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Abstract

This document describes some suggested practices for registering
internationalized domain names (IDNs) in a zone. Before accepting
registrations of domain names into a zone, the zone's registry should
decide which codepoints in the Unicode character set the zone will
accept. The registry should also decide whether particular characters in
a registered domain name should cause registration of multiple
equivalent domain names; these domain names might be added to the zone
or blocked from registration. This document also describes how to handle
character variants in registering IDNs, and how to publish tables that
list the character variants.

1. Introduction

IDNA [IDNA] specifies an encoding of characters from the Unicode
character set [UNICODE] which is backwards-compatible with the current
definition of hostnames. This implies that domain names encoded
according to IDNA will be able to be transported between peers using any
existing protocol, including DNS.

IDNA, through its requirement of Nameprep [NAMEPREP], uses tables that
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are based only on the characters themselves; no attention is paid to the
intended language (if any) for the domain name. However, for many domain
names, the intended language of one or more parts of the domain name
actually does matter to the registry for the names and to users.

If there are no constraints on registration in a zone, people can
register characters that increase the risk of misunderstandings,
cybersquatting, and other forms of confusion. A similar situation exists
despite the introduction of IDNA exemplified by domain names such as
example.com and examp1e.com (note that the latter domain contains the
digit "1" instead of the letter "l").

For some human languages, there are characters and/or strings that have
equivalent or near-equivalent usages. If someone is allowed to register
a name with such a character or string, the registry might want to
automatically associate all the names that have the same meaning with
the registered name. The registry can also decide if the names that came
from one registration should go into the zone, be blocked from other
people registering them, or a combination of these two actions.

This document describes three things:

- suggested practices for describing character variants

- a method for using a zone's character variants to determine which
names should be associated with a registration

- a format for publishing a zone's table of character variants

[IDN-CJK] offers a somewhat different proposal to the problem of
registration policy. That document uses a different registration
philosophy than what is described here, and is focused on a small number
of Asian languages.

1.1 Main concepts

[[ Need to outline what is presented in the proposal. Include:

- registration bundles keyed on the base registration

- bundles can overlap

- some names are in the zone, others only block

- does not prohibit human processing, but does not encourage it

- tables based on languages
]]

1.2 Shortcomings

This document does not deal with how to handle whois data for associated



registrations, and does not deal with registrar-registry protocols.
These topics are likely to be of great importance to registries and
registrants, and should be dealt with in other documents.

This document deals directly only with variants of single characters,
not variants of strings (although variants themselves can be strings).
Thus, the methods described here is not be sufficient to help all
languages. Registries which cover languages where it would make
linguistic sense to create variants from strings should define their own
rules for doing so.

The procedures described here do not take into account mapping that is
dependant on the position of characters in a domain name. Many languages
(such as Hebrew and Greek) have rules that would cause different
variants to be used based on whether a character appears at the
beginning or end of a word, or whether a character appears next to a
specific character. Adding rules for these kinds of mappings are
possible, but difficult. Not only would the table format need to be
expanded to deal with positional variants, the order in which the
characters are tested for whether they create variants would also have
to be specified.

1.3 Terminology

Characters in this document are given as their Unicode codepoints on
U+xxxx format or with their official names.

The following terms are used in this document.

A "string" is an sequence of one or more characters.

This document discusses characters that have equivalent or
near-equivalent characters or strings. The "base character" is the
character that has one or more equivalents. The "variant(s)" are the
character(s) and/or string(s) that are equivalent to the base character.
Note that these might not be true equivalent characters: a base
character might have a mapping to a particular variant character, but
that variant character does not have to have a mapping to the base
character.

The "base registration" is the single name that the registrant requested
from the registry.

A "registration bundle" is the set of all labels that comes from
expanding the base characters for a single name into their variants.

A "registry" is the administrative authority for a DNS zone. That is,
the registry is the body that makes and enforces policies that are used
in a particular zone in the DNS.

2. Starting to add IDNs to a zone



There are four primary considerations when adding IDNs to a zone:

- Which characters should be allowed to be registered

- If any of the characters that are allowed to be registered have
variants that should affect the registration process

- How registration bundles are created and maintained

- If there are registration bundles, how they will affect the zone
itself and future registrations

2.1 Choosing characters that may be registered

A zone has to decide which characters are allowed to be registered.
Before IDNA was standardized, the only characters allowed were the ASCII
letters, digits, and the hyphen character. With IDNA, that list is much
larger.

