
Workgroup: Network Working Group

Internet-Draft: draft-hohendorf-secure-sctp-33

Published: 17 September 2022

Intended Status: Experimental

Expires: 21 March 2023

Authors: C. Hohendorf

University of Duisburg-Essen

E. Unurkhaan

Mongolian University

T. Dreibholz

SimulaMet

Secure SCTP

Abstract

This document explains the reason for the integration of security

functionality into SCTP, and gives a short description of S-SCTP and

its services. S-SCTP is fully compatible with SCTP defined in

RFC4960, it is designed to integrate cryptographic functions into

SCTP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions

3. A brief description of S-SCTP

4. Key terms

5. Additional chunks and parameters

5.1. New type chunks and definitions

5.1.1. Secure Session Open request chunk (SSOpReq)

5.1.2. Secure Session Certificate chunk: (SSCert)

5.1.3. Secure Session Open Acknowledge chunk (SSOpReq_Ack)

5.1.4. Secure Session Server Key chunk (SSSerKey)

5.1.5. Secure Session Client Key chunk (SSCliKey)

5.1.6. Secure Session Open Complete chunk (SSOpCom)

5.1.7. Secure Session Close chunk (SSClose)

5.1.8. Secure Session Close Acknowledge chunk (SSClose_Ack)

5.1.9. Security Level Changed chunk (SecLevCHD)

5.1.10. Security Level Changed Acknowledged chunk

(SecLevCHD_Ack)

5.1.11. Encrypted Data Chunk (EncData)

5.1.12. Padding chunk (PADDING)

5.1.13. Authentication chunk (AUTH)

6. New Error Cause

6.1. Secure Session failure

6.2. Secure Session Certificate failure

6.3. Decryption failure

6.4. Authentication failure

6.5. Decompression failure

7. S-SCTP packet format and security levels

8. S-SCTP data format

9. Procedures

9.1. Establishment of a secure session

9.2. Choice of cipher suite and compression method

9.3. Data transfer

9.4. Closing of a secure session

9.5. Generation of the Master secret key

9.6. Update of the master secret key

9.7. Random number generation

9.8. HMAC algorithm

10. HMAC algorithm

11. S-SCTP to ULP

12. Transmission Control Block (TCB) extension

13. Socket API extensions for Secure SCTP

14. Testbed Platform

15. Security Considerations

16. IANA Considerations

¶

17. References

17.1. Normative References

17.2. Informative References

Authors' Addresses

1. Introduction

SCTP is a message oriented reliable transmission protocol which

works on top of the IP-based network. It provides several advantages

over other transmission protocols, such as TCP and UDP over IP. One

of the advantages is multistreaming -- user data transported by

individual streams. When multistreaming is used, network blocking

can be avoided in certain cases (e.g. network loss). Also, SCTP

supports multihoming -- the endpoints support multiple IP addresses.

SCTP provides unordered delivery, so that a receiver immediately

delivers user data to the upper layers upon receipt. For more

details, see RFC4960 [6].

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [2] [8] when, and only when, they appear in all capitals, as

shown here.

3. A brief description of S-SCTP

S-SCTP provides security functionalities in the transport layer

without the need for any other security protocols (e.g. TLS or IP-

sec). Normally, a data transport over SCTP can either be secured

with TLS or can be protected by IPsec. As both TLS over SCTP and

SCTP over IPsec have disadvantages in certain scenarios, it is

preferable to integrate cryptographic functions into SCTP.

The main issues for the security solutions TLS over SCTP RFC3436 [3]

and SCTP over IPSec RFC3554 [4] is scalability with the number of

streams. For N secure streams, N TLS connections have to be created,

and N handshakes have to be performed. If N is small, this is not a

big issue, but as N grows larger, it becomes a problem because a

handshake is a slow and expensive process. So, when an application

performs N handshakes, the load in terms of memory use, CPU use etc.

increases linearly over time. This problem could be overcome by

using IPsec. However, IPsec is not so flexible and on the other hand

SCTP over IPsec has to establish new security associations (SA) for

newly added IP addresses in dynamic address reconfiguration

scenario. In this case, the application has to configure a new SA

and to negotiate a new key exchange.

¶

¶

¶

¶

4. Key terms

This part gives the definitions of the key terms, which are used in

this draft:

Secure session: This is the session, which provides the security

functionalities for an established SCTP association.

Master secret key: S-SCTP uses two kinds of secret keys. One is

the secret key for the S-SCTP packet authentication, and the

other is the secret key for the data encryption and decryption.

