Device Group.

 Upon receipt of a Beacon message from Sole Device, the device sends a
 NegotiationRequest message and waits for the Sole Device to respond
 with a NegotiationOpen message.

 On receipt of the NegotiationOpen message from the Sole Device, the
 FSM of the Grouped Device stores the negotiation information and
 transitions to state HandshakingGrouped.

 In this state, other events may also be processed, but these events
 do not result in a transition to another state.

A.1.1.12. HandshakingToJoin

 This state can only be entered by a device in the Sole state that is
 attempting to join an existing Device Group.

 In this state, the FSM waits for the user to compare the Trustwords
 and to choose from the following options on the new device:

 o Accept: A CommitAccept message is sent and the FSM transitions to
 state HandshakingToJoinPhase1.

 o Reject: A CommitReject message is sent, pEp KeySync is disabled
 (on the new device), and the FSM transitions to state End.

 o Cancel: A Rollback message is sent and the FSM transitions to
 state Sole.

 If the 'Accept' option is chosen on a Grouped Device, a
 CommitAcceptForGroup message is received and the FSM transitions to
 state HandshakingToJoinPhase2.

 If the 'Reject' option is chosen on a Grouped Device, a CommitReject
 message is received. pEp KeySync is disabled (on the new device) and
 the FSM transitions to state End.

 If the 'Cancel' option is chosen on the 'Requester' device, a
 Rollback message is received and the FSM transitions to state Sole.

A.1.1.13. HandshakingToJoinPhase1

 This state is entered by a new device only, i.e. a device that is not
 yet part of a Device Group. The FSM waits for the user to finish the
 Handshake on a Grouped Device (the user compares the Trustwords and
 chooses from the options presented):

Hoeneisen, et al. Expires May 3, 2020 [Page 32]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 If the 'Accept' option is chosen on a Grouped Device, a
 CommitAcceptForGroup message is received and the FSM transitions to
 state JoiningGroup.

 If the 'Reject' option is chosen on a Grouped Device, a CommitReject
 message is received. pEp KeySync is disabled (on the new device) and
 the FSM transitions to state End.

 If the 'Cancel' option is chosen on the 'Requester' device, a
 Rollback message is received and the FSM transitions to state Sole.

A.1.1.14. HandshakingToJoinPhase2

 This state is entered by a new device only, i.e. a device that is not
 yet part of a Device Group.

 In this state, the FSM waits for the user to compare the Trustwords
 and to choose from the following options on the new device:

 o Accept: A CommitAccept message is sent and the FSM transitions to
 state JoiningGroup.

 o Reject: A CommitReject message is sent, pEp KeySync is disabled
 (on the new device), and the FSM transitions to state End.

 o Cancel: A Rollback message is sent and the FSM transitions to
 state Sole.

A.1.1.15. JoiningGroup

 This state is entered by a new device only, i.e. a device that is not
 yet part of a Device Group.

 The FSM waits to receive the keys from the active Grouped Device.
 Once received, these are saved and marked as Default Keys. Then it
 sends all keys to the Grouped Devices and the FSM transitions to
 state Grouped.

A.1.1.16. HandshakingGrouped

 This state is entered by Grouped Devices only, i.e., devices that are
 part of a Device Group.

 In this state the FSM waits for the user to compare the Trustwords
 and to choose any of the following options from any Grouped Device,
 which will now become the Active Grouped Device:

Hoeneisen, et al. Expires May 3, 2020 [Page 33]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 o Accept: A CommitAcceptForGroup message is sent and the FSM
 transitions to state HandshakingGroupedPhase1.

 o Reject: A CommitReject message is sent and the FSM transitions to
 state Grouped.

 o Cancel: A Rollback message is sent and the FSM transitions to
 state Grouped.

 If the 'Accept' option is chosen on the new device, a CommitAccept
 message is received and the FSM transitions to state
 HandshakingPhase2.

 If the 'Reject' option is chosen on the new device, a CommitReject
 message is received and the FSM transitions to state Grouped.

 If the 'Cancel' option is chosen on the new device, a Rollback
 message is received and the FSM transitions to state Grouped.

 Note: In this state, other events are processed, but these events do
 not result in a transition to another state and are not discussed
 here.

