
Internet Draft Paul Hoffman
draft-hoffman-imaa-03.txt IMC & VPNC
October 8, 2003 Adam M. Costello
Expires April 8, 2004 UC Berkeley

 Internationalizing Mail Addresses in Applications (IMAA)

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note
 that other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 The Internationalizing Domain Names in Applications (IDNA)
 specification describes how to process domain names that contain
 characters outside the ASCII repertoire. A user who has a non-ASCII
 domain name may want to use it in an Internet mail address that
 contains non-ASCII characters not only in the domain part but also
 in the local part (the part to the left of the "@"). This document
 describes how to use non-ASCII characters in local parts. It
 defines internationalized local parts (ILPs), internationalized mail
 addresses (IMAs), and a mechanism called IMAA for handling them in a
 standard fashion.

1. Introduction

 A mail address consists of local part, an at-sign (@), and a domain
 name. The IDNA specification [IDNA] describes how to handle domain
 names that have non-ASCII characters. This document describes how
 to handle non-ASCII characters in the rest of the mail address.

https://datatracker.ietf.org/doc/html/draft-hoffman-imaa-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 This document explicitly does not discuss internationalization of
 display names and comments in mail addresses that appear in message
 headers [MSGFMT]. MIME part three [MIME3] describes how use an
 extended set of characters in message headers, and this document
 does not alter that specification.

 This document is being discussed on the ietf-imaa mailing list. See
 <http://www.imc.org/ietf-imaa/> for information about subscribing
 and the list's archive.

1.1 Relationship to IDNA

 This document relies heavily on IDNA for both its concepts and
 its justification. This document omits a great deal of the
 justification and design information that might otherwise be found
 here because it is identical to that in IDNA. Anyone reading this
 document needs to have first read [IDNA], [PUNYCODE], [NAMEPREP],
 and [STRINGPREP].

 There are a few key differences between the way IMAA treats local
 parts of mail addresses and the way IDNA treats domain names.

 - The ACE infix for internationalized local parts is different
 from the ACE prefix for internationalized domain labels.

 - Domain names have an intrinsic segmentation into labels, and
 are already segmented before transformations are performed.
 Local parts, on the other hand, have no intrinsic segmentation.
 The transformations on local parts perform a segmentation
 internally, but it has no external significance.

 - There is no UseSTD3ASCIIRules flag for local parts.

 One apparent difference that is not really a difference is the
 handling of quoting mechanisms. IDNA did not discuss quoting
 because the phrase "domain label" is presumed to refer to a simple
 literal string. [DNS] defines domain labels in terms of their
 literal form (which is used in DNS protocol messages), and later
 introduces a quoting syntax for representing domain labels in master
 files, but there is never any doubt that the domain label itself is
 a simple unstructured sequence. It goes without saying that domain
 labels obtained from contexts that use quoting (like master files)
 need to be reduced to their literal form before any processing is
 done on them.

 Local parts, on the other hand, are defined in [MSGFMT] and [SMTP]
 in terms of their quoted form, as they appear in message headers and
 SMTP commands. Later it is stated that the quotation characters are
 not really part of the local part. To avoid any ambiguity, IMAA
 explicitly discusses the process of dequoting and requoting local
 parts.

http://www.imc.org/ietf-imaa/

2. Terminology

 The key words "MUST", "SHALL", "REQUIRED", "SHOULD", "RECOMMENDED",
 and "MAY" in this document are to be interpreted as described in

RFC 2119 [KEYWORDS].

 Code point, Unicode, and ASCII are defined in [IDNA].

 The "protected code points" are 0..40, 5B..60, 7B..7F (in other
 words, those corresponding to ASCII characters other than letters
 and digits).

 A "mail address" consists of a local part, an at-sign, and a domain
 name, in that order. The exact details of the syntax depend on the
 context; for example, a "mailbox" in [SMTP] and an "addr-spec" in
 [MSGFMT] are both mail addresses, but they define slightly different
 syntaxes for local parts and domain names.