The first decision for a zone is whether or not they want to allow
IDNA-based labels. If not, they can simply prohibit any label that
begins with the IDNA ACE prefix "xn--". Zones with this policy can
safely ignore the rest of this document.

If a zone decides to allow IDNA-based labels, it needs to decide which
characters are allowed to be registered. It further needs to decide
which characters are allowed to be in the zone, and which characters can
be registered but not appear in the zone.

Some options for what zones will want to include are:

- the ASCII characters plus just enough characters to represent just one
language

- just enough characters to represent a small number of languages

- enough characters to represent many languages

- any character allowed by IDNA

The decision on what to include may be influenced by administrative
issues for the zone, such as languages that are normally associated with
the zone, or agreements that the zone has made with governmental bodies
or other organizations. For example, ICANN has a set of rules on how
some top-level domains must act with respect to IDNs [ICANN-IDN]. A zone
does not need to declare which languages it does or does not allow in
the names in its zone, but making such a declaration makes it clearer to
registrants what characters the zone does and does not allow.

It is strongly recommended that a registry act conservatively when
starting accepting IDNA-based domain names, even if the registry does



not use the ideas described in this document. Registries should start
with the smallest number of characters as possible to represent the
needs of the zone's registrants. If a registry follows the advice in
this document, more characters can be added to the zone later, but once
characters are labels that are in a zone, they cannot be removed without
causing a lot of administrative problems. The most notable problem with
making some characters not allowed in names is that a registry could be
forced to remove actively-used names from its zone, thereby causing
instability for users of the zone and angering the names' owners.

2.2 Choosing variants

The area of character variants is rife with problems. There is no
universal agreement about which base characters have variants, or if
they do, what those variants are. For example, in some regions of the
world and in some languages, LATIN SMALL LETTER O WITH DIAERESIS and
LATIN SMALL LETTER O WITH STROKE are variants of each other, while in
other regions, most people would think that LATIN SMALL LETTER O WITH
DIAERESIS has no variants. In some cases, the list of variants is
difficult to enumerate. For example, it has taken years for the Chinese
language community to create variant tables for use in IDNA, and the
tables are not widely-accepted at the time of this writing.

Thus, the first thing a registry should ask is whether or not any of the
characters that they want to use have variants. If not, the registry's
work is much simpler. This is not to say that a registry should ignore
variants if they exist: adding variants after a registry has started to
take registrations is nearly as difficult administratively as removing
characters from the list of acceptable characters. That is, if a
registry later decides that two characters are variants of each other,
and there are actively-used names in the zones that differ only on the
new variants, the registry might have to transfer ownership of one of
the names to a different owner.

The list of character variants used in a zone should be stable. Although
it is possible to add variants for characters later, doing so can cause
confusing with registrants.

Of course, zone managers should inform all current registrants when the
registration policy for the zone changes. This includes when IDN
characters are allowed in the zone the first time, when characters are
added later, and when character variant tables change.

In many languages there are two variants for a character, but one
variant is strongly preferred. A registry might only allow the base
registration in the preferred form, or it might allow any form for the
base registration. If the variant tables are created carefully, the
resulting bundles will be the same, but some registries will give
special status to the base registration such as its appearance in whois
databases.



2.3 Creation and maintenance of registration bundles

Another ramification of having variants is that they will cause zones to
have bundles of names. Describing registration bundles to typical
registrants will be a very difficult task. (Many current registries have
a hard time explaining to registrants what they can or cannot do with
their single registrations.) It is likely that registrants can better
understand this by having the bundle be identified by the base
registration.

A registration bundle must be maintained as a single unit. This is not
to say that each names in a bundle is treated the same, but that the
administration of each name should be done in the context of the entire
bundle. Different names in a bundle should not have different
administrators.

Adding additional IDN characters to a zone where some or all labels in a
registration bundle are resolved in the zone. A registrant who had a
single name could become the owner of group of names, and would be
expected to manage that group of names according to the zone's policies.
Because managing a group of names is inherently more difficult than
managing a single name, zone administrators need to avoid creating new
rules that would force current registrants to change the way the manage
their zones.