A.1.1.17. HandshakingGroupedPhase1

 This state is entered by Grouped Devices only, i.e., devices that are
 already part of a Device Group. The FSM waits for the user to finish
 the Handshake on the new device (the user compares the Trustwords and
 chooses from the options presented):

 If the 'Accept' option is chosen on the new device, a CommitAccept
 message is received and the FSM transitions to state Grouped.

 If the 'Reject' option is chosen on the new device, a CommitReject
 message is received and the FSM transitions to state Grouped.

 If the 'Cancel' option is chosen on the new device, a Rollback
 message is received and the FSM transitions to state Grouped.

 In this state also a various other events are processed, which do not
 result in a transition to another state.

A.1.1.18. HandshakingGroupedPhase2

 This state is entered by Grouped Devices only, i.e. devices that are
 already part of a Device Group.

Hoeneisen, et al. Expires May 3, 2020 [Page 34]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 In this state the FSM waits for the user to compare the Trustwords
 and to choose from the following options from any Grouped Device,
 which will now become the Active Grouped Device:

 o Accept: A CommitAcceptForGroup message is sent and the FSM
 transitions to state HandshakingGroupedPhase1

 o Reject: A CommitReject message is sent and the FSM transitions to
 state Grouped

 o Cancel: A Rollback message is sent and the FSM transitions to
 state Grouped

 In this state also various other events are processed, which do not
 result in a transition to another state, but in the execution of
 certain actions (e.g., saveGroupKeys).

A.1.2. Actions

A.1.2.1. deviceGrouped (conditional)

 The 'deviceGrouped' conditional evaluates true if a device is already
 in a Device Group. This boolean value is available and eventually
 altered locally on every KeySync-enabled device. For example, in the
 reference implementation, this boolean value is stored in a local SQL
 database.

 The 'deviceGrouped' value is what the KeySync FSM uses upon
 initialization to determine whether a device should transition to
 state Sole or state Grouped.

A.1.2.2. disable

 The 'disable' action may be called in an number of scenarios. For
 example, a user has rejected a pEp Handshake on either device
 involved in a pEp Handshake. At this time, in all cases, invoking
 the 'disable' function results in the FSM transitioning to state End,
 which disables the KeySync feature. pEp KeySync can be manually re-
 enabled in the pEp settings on an affected device.

A.1.2.3. hideHandshakeDialog

 During the negotiation process for adding a new device to an existing
 Device Group, any device in that group can be used to complete the
 handshaking process and, as a result, each device in a Device Group
 will display the Handshake dialog options. Once this process is
 performed on one of the Grouped Devices, that device becomes the
 Active Grouped Device, and a GroupTrustThisKey message is sent to the

Hoeneisen, et al. Expires May 3, 2020 [Page 35]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 other (now Passive) Grouped Devices. Upon receipt of the
 GroupTrustThisKey message, the 'hideHandshakeDialog' action is
 invoked, and is intended to force the closure of the extra Handshake
 dialog boxes.

A.1.2.4. openNegotiation

 An 'openNegotiation' action is carried out either by a Sole Device in
 the 'Requester' role, or a Grouped device upon receipt of a Beacon
 message from another Sole Device. Most importantly, this action
 ensures that the own TID and the challenge TID of the Sole Device get
 combined by the mathematical XOR function. In this way, a common TID
 exists which can be used by both devices a user wishes to pair. This
 TID is crucial in allowing the devices to recognize themselves in a
 particular pairing process, as multiple pairing process can occur
 simultaneously.

A.1.2.5. ownKeysAreDefaultKeys

 The ownKeysAreDefaultKeys action is invoked by the 'Requester' device
 during the final step of Device Group formation between two Sole
 devices, and ensures that the Own Keys for the identities on the
 'Requester' device are set as the default for those respective
 identities.

A.1.2.6. newChallengeAndNegotiationBase

 The newChallengeAndNegotiationBase action is invoked by a device
 during an Init event in either the Sole or Grouped state, and serves
 to clear and generate a new challenge TID and negotiation state.

A.1.2.7. partnerIsGrouped (conditional)

 The partnerIsGrouped conditional evaluates whether a negotiation
 partner is already in a Device Group or not, which determines if the
 new device will be joining the Device Group or forming a new Device
 Group with another device in the Sole state. If this boolean
 evaluates true, then the FSM transitions to HandshakingToJoin. If
 not, the FSM proceeds with the negotiation process for two Sole
 Devices seeking to form a new Device Group.