 A "dequoted local part" is the simple literal text string that
 is the intended "meaning" of a local part after it has undergone
 lexical interpretation. A dequoted local part excludes optional
 white space, comments, and lexical metacharacters (like backslashes
 and quotation marks used to quote other characters). Dequoted local
 parts are generally not allowed in protocols (like SMTP commands and
 message headers), but they are needed by IMAA as an intermediate
 form. The dequoted form of X is sometimes written dequote(X).

 An "internationalized local part" (ILP) is anything that satisfies
 both of the following conditions: (1) It conforms to the same
 syntax as a non-internationalized local part except that non-ASCII
 Unicode characters are allowed wherever ASCII letters are allowed.
 (2) After it has been dequoted, the ToASCII operation can be applied
 to it without failing (see section 4). The term "internationalized
 local part" is a generalization, embracing both old ASCII local
 parts and new non-ASCII local parts. Although most Unicode
 characters can appear in internationalized local parts, ToASCII will
 fail for some inputs. Anything that fails to satisfy condition 2 is
 not a valid internationalized local part.

 A "traditional local part" is a local part that contains only ASCII
 characters and whose dequoted form would be left unchanged by the
 ToUnicode operation (see section 4).

 An "internationalized mail address" (IMA) consists of an
 internationalized local part, an at-sign, and an internationalized
 domain name [IDNA], in that order.

 Equivalence of local parts is defined in terms of the dequoted form
 (see above) and the ToASCII operation, which constructs an ASCII
 form for a given dequoted local part (whether or not the local part
 was already an ASCII local part). Two traditional local parts X

https://datatracker.ietf.org/doc/html/rfc2119

 and Y are equivalent if and only if dequote(X) and dequote(Y) are
 exactly identical. (That is not a new rule, it is inferred from
 [SMTP] and [MSGFMT].) For internationalized local parts X and Y
 that are not both traditional, they are defined to be equivalent if
 and only if ToASCII(dequote(X)) matches ToASCII(dequote(Y)) using
 a case-insensitive ASCII comparison. Unlike traditional local
 parts, non-traditional internationalized local parts are always
 case-insensitive.

 Two internationalized mail addresses are equivalent if and only
 if their local parts are equivalent (according to the previous
 definition) and their domain parts are equivalent (according to
 IDNA).

 To allow internationalized labels to be handled by existing
 applications, IDNA uses an "ACE local part" (ACE stands for ASCII
 Compatible Encoding). An ACE local part is an internationalized
 local part that can be rendered in ASCII and is equivalent to an
 internationalized local part that cannot be rendered in ASCII.
 Given any internationalized local part (in dequoted form) that
 cannot be rendered in ASCII, the ToASCII operation will convert it
 to an equivalent ACE local part (whereas an ASCII local part will
 be left unaltered by ToASCII). ACE local parts are unsuitable for
 display to users. The ToUnicode operation will convert any local
 part (in dequoted form) to an equivalent non-ACE local part. In
 fact, an ACE local part is formally defined to be any local part
 that the ToUnicode operation would alter (whereas non-ACE local
 part are left unaltered by ToUnicode). The ToASCII and ToUnicode
 operations are specified in section 4.

 The "ACE infix" is defined in this document to be a string of ASCII
 characters that occurs within every encoded segment in a dequoted
 ACE local part. It is specified in section 5.

 A "mail address slot" is defined in this document to be a protocol
 element or a function argument or a return value (and so on)
 explicitly designated for carrying a mail address (or part of a mail
 address). Mail address slots exist, for example, in the MAIL and
 RCPT commands of the SMTP protocol, in the To: and Received: fields
 of message headers, and in a mailto: URI in the href attribute of
 an HTML <A> tag. General text that just happens to contain an mail
 address is not a mail address slot; for example, a mail address
 appearing in the plain text body of a message is not occupying a
 mail address slot.