Cipher suite: This is the suite of cryptographic algorithms,

which are used for key exchange, data encryption/decryption and

the packet authentication.

Pre-enc-data: This is the collection of the data chunks, which

requires encryption. The data chunks are concatenated together

and create pre-enc-data. Pre-enc-data may include the padding

chunk.

Cipher suite sequence: This is the bundle of cipher suites chosen

by an endpoint from the supported cipher suites.

5. Additional chunks and parameters

Several new chunks and parameters are defined in S-SCTP. This

section explains those chunks and parameters. All new chunks can be

bundled with other chunks. The new parameters follow the Type-

Length-Value format as defined in section 3.2.1 of RFC4960.

5.1. New type chunks and definitions

The following table shows the new chunks. All new chunks, except for

the Encrypted Data (EncData) chunk, Authentication (AUTH) chunk and

Padding (PADDING) chunk, are used for building the secure session

and to update the master secret key. The new chunks are to be

interpreted as described in Section 3.2 of RFC 4960, by the

receiver.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

The new parameters are defined in this section.

5.1.1. Secure Session Open request chunk (SSOpReq)

An endpoint creates the Secure Session Open Request chunk (see next

table)when it wishes to establish a secure session. The chunk can be

bundled with other chunks. The SSOpReq chunk can also be used to

update the master secret key or cipher suite after a secure session

establishment. During the association lifetime, both associated

endpoints can request an update of the master secret key or cipher

suite; in this case, the requesting endpoint sends the SSSOpReq

chunk immediately to the other endpoint.

CF: Certificate flag: 1 bit

This flag indicates whether or not the client will send a

certificate. It is set to 1 when the client sends a certificate. If

a receiver receives SSOpReq chunk with CF=1 and does not receive a

certificate it raises an error and terminates the secure session

initialisation.

 Chunktype Chunk name

 --------- ---------------------

 0xD0 Secure Session Open Request Chunk

 0xD1 Secure Session Certificate Chunk

 0xD2 Secure Session Acknowledge Chunk

 0xD3 Secure Session Server Key Chunk

 0xD4 Secure Session Client Key Chunk

 0xD5 Secure Session Open Complete Chunk

 0xD6 Secure Session Close Chunk

 0xD7 Secure Session Close Acknowledge Chunk

 0xD8 Security Level Change Chunk

 0xD9 Security Level Change Acknowledge Chunk

 0x10 Encrypted Data Chunk

 0x11 Authentication Chunk

 0x12 Padding Chunk

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Type=0xD0 | Reserved=0 |CF| Length |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Version | Key material length |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 \ \

 / Optional parameters /

 \ \

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

Length: 16 bits unsigned integer

The length field contains the size of the chunk in bytes, including

the chunk header, version, random number length and optional

parameter(s).

Version: 16 bits unsigned integer

This field indicates the S-SCTP version 1.0. The high eight bits

indicate the major version, the low eight bits indicate minor

version.

Key material length: 16 bits unsigned integer

This number has two meanings:

when the handshake is made using the RSA key exchange protocol,

the key material length defines the random number length, which

is generated by the server and client to calculate a master

secret key (see RSA parameters of the SSSerKey and SSCliKey

chunks)

when the handshake is made using the DH key exchange protocol,

the key material length defines the DH prime number length (see

DH parameters of the SSSerKey and SSCliKey chunks). For security

reasons, the key material length MUST be 512 bits (default) or

longer when the key exchange mechanism uses RSA, and 1024 bits

(default) or longer when the key exchange mechanism uses DH. The

key material length is increased in steps of 64 bits. If a user

defines the key material length to be shorter than the default

value, S-SCTP automatically sets it to the default.

Parameter(S):

SSOpReq chunk includes the cipher suite and compression method

parameters, which are described below:

Cipher suite parameter:

This parameter contains the cipher suites, which are chosen from all

supported cipher suites by the client. One of them is used for the

secure session. The user can choose certain cipher suites from the

cipher suites supported by the client.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

Cipher suite: 16 bits unsigned integer:

This field indicates a cipher suite, which is supported by the

client. The next table includes cipher suites supported in S-SCTP.

Additional cipher suites can be specified.