2.3.1 Overlapping registration bundles

Depending on how the registry creates its tables, it is possible for
registration bundles to overlap, meaning that two different people own
rights to a name. This can cause significant problems for the registry
in explaining to users what their rights are for names that contain
variants of the name they registered.

Clearly, a registrant cannot register a name that already exists as the
base registration for another bundle. However, a registrant can register
a name which has a variant that exists in the bundle of an existing
registration. That is, bundles can have names that are the same, but the
zone can never have two different entries for the same name.

The basic registration rule for most zones is "first come, first served
unless the registration is misleading". That rule should probably be
extended to the names in a registration bundle. That is, the first
registrant whose bundle contains a name gets to have rights over that
name. Because of this, the registry must associate a registration date
with each bundle.

When a second bundle is created that contains a variant name that
already exists in an earlier bundle, the registry can inform the new
registrant that not all of the names in its bundle are usable in the
same fashion. Further, if the registrant of the first bundle allows its
registration to expire while the second bundle still exists, the owner



of the second bundle gains control over the overlapping names which
before were controlled by the owner of the first bundle.

2.4 Choosing how to use variants

A registry has three options for how to handle the case where the
registration bundle has more than one label. The policy options are:

1) Resolve all labels in the zone, making the zone information identical
to that of the registered label.

2) Block all labels other than the registered label so they cannot be
registered in the future.

3) Resolve some labels and block some other labels.

In all cases, at least the registered label should appear in the zone.
It would be almost impossible to describe to name owners why the name
that they asked for is not in the zone, but some other name that they
now control is.

2.4.1 Advantages and disadvantages of the options

Option 1 will cause end users to be able to find names with variants
more easily, but will result in larger zone files. For some language
tables, the zone file could become so large that it could negatively
affect the ability of the registry to perform name resolution. If the
base registration contains several characters that have equivalents, the
owner could end up having to take care of large number of zones. For
instance, if DIGIT ONE is a variant of LATIN SMALL LETTER L, the owner
of the domain name all-lollypops.example.com will have to manage 32
zones.

Option 2 does not increase the size of the zone file, but it may cause
end users to not be able to find names with variants that they would
expect. If the base registration contains characters that have
equivalents, Internet users who don't know what the base characters used
in the registration will not know what character to type in to get a DNS
response. For instance, if DIGIT ONE is a variant of LATIN SMALL LETTER
L, and LATIN SMALL LETTER L is a variant of DIGIT ONE, the user who sees
"pale.example.com" will no know whether to type a "1" or a "l" after the
"pa" in the first label.

Option 3 is likely to cause the most confusion with users because
including some variants will cause a name to be found, but using other
variants will cause the name to be not found. For example, even if
people understood that DIGIT ONE and LATIN SMALL LETTER L were variants,
a typical DNS user wouldn't know which character to type because they
wouldn't know whether this pair were allocating variants or blocking
variants. However, this option can be used to balance the desires of the
name owner (that every possible attempt to enter their name will work)
with the desires of the zone administrator (to make the zone more



manageable and possibly to be compensated for greater amounts of work
needed for a single registration).

2.4.2 Operational characteristics

With any of these three options, the registry must keep a database that
links each label in the registration bundle to the base registration.
This link needs to be maintained so that changes in the non-DNS
registration information (such as the label's owner name and address) is
reflected in every member of the registration bundle as well.

If the registry chose option 1, when the zone information for the base
registration changes, the zone information for all the members of the
registration bundle must change in exactly the same way. The zone
information for every member of the registration bundle must remain
identical as long as any of the members of the registration bundle
remain in the zone. A registry can keep the zone information for the
registration bundle identical using a database, or using DNAME records,
or using a combination of the two.

If the registry chose option 2, when the zone information for the base
registration changes, the blocked information for all the members of the
registration bundle must be identical to that of the base registration,
and must remain identical as long as the base registration remains in
the zone. A registry can keep the zone and blocked name information for
the registration bundle identical using a database.