 An "IMA-aware mail address slot" is defined in this document to
 be a mail address slot explicitly designated for carrying an
 internationalized mail address as defined in this document. The
 designation may be static (for example, in the specification of
 the protocol or interface) or dynamic (for example, as a result of
 negotiation in an interactive session).

 An "IMA-unaware mail address slot" is defined in this document to be
 any mail address slot that is not an IMA-aware mail address slot.
 Obviously, this includes any mail address slot whose specification
 predates this document.

3. Requirements and applicability

3.1 Requirements

 IMAA conformance means adherence to the following four requirements:

 1) In an internationalized mail address, the following characters
 MUST be recognized as at-signs for separating the local part
 from the domain name: U+0040 (commercial at), U+FF20 (fullwidth
 commercial at).

 2) Whenever a mail address (or part of a mail address) is put
 into an IMA-unaware mail address slot (see section 2), it MUST
 contain only ASCII characters. Given an internationalized mail
 address, an equivalent mail address satisfying this requirement
 can be obtained by applying ToASCII to the local part as
 specified in section 4, changing the at-sign to U+0040, and
 processing the domain name as specified in [IDNA].

 3) ACE local parts obtained from mail address slots SHOULD be
 hidden from users when it is known that the environment
 can handle the non-ACE form, except when the ACE form is
 explicitly requested. When it is not known whether or not the
 environment can handle the non-ACE form, the application MAY
 use the non-ACE form (which might fail, such as by not being
 displayed properly), or it MAY use the ACE form (which will
 look unintelligible to the user). Given an internationalized
 local part, an equivalent non-ACE local part can be obtained
 by applying the ToUnicode operation as specified in section 4.
 When requirements 2 and 3 both apply, requirement 2 takes
 precedence.

 4) If two mail addresses are equivalent and either one refers to a
 mailbox, then both MUST refer to the same mailbox, regardless of
 whether they use the same form of at-sign.

 Discussion: This implies that non-ASCII local parts cannot be
 deployed in domains whose mail exchangers are case-sensitive.
 IMAA is designed to work without upgrading mail exchangers,
 but it works only for mail exchangers that treat ASCII local
 parts as case-insensitive (which is the common and preferred
 behavior). All local parts received by an IMA-unaware
 mail exchanger are ASCII, either traditional or ACE, and a
 case-insensitive exchanger will automatically obey requirement 4
 without being aware of it. Case-sensitive exchangers will not

 correctly handle ACE local parts, but administrators can simply
 refrain from creating ACE local parts in those domains. This is
 necessary because a round-trip through ToUnicode and ToASCII is
 not case-preserving, and therefore the result might refer to a
 different mailbox (in violation of requirement 4) if interpreted
 by a case-sensitive mail exchanger.

3.2 Applicability

 IMAA is applicable to all mail addresses in all mail address slots
 except where it is explicitly excluded.

 This implies that IMAA is applicable to protocols that predate IMAA.
 Note that mail addresses occupying mail address slots in those
 protocols MUST be in ASCII form (see section 3.1, requirement 2).

3.2.1. Case-sensitive local parts

 IMAA does not apply to local parts that are interpreted
 case-sensitively (see section 3.1 requirement 4).

3.2.2. Local parts versus domain names

 The IMAA ToASCII and ToUnicode operations apply to local parts, not
 to domain labels. The IDNA ToASCII and ToUnicode operations apply
 to domain labels, not to local parts. There exist conventions for
 transplanting local parts into domain labels (in DNS SOA records,
 for example), and there may exist conventions for transplanting
 domain names into local parts. Such conventions that predate
 IMAA are IMA-unaware, and therefore the domain labels receiving
 the transplanted local parts and the local parts receiving the
 transplanted domain names are IMA-unaware slots. Therefore the
 strings MUST be in ASCII form before they are transplanted. If they
 were transplanted in non-ASCII form they would risk being passed
 through the wrong ToASCII operation.