A.1.2.8. prepareOwnKeys

 The prepareOwnKeys action is invoked during the latter phases of the
 KeySync protocol for both new and existing Device Group joining
 processes. This action indicates to a device that all key
 information that has been selected for synchronization should be
 prepared for sending to the other negotiation partner.

Hoeneisen, et al. Expires May 3, 2020 [Page 36]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

A.1.2.9. receivedKeysAreDefaultKeys

 The receivedKeysAreDefaultKeys action marks the keys received during
 Device Group formation as the Default Keys for the respective
 identities of the device which sent them.

A.1.2.10. sameChallenge (conditional)

 The sameChallenge action compares the challenge TIDs sent in Beacons.
 If this boolean evaluates 'true', the received challenge TID
 originated from that device, meaning that the received Beacon has
 come back to us and we can ignore it. If the boolean evaluates
 'false', then the TID comparison takes place and the roles of
 'Offerer' and 'Requester' are assigned. The lower of the two numbers
 is the 'Requester'.

A.1.2.11. sameNegotiation (conditional)

 As with sameChallenge, the sameNegotiation action evaluates 'true' if
 the FSM finds a NegotiationRequest message that a Sole Device sent
 out is determined to be self-originating. The Transaction ID (TID)
 will be an exact match upon comparison, and the NegotiationRequest
 will be ignored as a result.

A.1.2.12. sameNegotiationAndPartner (conditional)

 The sameNegotiationAndPartner action serves as a session fidelity
 check. If this boolean evaluates 'true', it confirms that the pEp
 KeySync session in progress is the same throughout, and that the
 negotiation partner has not changed.

A.1.2.13. saveGroupKeys

 The saveGroupKeys action directs the addition of any keys received
 during a KeySync process to a GroupKeys array, along with any
 existing Own or Grouped Device Keys.

A.1.2.14. showBeingInGroup

A.1.2.15. showBeingSole

 The 'showBeingSole' action in state Sole drives a UI event that can
 be used to notify a pEp user that their device is Sole (ungrouped),
 and guide the user through creation or joining of a Device Group.
 This action also prepares the necessary structures to potentially
 initiate KeySync, in the event a Beacon from another device is
 received.

Hoeneisen, et al. Expires May 3, 2020 [Page 37]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

A.1.2.16. showDeviceAdded

 The 'showDeviceAdded' action drives a UI event that is used to notify
 a pEp user that a Sole Device was added to an already existing Device
 Group.

A.1.2.17. showGroupCreated

 In either role that a Sole Device can assume ('Requester' or
 'Offerer'), the action 'showGroupCreated' drives a UI event which
 notifies a user that a new Device Group was formed from two Sole
 Devices.

A.1.2.18. showGroupedHandshake

 The 'showGroupedHandshake' action drives a UI event on a Grouped
 device, which a pEp implementer should use to display a pEp Handshake
 dialog. This dialog should indicate that there is a new Sole Device
 that is requesting to join the Device Group that this Grouped device
 belongs to.

A.1.2.19. showJoinGroupHandshake

 The 'showJoinGroupHandshake' action drives a UI event on a Sole
 Device attempting to join an existing Device Group, and should be
 used by pEp implementers to show a Handshake dialog on the Sole
 Device.

A.1.2.20. showSoleHandshake

 For cases where two Sole Devices are attempting to form a new Device
 Group, the showSoleHandshake action drives a UI event which a pEp
 implementer should use to display a pEp Handshake dialog to each of
 the devices in negotiation.

A.1.2.21. storeNegotiation

 The storeNegotiation action saves the received non-own negotiation
 information, which is used by the sameNegotiationAndPartner action to
 perform a session fidelity check (cf. Appendix A.1.2.11).

A.1.2.22. tellWeAreGrouped

 The tellWeAreGrouped action is used by devices already in the Grouped
 state. It is sent in a Beacon and indicates to Sole Devices that
 they are entering a negotiation with a Grouped device. For the Sole
 Device, receiving this action determines which state the FSM will
 transition to next.

Hoeneisen, et al. Expires May 3, 2020 [Page 38]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

A.1.2.23. tellWeAreNotGrouped

 The 'tellWeAreNotGrouped' action is used by Sole Devices which are
 assigned the role of 'Requester' upon challenge TID comparison, and
 is sent along with a NegotiationRequest event to indicate to the
 'Offerer' device that they are entering into a negotiation request
 with a Sole Device.