If the registry chose option 3, it must use an unspecified method to
keep the elements in the registration bundle cohesive. Because of the
administrative difficulty involved, this option must only be used under
carefully-controlled circumstances. Further, the rules for which names
in the bundle appear in the zone and which are blocked must be explained
to name owners. It is particularly important to explain the
ramifications of overlapping registration bundles, if the registry's
variant policies allow their creation.

3. Language-based tables

The registration strategy described in this document uses a table that
lists all characters allowed for input and any variants of those
characters. Note that the table lists all characters allowed, not only
the ones that have variants.

Each table is specific to a single language or a specified group of
languages. Although a multi-language table can be produced, it may be
simpler to keep each table language-specific and only use the table for
the language of the desired registration. For example, it is probably
easy to create a single table that would handle both Japanese and
French; it would probably be much harder to create a single table that
would handle both Arabic and Persian.



It is widely expected that there will be different tables for a single
language or group of languages created by different people. Many
languages are spoken in many different countries, and each country might
have a different view of which characters should or should not be
considered needed for that language. For example, some people would say
that the Latin characters are needed for various Indic languages, while
others would say that they are not.

A table that covers a wide variety of languages will probably allow a
much wider range of characters to be used in names. At the same time,
that table cannot easily use character variants because variants for one
language will be different from the variants used in a different
language. To handle conflicting variants among languages, the registry
can choose to have no variants for any base characters, or can choose to
have variants for a subset of the languages that are expressible in the
characters allowed.

The set of processing rules for a language has to be carefully crafted
so that all expected variants will be created, and no unexpected
variants are created. The procedure in this document assumes that the
zone uses just one table when registering a particular name, but a set
of tables that are searched in a specified order can be treated like a
larger table with a processing order.

3.1 Intended language for a registration

In order to use a language-based table for processing, the registry has
to know the language of the name being registered. This information
could come by asking the registrant, or by the fact that a registry has
rules that only allows a single language. However, the requirement of
knowing the intended language leads to a very difficult problem: many
valid domain names have no inherent language. Examples of domain names
that do not have a language include:

- trade names and family names

- names that are acronyms, all-numeric or a combination of the two
("jln", "3000", "jln3000")

- names that purposely have more than one language in them
("neuvo-ramen")

- proper names that are made up ("glowow")

4. Registration procedure

This procedure has three inputs:

- the proposed base registration

- the language for the proposed base registration



- the processing table associated with that language

The output of the process is either failure (the base registration
cannot be registered at all), or a registration bundle that contains one
or more labels ( always including the base registration). As described
earlier, the registration bundle should be stored with its date of
creation so that issues with overlapping elements between bundles can
later be resolved on a first-come, first-served basis.

There are two steps to processing the registration:

1) Check whether the proposed base registration exists in any bundle. If
it does, stop immediately with a failure.

2) Process the base registration with the CreateBundle process described
below.

Note that the process must be executed only once. The process must not
be run on any output of the process, only on the proposed base
registration.

4.1 Human intervention in registration

Some registries will want registration to be completely automatic, that
is, with no human intervention. Other registries will want to have human
intervention (or at least checking) of registrations. For example, if a
registry has a rule that registration cannot have harmful words, that
registry needs to have a human check each registration. Another example
where human intervention would be needed is a registry that allows
multiple languages in its zone but does not trust the registrants to say
the intended language of a registration.

A table should not have more than one entry for a particular base
character. A table with more than one variant rule for the same base
character requires that some names be evaluated by humans and will open
the registration process to dispute. Such human intervention in the
registration process may be unavoidable for some languages or for some
registries, but it should be avoided if there is a desire for
predictability in the registration process.

The description below does not specify where human intervention would
happen because there are so many possibilities, based on the type of
checking that a registry might want. It makes sense that a check might
be made before step 1 or step 3 to be sure that the base registration
meets any semantic rules for the zone, and that the intended language is
in fact appropriate for the base registration. Some registries might
also want another set of checks after step 5 to be sure that all the
entries in the bundle are semantically appropriate for the zone. For
example, if a zone prohibits mixed-script registrations, that check
should be made both before step 1 (to check the base registration) and
after step 5 (to check whether the variant-creation step created any



mixed-script items in the bundle).

4.2 Description of CreateBundle

The CreateBundle process determines if a registration bundle can be
created and, if so, fills that bundle only with valid labels.