4. Conversion operations

 An application converts a local part put into an IMA-unaware mail
 address slot or displayed to a user. This section specifies the
 steps to perform in the conversion, and the ToASCII and ToUnicode
 operations.

 The input to ToASCII or ToUnicode is a dequoted local part that is a
 sequence of Unicode code points (remember that all ASCII code points
 are also Unicode code points). If a local part is represented using
 a character set other than Unicode or US-ASCII, it will first need
 to be transcoded to Unicode.

 Starting from a local part, the steps that an application takes to
 do the conversions are:

 1) Decide whether the local part is a "stored string" or a "query
 string" as described in [STRINGPREP] (see section 6 below for a
 discussion). If this conversion follows the "queries" rule from
 [STRINGPREP], set the flag called "AllowUnassigned".

 2) Save a copy of the local part.

 3) Dequote the local part; that is, perform lexical interpretation
 and remove all nonliteral characters. For example, for a
 local part that uses the lexical syntax of [SMTP] or [MSGFMT],
 unfold it, remove comments and unquoted white space, and remove
 backslashes and quotation marks used to quote other characters.
 The result is a simple literal text string.

 4) Process the string with either the ToASCII or the ToUnicode
 operation as appropriate. Typically, you use the ToASCII
 operation if you are about to put the local part into an
 IMA-unaware slot, and you use the ToUnicode operation if you are
 displaying the local part to a user.

 5) If step 4 had no effect on the string, and if the saved local
 part from step 2 is a valid representation of the string in the
 destination context, then the saved local part SHOULD be used,
 otherwise proceed to step 6.

 6) Apply whatever quoting is needed in the destination context
 (if any). For "mailbox" slots [SMTP] and "addr-spec" slots
 [MSGFMT] the following action suffices: If the string contains
 any control characters, spaces, or specials [MSGFMT], or if it
 begins or ends with a dot, or contains two consecutive dots,
 then convert it to a quoted-string: insert a backslash before
 every quotation mark and backslash, then enclose the string with
 quotation marks.

 The destination context might also impose a length restriction.
 Depending on whether the restriction applies to the quoted form or
 the dequoted form, the application might want to check the length at
 the very end or just after step 4.

 This process is designed to handle quoting and dequoting when
 necessary; however, local parts that need quoting can be difficult
 for humans to use. This is already true for ASCII local parts,
 and is even more true for internationalized local parts. It is
 inadvisable to create such local parts if they are to be used by
 humans.

 The following two subsections define the ToASCII and ToUnicode
 operations that are used in step 4.

 In ToASCII and ToUnicode, the operation of Nameprep is split into
 two halves that are applied at different times. One half consists

 of Nameprep steps 1 (map) and 2 (normalize); the other half consists
 of Nameprep steps 3 (prohibit) and 4 (check bidi). The split is
 easy to remember because steps 1 and 2 are string transformations
 that can never fail, while steps 3 and 4 are checks that do
 nothing but succeed or fail.

 This description of the protocol uses specific procedure names,
 names of flags, and so on, in order to facilitate the specification
 of the protocol. These names, as well as the actual steps of the
 procedures, are not required of an implementation. In fact, any
 implementation which has the same external behavior as specified in
 this document conforms to this specification.

4.1 ToASCII

 The ToASCII operation takes a sequence of Unicode code points that
 make up a dequoted local part and transforms it into a sequence of
 code points in the ASCII range (0..7F). If ToASCII succeeds, the
 original sequence and the resulting sequence are equivalent dequoted
 local parts.

 It is important to note that the ToASCII operation can fail.
 ToASCII fails if any step of it fails. If any step of the
 ToASCII operation fails, that string MUST NOT be used as an
 internationalized local part. The method for dealing with this
 failure is application-specific.

 The inputs to ToASCII are a sequence of code points, and the
 AllowUnassigned flag. The output of ToASCII is either a sequence of
 ASCII code points or a failure condition.