The hash algorithms, defined in cipher suites, are used only for the

S-SCTP packet authentication, and not for the signature of the

handshake messages. An S-SCTP implementation MUST at least support

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=30 | Length |

 +-+

 | Cipher suite 1 | Cipher suite 2 |

 +-+

 | | |

 +-+

 | Cipher suite N-1 | Cipher suite N |

 +-+

¶

¶

¶

Value Cipher suite Key exchange Encryption Hash

----- ------------------------- ------------ ---------- ---------

 1 RSA_with_DES_CBC_MD5 RSA DES_CBC MD5

 2 RSA_with_DES_CBC_SHA-1 RSA DES_CBC SHA-1

 3 RSA_with_3DES_CBC_MD5 RSA 3DES_CBC MD5

 4 RSA_with_3DES_CBC_SHA-1 RSA 3DES_CBC SHA-1

 5 RSA_with_AES-128_CBC_MD5 RSA AES-128 MD5

 6 RSA_with_AES-128_CBC_SHA-1 RSA AES-128 SHA-1

 7 DH_with_DES_CBC_MD5 DH DES_CBC MD5

 8 DH_with_DES_CBC_SHA-1 DH DES_CBC SHA-1

 9 DH_with_3DES_CBC_MD5 DH 3DES_CBC MD5

 10 DH_with_3DES_CBC_SHA-1 DH 3DES_CBC SHA-1

 11 DH_with_AES-128_CBC_MD5 DH AES-128 MD5

 12 DH_with_AES-128_CBC_SHA-1 DH AES-128 SHA-1

 13 RSA_with_NULL_MD5 RSA NULL MD5

 14 RSA_with_NULL_SHA-1 RSA NULL SHA-1

 15 DH_with_NULL_MD5 DH NULL MD5

 16 DH_with_NULL_SHA-1 DH NULL SHA-1

 17 RSA_with_AES-192_CBC_MD5 RSA AES-192 MD5

 18 RSA_with_AES-192_CBC_SHA-1 RSA AES-192 SHA-1

 19 RSA_with_AES-256_CBC_MD5 RSA AES-256 MD5

 20 RSA_with_AES-256_CBC_SHA-1 RSA AES-256 SHA-1

 21 DH_with_AES-192_CBC_MD5 DH AES-192 MD5

 22 DH_with_AES-192_CBC_SHA-1 DH AES-192 SHA-1

 23 DH_with_AES-256_CBC_MD5 DH AES-256 MD5

 24 DH_with_AES-256_CBC_SHA-1 DH AES-256 SHA-1

¶

the default cipher suite, DH_with_3DES_CBC_SHA-1 (value=0). If the

SSOpReq chunk does not contain a cipher suite parameter, then:

a.) S-SCTP will use the default, or:

b.) S-SCTP will use the old cipher suite.

The case "a" will be used at the beginning of the secure session.

The case "b" will be used when the SSOpReq chunk is created after a

secure session establishment. The signature schemes are derived from

both the client and server certificates, and may be different.

Compression method parameter

This parameter contains compression methods, which are used for data

compression. The data compression uses lossless compression methods.

The user chooses several compression methods and sends it to the

receiver. The receiver chooses one compression method.

Compression method: 8 bits unsigned char

This field indicates a compression method, which is supported by the

client. The next table includes compression methods supported in S-

SCTP. Additional compression methods can be specified.

The secure session uses null compression when the SSOpReq chunk

contains no compression parameters.

5.1.2. Secure Session Certificate chunk: (SSCert)

This chunk can be sent by both endpoints. The certificate helps to

authenticate the endpoint, that establishes a S-SCTP session. This

chunk contains only one parameter, the certificate parameter. The

SSCert chunk is optional. For security reasons, both endpoints

SHOULD use a certificate to authenticate each other.

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Compression | Compression | Compression | Compression |

 | method 1 | method 2 | method 3 | method 4 |

 +-+

 | | | Compression | Compression |

 | | | method N-1 | method N |

 +-+

¶

¶

¶

 Value Compression method

 ----- ---------------------

 1 Huffman Code

 2 Lempel-Ziv Code

¶

¶

¶

Length: 16 bits unsigned integer

The length field contains the size of the chunk in bytes, including

the chunk header and parameter.

Certificate: Variable length

The certificate field contains the certificate of the endpoint. S-

SCTP uses the X.509v3 certificate which is defined in RFC5280 [7].

Optional parameter

SSCert chunk has only one optional parameter.

Certificate parameter

The SSCert chunk uses the certificate parameter for additional

certificates, when the endpoint has two or more certificates.

Certificate: Variable length

The endpoint can send two or more certificates. In this case the

certificate field contains the endpoint's additional certificate. S-

SCTP uses the X.509v3 certificate, which is defined in RFC5280 [7].