During the processing, an "temporary bundle" contains partial labels,
that is, labels that are being built and are not complete labels. The
partial labels in the temporary bundle consist of strings.

The steps in the CreateBundle process are:

1) Split the base registration into individual characters, called
"candidate characters". Compare every candidate character against the
base characters in the table. If any candidate character does not exist
in the set of base characters, the system must stop and not register any
names (that is, it must not register either the base registration or any
labels that would have come from character variants).

2) Perform the steps in ToASCII for the base registration. If ToASCII
fails for the base registration, the system must stop and not register
any of the label (that is, it must not register either the base
registration or any created labels, even if those labels would have
passed ToASCII). If ToASCII succeeds, add the result to the registration
bundle.

3) For every candidate character in the base registration, do the
following:

   3a) Create the set of characters that consists of the candidate
   character and any variants.

   3b) For each character in the set from step 3a, duplicate the
   temporary bundle that resulted from the previous candidate character,
   and add the new character to the end of each partial label.

4) The temporary bundle now contains zero or more labels that consist of
Unicode characters. For every label in the temporary bundle, do the
following:

   4a) Process the label with ToASCII to see if ToASCII succeeds. If it
   does, put the label into the registration bundle. Otherwise, do not
   process this label from the temporary bundle any further; it will not
   go into the registration bundle.

5) The resulting registration bundle with the base registration and
possibly other labels. Finish.

4.3 Example of expansion of a base registration into a bundle

[[ Need at least one worked-through example of step 3 with interesting



variant situations ]]

5. Table format

The format of the table is meant to be machine-readable but not
human-readable. It is fairly trivial to convert the table into one that
can be read by people.

Each character in the table is given in the "U+" notation for Unicode
characters. The lines of the table are terminated with either a carriage
return character (ASCII 0x0D), a linefeed character (ASCII 0x0A), or a
sequence of carriage return followed by linefeed (ASCII 0x0D 0x0A). The
order of the lines in the table may or may not matter, depending on how
the table is constructed.

Comment lines in the table are preceded with a "#" character (ASCII 0x2C).

Each non-comment line in the table starts with the character that is
allowed in the registry, which is also called the "base character". If
the base character has any variants, it is followed by a vertical bar
character ("|", ASCII 0x7C) and the variant string. If the base
character has more than one variant, the variants are separated by a
colon (":", ASCII 0x3A). Strings are given with a hyphen ("-", ASCII
0x2D) between each character. Comments beging with a "#" (ASCII 0x2C),
and may be preceded by spaces (" ", ASCII 0x20).

The following is an example of how a table might look. The entries in
this table are purposely silly and should not be used by any registry as
the basis for choosing variants. For the example, assume that the
registry:
- allows the FOR ALL character (U+2200) with no variants
- allows the COMPLEMENT character (U+2201) which has a single variant
  of LATIN CAPITAL LETTER C (U+0043)
- allows the PROPORTION character (U+2237) which has one variant which
  is the string COLON (U+003A) COLON (U+003A)
- allows the PARTIAL DIFFERENTIAL character (U+2202) which has two
  variants: LATIN SMALL LETTER D (U+0064) and GREEK SMALL LETTER DELTA
  (U+03B4)

The table would look like:

# An example of a table
U+2200
U+2201|U+0043
U+2237|U+003A-U+003A   # Note that the variant is a string
U+2202|U+0064:U+03B4

Implementors of table processors should remember that there are tens of
thousands of characters whose codepoints are greater than 0xFFFF. Thus,
any program that assumes that each character in the table is represented
in exactly six octets ("U", "+", and exactly four octets representing



the character value) will fail with tables that use characters whose
value is greater than 0xFFFF.

6. Examples

The following shows examples of the first two of the registry's options
as described in Section 2.4 (putting all labels in the zone; putting
only the base registration in the zone and blocking the rest). The third
option (resolving some labels but blocking others) is an extension of
these two and is not shown here.

The examples assume that the registry for the zone example.com uses the
following very short table, which says that LATIN SMALL LETTER L
(U+006C) has a single variant, DIGIT ONE (U+0031).

U+006C|U+0031

A registrant approaches the zone and requests a registration for the
name pale.example.com, for which there are two name servers
(x.example.com and y.example.com). After processing the base
registration "pale", the registration bundle contains "pale" and "pa1e".