 ToASCII never alters a sequence of code points that are all in the
 ASCII range to begin with. Applying the ToASCII operation multiple
 times has exactly the same effect as applying it just once.

 ToASCII consists of the following steps:

 1. If the sequence contains any code points outside the ASCII range
 (0..7F) then proceed to step 2, otherwise stop, leaving the
 sequence unchanged.

 2. Perform [NAMEPREP] steps 1 (map) and 2 (normalize).

 3. If the sequence is empty then stop, leaving an empty result.

 4. Divide the sequence into segments. Segment boundaries occur
 wherever a protected code point is adjacent to a non-protected
 code point, and nowhere else. (Therefore segments are never
 empty, and they alternate between segments containing only
 protected code points and segments containing only non-protected
 code points.)

 5. For each segment perform the following substeps:

 (a) If the segment contains any code points outside the ASCII
 range (0..7F) then proceed to substep b, otherwise leave the
 segment unchanged.

 (b) Perform [NAMEPREP] steps 3 (prohibit) and 4 (check bidi),
 and fail if there is an error. The AllowUnassigned flag is
 used in [NAMEPREP] step 3.

 (c) Encode the sequence using the encoding algorithm in
 [PUNYCODE] and fail if there is an error.

 (d) Verify that the result contains no more than 59 code points.

 (e) The sequence will contain at most one instance of U+002D
 (hyphen-minus). If it is absent then prepend the ACE infix;
 otherwise verify that the ACE infix does not already occur
 before the hyphen-minus, and substitute the ACE infix in
 place of it.

 6. Rejoin the segments into a single sequence.

4.2 ToUnicode

 The ToUnicode operation takes a sequence of Unicode code points that
 make up a dequoted local part and returns a sequence of Unicode code
 points. If the input sequence is a dequoted local part in ACE form,
 then the result is an equivalent dequoted internationalized local
 part that is not in ACE form, otherwise the original sequence is
 returned unaltered.

 ToUnicode never fails. If any step fails, then the original input
 sequence is returned immediately in that step.

 The Punycode decoder can never output more code points than it
 inputs, but Nameprep can, and therefore ToUnicode can. Note that
 the number of octets needed to represent a sequence of code points
 depends on the particular character encoding used.

 The inputs to ToUnicode are a sequence of code points, and the
 AllowUnassigned flag. The output of ToUnicode is a sequence of code
 points.

 ToUnicode consists of the following steps:

 1. If the sequence contains any code points outside the ASCII range
 (0..7F) then proceed to step 2, otherwise skip to step 3.

 2. Perform [NAMEPREP] steps 1 (map) and 2 (normalize).

 3. Verify that the sequence is nonempty.

 4. Divide the sequence into segments (same as step 4 of ToASCII).

 5. For each segment perform the following substeps:

 (a) If the ACE infix does not occur anywhere within the segment
 then leave the segment unchanged, otherwise save a copy of
 the segment and proceed to substep b.

 (b) If the ACE infix occurs at the very beginning of the segment
 then remove it, otherwise substitute U+002D (hyphen-minus)
 in place of the first occurrence of the ACE infix.

 (c) Decode the segment using the decoding algorithm in
 [PUNYCODE] and catch any error. If there was an error then
 restore the saved copy from substep a.

 6. Verify that at least one segment was altered in step 5.

 7. Rejoin the segments into a single sequence, and save a copy of
 the result.

 8. Apply ToASCII to the current sequence and to a copy of the
 original input.

 9. Verify that the two results of step 8 match using a
 case-insensitive ASCII comparison.

 10. Return the saved copy from step 7.

5. ACE infix

 [[Note to the IESG and Internet Draft readers: The two uses of the
 string "0iesg1" below are to be changed at time of publication to an
 infix that fulfills the requirements in the first paragraph. IANA
 will assign this value.]]

 The ACE infix, used in the conversion operations (section 4), is
 two ASCII letters surrounded by two distinct ASCII digits. The
 ToASCII and ToUnicode operations MUST recognize the ACE infix in a
 case-insensitive manner.