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0xD1 | Reserved=0 | Length |

 +-+

 \ \

 / Certificate /

 \ \

 +-+

 \ \

 / Optional parameter /

 \ \

 +-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=33 | Length |

 +-+

 \ \

 / Certificate /

 \ \

 +-+

¶

¶

¶

5.1.3. Secure Session Open Acknowledge chunk (SSOpReq_Ack)

The Secure Session Open Acknowledge chunk is sent by the server to

tell the client that the secure session open request is accepted.

CF: Certificate flag: 1 bit

This flag indicates whether or not the server has a certificate.

This flag is set to 1 when the server has a certificate, else it is

zero.

Length: 16 bits unsigned integer

The chunk length is 8 bytes, including the chunk header, version and

cipher suite field.

Version: 16 bits unsigned integer

This field indicates the S-SCTP version 1.0. The high eight bits

indicate the major version, the low eight bits indicate the minor

version.

Cipher suite: 16 bits unsigned integer

This field indicates the cipher suite, which is used for a secure

session. The cipher suite includes necessary information for the key

derivation, message encoding and MAC computation. The server uses

the following rules to choose the cipher suite:

Client and Server do not have a certificate: Use DH key exchange.

Client or Server has a certificate: Use DH key exchange.

Client and Server have a RSA certificate: Use RSA key exchange.

Client and Server have a DSS certificate: Use DH key exchange.

Compression method: 16 bits unsigned char

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Type=0xD2 | Reserved=0 |CF| Length |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Version | Cipher suite |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Compression method | Reserved = 0 |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

This field indicates the compression method, which is used for data

compression in the secure session.

5.1.4. Secure Session Server Key chunk (SSSerKey)

This chunk includes the parameter which is used for the key exchange

algorithm. The Server Key Exchange chunk consists of the chunk

header and one parameter. The parameter type depends on the key

exchange algorithm.

Security level (SL): 2 bits

This 2-bit value indicates a server's security level of the reserved

flags.

Length: 16 bit unsigned integer

The length field contains the size of the chunk in bytes, including

the chunk header and parameter.

Parameters:

The following two parameters define the key exchange protocols.

Their parameter formats are shown in the next two tables. When a

user specifies a new cipher suite with a new key exchange algorithm,

then they must define a new parameter.

Diffie-Hellman parameter

The SSSerKey chunk uses this parameter when the handshake is done

via the DH key exchange algorithm.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Type=0xD3 | Reserved=0 |SL| Length |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 \ \

 / Parameter /

 \ \

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

Length: 16 bit unsigned integer

The length field contains the size of the parameter in bytes,

including the parameter header, length of DH prime number, length of

DH primitive root, length of DH public key, reserved, DH prime

number, DH primitive root, DH public key and signature.

Length of DH prime number, P: 16 bits unsigned integer

This field contains the size of the DH prime number.

Length of DH primitive root, Q: 16 bits unsigned integer

This field contains the size of the DH primitive root. The size of

the prime number is equal R, where R is a random number defined in

the SSOpReq chunk.

Length of DH value, Y: 16 bits unsigned integer

This field contains the size of the DH public key.

DH value, P: Variable length

This is the prime number of the DH key exchange protocol.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0xD001 | Length |

 +-+

 | Length of DH prime number, P | Length of DH prmitive root, R |

 +-+

 | Length of DH public key, Y | Reserved=0 |

 +-+

 \ \

 / DH prime number, P /

 \ \

 +-+

 \ \

 / DH primitive root, R /

 \ \

 +-+

 \ \

 / DH value, Y /

 \ \

 +-+

 \ \

 / Signature /

 \ \

 +-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

DH value, Q: Variable length

This is the primitive root of the prime number P.

DH value, Y: Variable length

This is the public key of the DH key exchange protocol.

Signature: Variable length

The field contains the signature which is derived from the chunk

header and the whole parameter except the signature field. The

signature computation uses the signature algorithm which is defined

in the server certificate. If the server does not have a

certificate, this field does not exist in the parameter.

RSA parameter

The SSSerKey chunk uses this parameter when the handshake uses the

RSA key exchange algorithm.

Length: 16 bits unsigned integer

The length field contains the size of the parameter in bytes,

including the parameter header, the encrypted random number and the

signature.

Encrypted (Random number, R): Variable length

The random number is used to generate the secret keys for user data

encryption and authentication. The random number encryption uses the

client public key.

Signature: Variable length

¶

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0xD002 | Length |

 +-+

 \ \

 / Encrypted (random number, R) /

 \ \

 +-+

 \ \

 / Signature /

 \ \

 +-+

¶

¶

¶

¶

¶

¶

The field contains the signature, which is derived from the chunk

header and the whole parameter except the signature field. The

signature computation uses the signature algorithm which is defined

in the server certificate.