A.1.2.24. trustThisKey

 The trustThisKey action is executed in all states when a user chooses
 'Accept' on the Handshake dialog. Trust for the public key from the
 negotiation partner is granted so the rest of the KeySync process can
 be conducted securely. The trust also extends to the private key
 portion of the key pair at later stage in the KeySync process, so
 long as the user continues to choose 'Accept' on both devices. If
 the process is canceled or rejected at any point after the public key
 trust has been granted, that trust will be removed (cf.

Appendix A.1.2.25).

A.1.2.25. untrustThisKey

 If the 'Cancel' or 'Reject' options are chosen at any point during
 the KeySync process after a negotiation partner's public key has been
 trusted, trust on that public key is removed (cf.

Appendix A.1.2.24). The untrustThisKey action ensures that the
 negotiation partner's public key can never be attached to messages
 sent to outside peers from the recipient device.

A.1.2.26. useOwnChallenge

 Once a Beacon is received by a device in either the Sole or Grouped
 state, the useOwnChallenge action attaches the device's generated
 challenge TID to an outgoing Beacon or NegotiationRequest event for
 comparison and session verification purposes.

A.1.3. Transitions

 Transitions are changes between states within the FSM, and are
 indicated by the 'go' command throughout the code. Please see the
 desired State for additional information on why and when these
 changes are triggered.

A.2. Messages

 [[TODO]]

Hoeneisen, et al. Expires May 3, 2020 [Page 39]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

A.2.1. Format

 [[TODO]]

A.2.2. List of Messages Used in Finite-State Machine

A.2.2.1. Beacon

 [[TODO]]

 Please find more information in the following code excerpt:

 message Beacon 2, type=broadcast, security=unencrypted {
 field TID challenge;
 auto Version version;
 }

A.2.2.2. NegotiationRequest

 [[TODO]]

 Please find more information in the following code excerpt:

 message NegotiationRequest 3, security=untrusted {
 field TID challenge;
 auto Version version;
 field TID negotiation;
 field bool is_group;
 }

A.2.2.3. NegotiationOpen

 [[TODO]]

 Please find more information in the following code excerpt:

 message NegotiationOpen 4, security=untrusted {
 auto Version version;
 field TID negotiation;
 }

Hoeneisen, et al. Expires May 3, 2020 [Page 40]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

A.2.2.4. Rollback

 [[TODO]]

 Please find more information in the following code excerpt:

 message Rollback 5, security=untrusted {
 field TID negotiation;
 }

A.2.2.5. CommitReject

 [[TODO]]

 Please find more information in the following code excerpt:

 message CommitReject 6, security=untrusted {
 field TID negotiation;
 }

A.2.2.6. CommitAcceptOfferer

 [[TODO]]

 Please find more information in the following code excerpt:

 message CommitAcceptOfferer 7, security=untrusted {
 field TID negotiation;
 }

A.2.2.7. CommitAcceptRequester

 [[TODO]]

 Please find more information in the following code excerpt:

 message CommitAcceptRequester 8, security=untrusted {
 field TID negotiation;
 }

Hoeneisen, et al. Expires May 3, 2020 [Page 41]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

A.2.2.8. CommitAccept

 [[TODO]]

 Please find more information in the following code excerpt:

 message CommitAccept 9, security=untrusted {
 field TID negotiation;
 }

A.2.2.9. CommitAcceptForGroup

 [[TODO]]

 Please find more information in the following code excerpt:

 message CommitAcceptForGroup 10, security=untrusted {
 field TID negotiation;
 }

A.2.2.10. GroupTrustThisKey

 [[TODO]]

 Please find more information in the following code excerpt:

 // default: security=trusted only
 message GroupTrustThisKey 11 {
 field Hash key;
 }

A.2.2.11. GroupKeys

 [[TODO]]

 Please find more information in the following code excerpt:

 // trust in future
 message GroupKeys 12, security=attach_own_keys {
 field IdentityList ownIdentities;
 }

Hoeneisen, et al. Expires May 3, 2020 [Page 42]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

A.2.2.12. OwnKeysOfferer

 [[TODO]]

 Please find more information in the following code excerpt:

 message OwnKeysOfferer 13, security=attach_own_keys {
 field IdentityList ownIdentities;
 }

A.2.2.13. OwnKeysRequester

 [[TODO]]

 Please find more information in the following code excerpt:

 message OwnKeysRequester 14, security=attach_own_keys {
 field IdentityList ownIdentities;
 }