6.1 Example 1: allocating multiple labels

Assume that the registry for the zone example.com uses option 1
(allocating multiple labels) as its registration policy.

The registry allocates pale.example.com and pa1e.example.com to the
registrant. The registry also creates a link in its registration
database from pa1e.example.com to pale.example.com so that any changes
to either the non-zone information or the zone information for one name
will be reflected in the other name.

The registry adds the following four records to the example.com zone:

  $ORIGIN example.com.
  pale IN NS x.example.com.
  pale IN NS y.example.com.
  pa1e IN NS x.example.com.
  pa1e IN NS y.example.com.

Note that the registry might instead use DNAME records for allocating
labels. If the registry uses DNAMEs, the registry would instead add
the following three records to the example.com zone:

  $ORIGIN example.com.
  pale IN NS x.example.com.
  pale IN NS y.example.com.
  pa1e IN DNAME pale.example.com.

An end user who requests the name server for pa1e.example.com will get a



positive response with the correct information.

6.2 Example 2: blocking labels

Assume that the registry for the zone example.com uses option 2
(blocking labels) as its registration policy.

The registry allocates pale.example.com to the registrant and blocks
pa1e.example.com from being registered by anybody. The registry also
creates a link in its registration database from pa1e.example.com to
pale.example.com so that any changes to the non-zone information for
pale.example.com will be reflected in the blocked name.

The registry adds the following two records to the example.com zone:

  $ORIGIN example.com.
  pale IN NS x.example.com.
  pale IN NS y.example.com.

An end user who requests the name server for pa1e.example.com will get a
response of "no such name".

7. Owner implications of multiple labels

The creation of a registration bundle for equivalent or near-equivalent
labels in a zone at the time of registration leads to many delegations.
This leads to records in parallel zones which must be synchronized. That
is, the owner of a registration bundle must keep the same information in the
zone for each label in the bundle.

Using the examples from Section 6, assume that the owner of the label
"pale" and "pa1e" creates a subdomain, "www". If the owner of
"example.com" used multiple delegations for the labels, the owner of
"pale" and "pa1e" would use two records:

  $ORIGIN pale.example.com.
  www IN A 1.2.3.4

  $ORIGIN pa1e.example.com.
  www IN A 1.2.3.4

An alternative for these two records, which helps the registrant
keep their names in synch, would be:

  $ORIGIN pale.example.com.
  www IN A 1.2.3.4

  $ORIGIN pa1e.example.com.
  www IN CNAME www.pale.example.com.

If the owner of "example.com" used a DNAME record to make "pale" and



"pa1e" equivalent, the owner of "pale" and "pa1e" could instead use one
record:

  $ORIGIN pale.example.com.
  www IN A 1.2.3.4

8. Security considerations

Apart from considerations listed in the IDNA specification, this
document explicitly talks about rules that a registry can define as part
of the policy which can be applied in a zone. A registry can apply an
variants table which solves some problems with homographs already
outlined in the security consideration section of IDNA. This might be
considered good for security because it will reduce the possible
confusion for the user, and lower the risk that the user will "connect"
to a service which was not intended.

Poorly-designed tables can cause security problems. For example, if a
table creates variants for base characters that are not really variants,
and names using those incorrect variants are allocated in the zone, an
unsuspecting end user will get unexpected positive answers to DNS
queries. For example, if the base character "a" has a variant of "e",
and those variants are allocated in the zone, a user who looks up
"bed.example.com" will get the information for "bad.example.com", even
though the user could easily see that these two labels are different.

Users will likely expect that variants will be the same in zones and may
make assumptions based on those expectations. However, the variants and
how they are used will probably be different between zones, even for two
zones that use the same language. This could lead to spoofing users by
registering names that leverage the differences in rules between the
zones.
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10. IANA considerations

There are no IANA considerations for this document. The tables described
in this document can be created by anyone. Tables at IANA are often
considered to be authoritative, but languages have no one who is
authoritative for them. It is unclear what value, if any, there is for
someone to know what table a particular zone says it is using for
registration. Further, the tables are expected to be updated at
irregular times as new characters are added to the list of acceptable
characters. Therefore, it is probably unwise for IANA to keep a registry
of these tables.
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