 The ACE infix for IMAA is "0iesg1" or any capitalization thereof.

 This means that an ACE local part might be
 "foobar!de0iesg1jg4avhby1noc0d!0iesg1d9juau41awczczp", where
 "de-jg4avhby1noc0d" and "d9juau41awczczp" are the results of the
 encoding steps in [PUNYCODE].

 While every encoded segment (segment that would be altered by

 ToUnicode) within an ACE local part contains the ACE infix, not
 every segment containing the ACE infix is an encoded segment.
 Segments that contain the ACE infix but are not encoded segments
 will confuse users, and local parts containing such segments SHOULD
 NOT be used as mailbox names.

6. Stored strings and query strings

 [STRINGPREP] prohibits unassigned code points in "stored strings"
 and allows them in "query strings", but concedes that "different
 Internet protocols use strings very differently, so these terms
 cannot be used exactly in every protocol that needs to use
 stringprep". In the context of IMAA, the following clarifications
 apply.

 A string that assigns/creates the name of an object is a "stored
 string". A string that merely refers to an object using a name that
 is presumed to have been assigned/created elsewhere is a "query
 string".

 Examples of stored strings:

 * In a mail server configuration file/database, the strings that
 create the mail addresses associated with the local mailboxes.
 (These mail addresses might be defined in pieces: the domain
 parts might be defined by a set of local domains, and the local
 parts might be defined by a separate set of user names and
 aliases, but the net effect is that these strings create a set
 of mail addresses, and are therefore stored strings.)

 * The msg-id in the Message-ID: field of a message header.

 Examples of query strings:

 * A mail address in the From: or To: or Reply-To: field of a
 message header.

 * A mail address in the MAIL or RCPT command of SMTP.

 * A mail address in a personal address book.

 * A msg-id in the In-Reply-To: or References: field of a message
 header.

7. References

7.1 Normative references

 [IDNA] Faltstrom, P., Hoffman, P. and A. Costello,
 "Internationalizing Domain Names in Applications

 (IDNA)", RFC 3490, March 2003.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [MSGFMT] Resnick, P., "Internet Message Format", RFC 2822,
 April 2001.

 [NAMEPREP] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep
 Profile for Internationalized Domain Names (IDN)",

RFC 3491, March 2003.

 [PUNYCODE] Costello, A., "Punycode: A Bootstring encoding of
 Unicode for use with Internationalized Domain Names in
 Applications (IDNA)", RFC 3492, March 2003.

 [SMTP] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821,
 April 2001.

 [STRINGPREP] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 December 2002.

7.2 Informative references

 [DNS] Mockapetris, P., "Domain names - concepts and
 facilities", STD 13, RFC 1034 and "Domain names -
 implementation and specification", STD 13, RFC 1035,
 November 1987.

 [MIME3] Moore, K., "MIME (Multipurpose Internet Mail
 Extensions) Part Three: Message Header Extensions for
 Non-ASCII Text", RFC 2047, November 1996.

8. Security considerations

 Because this document normatively refers to [IDNA], [NAMEPREP],
 [PUNYCODE], and [STRINGPREP], it includes the security
 considerations from those documents as well.

 Internationalized local parts will cause mail addresses to become
 longer, and possibly make it harder to keep lines in a header under
 78 characters. Lines that are longer than 78 characters (which
 is a SHOULD specification, not a MUST specification, in RFC 2822)
 could possibly cause mail user agents to fail in ways that affect
 security.

9. IANA considerations

 IANA will assign the ACE infix in consultation with the IESG.

https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc3491
https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc2822

10. Authors' addresses

 Paul Hoffman
 Internet Mail Consortium and VPN Consortium
 127 Segre Place
 Santa Cruz, CA 95060 USA
 phoffman@imc.org

 Adam M. Costello
 University of California, Berkeley

http://www.nicemice.net/amc/

http://www.nicemice.net/amc/