A.2.3. Example Messages

 [[TODO]]

Appendix B. Finite-State Machine Code

 Below is the full code for the pEp KeySync FSM, including messages
 and external events.

 fsm KeySync 1, threshold=300 {
 version 1, 2;

 state InitState {
 on Init {
 if deviceGrouped
 go Grouped;
 go Sole;
 }
 }

 state Sole timeout=off {
 on Init {
 do newChallengeAndNegotiationBase;
 do showBeingSole;
 send Beacon;
 }

Hoeneisen, et al. Expires May 3, 2020 [Page 43]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 on KeyGen {
 send Beacon;
 }

 on CannotDecrypt { // cry baby
 send Beacon;
 }

 on Beacon {
 if sameChallenge {
 // this is our own Beacon; ignore
 }
 else {
 if weAreOfferer {
 do useOwnChallenge;
 send Beacon;
 }
 else /* we are requester */ {
 do openNegotiation;
 do tellWeAreNotGrouped;
 // requester is sending NegotiationRequest
 send NegotiationRequest;
 do useOwnChallenge;
 }
 }
 }

 on NegotiationRequest {
 if sameChallenge { // challenge accepted
 if sameNegotiation {
 // this is our own NegotiationRequest; ignore
 }
 else {
 do storeNegotiation;
 // offerer is accepting by
 // confirming NegotiationOpen
 send NegotiationOpen;
 if partnerIsGrouped
 go HandshakingToJoin;
 else
 go HandshakingOfferer;
 }
 }
 }

 on NegotiationOpen if sameNegotiationAndPartner {
 // requester is receiving NegotiationOpen
 do storeNegotiation;

Hoeneisen, et al. Expires May 3, 2020 [Page 44]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 go HandshakingRequester;
 }
 }

 // handshaking without existing Device group
 state HandshakingOfferer timeout=600 {
 on Init
 do showSoleHandshake;

 // Cancel is Rollback
 on Cancel {
 send Rollback;
 go Sole;
 }

 on Rollback if sameNegotiationAndPartner
 go Sole;

 // Reject is CommitReject
 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

 on CommitReject if sameNegotiationAndPartner {
 do disable;
 go End;
 }

 // Accept means init Phase1Commit
 on Accept {
 do trustThisKey;
 send CommitAcceptOfferer;
 go HandshakingPhase1Offerer;
 }

 // got a CommitAccept from requester
 on CommitAcceptRequester if sameNegotiationAndPartner
 go HandshakingPhase2Offerer;
 }

 // handshaking without existing Device group
 state HandshakingRequester timeout=600 {
 on Init
 do showSoleHandshake;

 // Cancel is Rollback

Hoeneisen, et al. Expires May 3, 2020 [Page 45]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 on Cancel {
 send Rollback;
 go Sole;
 }

 on Rollback if sameNegotiationAndPartner
 go Sole;

 // Reject is CommitReject
 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

 on CommitReject if sameNegotiationAndPartner {
 do disable;
 go End;
 }

 // Accept means init Phase1Commit
 on Accept {
 do trustThisKey;
 send CommitAcceptRequester;
 go HandshakingPhase1Requester;
 }

 // got a CommitAccept from offerer
 on CommitAcceptOfferer if sameNegotiationAndPartner
 go HandshakingPhase2Requester;
 }

 state HandshakingPhase1Offerer {
 on Rollback if sameNegotiationAndPartner {
 do untrustThisKey;
 go Sole;
 }

 on CommitReject if sameNegotiationAndPartner {
 do untrustThisKey;
 do disable;
 go End;
 }

 on CommitAcceptRequester if sameNegotiationAndPartner {
 go FormingGroupOfferer;
 }
 }

Hoeneisen, et al. Expires May 3, 2020 [Page 46]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 state HandshakingPhase1Requester {
 on Rollback if sameNegotiationAndPartner {
 do untrustThisKey;
 go Sole;
 }

 on CommitReject if sameNegotiationAndPartner {
 do untrustThisKey;
 do disable;
 go End;
 }

 on CommitAcceptOfferer if sameNegotiationAndPartner {
 go FormingGroupRequester;
 }
 }

 state HandshakingPhase2Offerer {
 on Cancel {
 send Rollback;
 go Sole;
 }

 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

 on Accept {
 send CommitAcceptOfferer;
 do trustThisKey;
 go FormingGroupOfferer;
 }
 }

 state HandshakingPhase2Requester {
 on Cancel {
 send Rollback;
 go Sole;
 }

 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

Hoeneisen, et al. Expires May 3, 2020 [Page 47]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 on Accept {
 send CommitAcceptRequester;
 do trustThisKey;
 go FormingGroupRequester;
 }
 }

 state FormingGroupOfferer {
 on Init {
 do prepareOwnKeys;
 send OwnKeysOfferer; // not grouped yet,
 // this are our own keys
 do showFormingGroup;
 }

 on Cancel {
 send Rollback;
 go Sole;
 }

 on Rollback
 go Sole;

 on OwnKeysRequester {
 do saveGroupKeys;
 do receivedKeysAreDefaultKeys;
 do showGroupCreated;
 go Grouped;
 }
 }

 state FormingGroupRequester {
 on Init
 do showFormingGroup;

 on Cancel {
 send Rollback;
 go Sole;
 }

 on Rollback
 go Sole;

 on OwnKeysOfferer {
 do saveGroupKeys;
 do prepareOwnKeys;
 do ownKeysAreDefaultKeys;
 send OwnKeysRequester;

Hoeneisen, et al. Expires May 3, 2020 [Page 48]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 do showGroupCreated;
 go Grouped;
 }
 }

 state Grouped timeout=off {
 on Init {
 do newChallengeAndNegotiationBase;
 do showBeingInGroup;
 }

 on GroupKeys
 do saveGroupKeys;

 on KeyGen {
 do prepareOwnKeys;
 send GroupKeys;
 }

 on Beacon {
 do openNegotiation;
 do tellWeAreGrouped;
 send NegotiationRequest;
 do useOwnChallenge;
 }

 on NegotiationOpen if sameNegotiationAndPartner {
 do storeNegotiation;
 go HandshakingGrouped;
 }

 on GroupTrustThisKey
 do trustThisKey;
 }

 // sole device handshaking with group
 state HandshakingToJoin {
 on Init
 do showJoinGroupHandshake;

 // Cancel is Rollback
 on Cancel {
 send Rollback;
 go Sole;
 }

 on Rollback if sameNegotiationAndPartner
 go Sole;

Hoeneisen, et al. Expires May 3, 2020 [Page 49]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 // Reject is CommitReject
 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

 on CommitAcceptForGroup if sameNegotiationAndPartner
 go HandshakingToJoinPhase2;

 on CommitReject if sameNegotiationAndPartner {
 do disable;
 go End;
 }

 // Accept is Phase1Commit
 on Accept {
 do trustThisKey;
 send CommitAccept;
 go HandshakingToJoinPhase1;
 }
 }

 state HandshakingToJoinPhase1 {
 on Rollback if sameNegotiationAndPartner
 go Sole;

 on CommitReject if sameNegotiationAndPartner {
 do disable;
 go End;
 }

 on CommitAcceptForGroup if sameNegotiationAndPartner
 go JoiningGroup;
 }

 state HandshakingToJoinPhase2 {
 on Cancel {
 send Rollback;
 go Sole;
 }

 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

Hoeneisen, et al. Expires May 3, 2020 [Page 50]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 on Accept {
 do trustThisKey;
 go JoiningGroup;
 }
 }

 state JoiningGroup {
 on GroupKeys {
 do saveGroupKeys;
 do receivedKeysAreDefaultKeys;
 do prepareOwnKeys;
 send GroupKeys;
 do showDeviceAdded;
 go Grouped;
 }
 }

 state HandshakingGrouped {
 on Init
 do showGroupedHandshake;

 // Cancel is Rollback
 on Cancel {
 send Rollback;
 go Grouped;
 }

 on Rollback if sameNegotiationAndPartner
 go Grouped;

 // Reject is CommitReject
 on Reject {
 send CommitReject;
 go Grouped;
 }

 on CommitReject if sameNegotiationAndPartner
 go Grouped;

 // Accept is Phase1Commit
 on Accept {
 do trustThisKey;
 send GroupTrustThisKey;
 send CommitAcceptForGroup;
 go HandshakingGroupedPhase1;
 }

 on CommitAccept if sameNegotiationAndPartner

Hoeneisen, et al. Expires May 3, 2020 [Page 51]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 go HandshakingGroupedPhase2;

 on GroupTrustThisKey {
 do hideHandshakeDialog;
 do trustThisKey;
 }

 on GroupKeys
 do saveGroupKeys;
 }

 state HandshakingGroupedPhase1 {
 on Rollback if sameNegotiationAndPartner
 go Grouped;

 on CommitReject if sameNegotiationAndPartner
 go Grouped;

 on CommitAccept if sameNegotiationAndPartner {
 do prepareOwnKeys;
 send GroupKeys;
 go Grouped;
 }

 on GroupTrustThisKey {
 do trustThisKey;
 }

 on GroupKeys
 do saveGroupKeys;
 }

 state HandshakingGroupedPhase2 {
 on Cancel {
 send Rollback;
 go Grouped;
 }

 on Reject {
 send CommitReject;
 go Grouped;
 }

 on Accept {
 do trustThisKey;
 send GroupTrustThisKey;
 do prepareOwnKeys;
 send GroupKeys;

Hoeneisen, et al. Expires May 3, 2020 [Page 52]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 go Grouped;
 }

 on GroupTrustThisKey {
 do trustThisKey;
 }

 on GroupKeys
 do saveGroupKeys;
 }

 external Accept 129;
 external Reject 130;
 external Cancel 131;

 // beacons are always broadcasted

 message Beacon 2, type=broadcast, security=unencrypted {
 field TID challenge;
 auto Version version;
 }

 message NegotiationRequest 3, security=untrusted {
 field TID challenge;
 auto Version version;
 field TID negotiation;
 field bool is_group;
 }

 message NegotiationOpen 4, security=untrusted {
 auto Version version;
 field TID negotiation;
 }

 message Rollback 5, security=untrusted {
 field TID negotiation;
 }

 message CommitReject 6, security=untrusted {
 field TID negotiation;
 }

 message CommitAcceptOfferer 7, security=untrusted {
 field TID negotiation;
 }

 message CommitAcceptRequester 8, security=untrusted {
 field TID negotiation;

Hoeneisen, et al. Expires May 3, 2020 [Page 53]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

 }

 message CommitAccept 9, security=untrusted {
 field TID negotiation;
 }

 message CommitAcceptForGroup 10, security=untrusted {
 field TID negotiation;
 }

 // default: security=trusted only
 message GroupTrustThisKey 11 {
 field Hash key;
 }

 // trust in future
 message GroupKeys 12, security=attach_own_keys {
 field IdentityList ownIdentities;
 }

 message OwnKeysOfferer 13, security=attach_own_keys {
 field IdentityList ownIdentities;
 }

 message OwnKeysRequester 14, security=attach_own_keys {
 field IdentityList ownIdentities;
 }
 }

Appendix C. Document Changelog

 [[RFC Editor: This section is to be removed before publication]]

 o draft-hoeneisen-pep-KeySync-00:

 * Initial version

 o draft-hoeneisen-pep-KeySync-01:

 * Major rewrite of upper sections

 * Adjust to reflect code changes

 * Move Finite-State Machine reference and code to Appendices A &
 B

https://datatracker.ietf.org/doc/html/draft-hoeneisen-pep-KeySync-00
https://datatracker.ietf.org/doc/html/draft-hoeneisen-pep-KeySync-01

Hoeneisen, et al. Expires May 3, 2020 [Page 54]

Internet-Draft pretty Easy privacy (pEp) KeySync October 2019

Appendix D. Open Issues

 [[RFC Editor: This section should be empty and is to be removed
 before publication]]

 o Resolve several TODOs / add missing text

 LocalWords: Boppart boolean showFormingGroup broadcasted

Authors' Addresses

 Bernie Hoeneisen
 Ucom Standards Track Solutions GmbH
 CH-8046 Zuerich
 Switzerland

 Phone: +41 44 500 52 40
 Email: bernie@ietf.hoeneisen.ch (bernhard.hoeneisen AT ucom.ch)
 URI: https://ucom.ch/

 Hernani Marques
 pEp Foundation
 Oberer Graben 4
 CH-8400 Winterthur
 Switzerland

 Email: hernani.marques@pep.foundation
 URI: https://pep.foundation/

 Kelly Bristol
 pEp Foundation
 Oberer Graben 4
 CH-8400 Winterthur
 Switzerland

 Email: kelly@pep-project.org
 URI: https://pep.foundation/

https://ucom.ch/
https://pep.foundation/
https://pep.foundation/

Hoeneisen, et al. Expires May 3, 2020 [Page 55]