5.1.5. Secure Session Client Key chunk (SSCliKey)

This chunk includes the parameters which are used for the key

exchange algorithm. The Secure Session Client Key Exchange chunk

consists of the chunk header and one parameter. The parameter format

depends on the key exchange algorithm.

Security level (SL): 2 bits

This 2-bit value indicates a client's security level.

Length: 16 bit unsigned integer

The length field contains the size of the chunk in bytes, including

the chunk header and parameter.

Parameters:

Two new parameters are defined here that can appear in the SSCliKey

chunk. Their parameter formats are shown in the next two tables.

Diffie-Hellman parameter

The SSCliKey chunk uses this parameter when the handshake uses the

DH key exchange algorithm.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Type=0xD4 | Reserved=0 |SL| Length |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 \ \

 / Parameter /

 \ \

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

Length: 16 bit unsigned integer

The length field contains the size of the parameter in bytes,

including the parameter header, the DH public key and the signature.

DH value, Y: Variable length

This field contains the public key of the DH key exchange protocol.

Signature: Variable length

The field contains a signature which is derived from the chunk

header and the whole parameter except the signature field. The

signature computation uses the signature algorithm defined in the

client certificate. If the client does not have a certificate, then

this field does not exist in the parameter.

RSA parameter

The SSCliKey chunk uses this parameter when the handshake uses RSA

key exchange algorithm.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0xD003 | Length |

 +-+

 \ \

 / DH value, Y /

 \ \

 +-+

 \ \

 / Signature /

 \ \

 +-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0xD003 | Length |

 +-+

 \ \

 / Encrypted (random number, R) /

 \ \

 +-+

 \ \

 / Signature /

 \ \

 +-+

¶

Length: 16 bits unsigned integer

The length field contains the size of the parameter in bytes,

including the parameter header, the encrypted random number and a

signature.

Encrypted (Random number): Variable length

This field contains the random number, encrypted by the server's

public key, which is used to generate the master secret key for

encryption and authentication.

Signature: Variable length

The field contains the signature which is derived from the chunk

header and the whole parameter except the signature field. The

signature computation uses the signature algorithm defined in the

server certificate.

5.1.6. Secure Session Open Complete chunk (SSOpCom)

This chunk is the last chunk of the handshake and it indicates the

completion of the secure session establishment. After receiving this

chunk the endpoint verifies the verification data which is contained

in the chunk. The secure session procedure is complete when the

verification is successful. Otherwise the secure session will be

closed.

Length: 16 bits unsigned integer

The length field contains the size of the chunk in bytes, including

the chunk header and verification data.

Verification data: Variable length

The verification data contains a hashed value which is an output of

the HMAC function. The HMAC uses the authentication secret key,

which is individually generated by the endpoints. The HMAC input

contains all received secure session handshake chunks of the current

endpoint. Both endpoints compute the hash value individually and

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0xD5 | Reserved=0 | Length |

 +-+

 \ \

 / Verification data /

 \ \

 +-+

¶

¶

¶

¶

exchange it using the SSOpCom chunk. The receiver computes the hash

value using the same algorithm as the sender, and compares it with

the verification data. If the receiver's computed value is the same

as the sender's verification data, then the receiver assures that

the secure session open is successfully completed. If it is not the

same, then the receiver sends an ERROR message to the sender, and

immediately closes the secure session.

5.1.7. Secure Session Close chunk (SSClose)

This chunk indicates a request to close the current secure session.

The sender MUST NOT send any encrypted or authenticated chunks after

it has sent this chunk.

Outstanding flag (OF): 1 bit

This flag indicates that the endpoint has sent the SSClose chunk and

has no outstanding secured data.

Length: 16 bits unsigned integer

The length field contains the size of the chunk in bytes, including

the chunk header and TSN.

Transmission sequence number (TSN): 16 bits unsigned integer

This is the transmission sequence number of the data chunk that was

last encrypted and sent. The TSN helps the server to detect

outstanding EncData chunks.

5.1.8. Secure Session Close Acknowledge chunk (SSClose_Ack)

This chunk is used to acknowledge the receipt of the secure session

close chunk. When the endpoint receives the secure session close

chunk, it immediately stops sending encrypted or authenticated

chunks. The Secure Session Close Acknowledge chunk only consists of

the chunk header.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Type=0xD6 | Reserved=0 |OF| Length |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | TSN |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

5.1.9. Security Level Changed chunk (SecLevCHD)

This chunk is used to convey the other associated endpoint of the

endpoint's new security level. The endpoint sends SecLevCHD chunk

every time it selects a new security level. The endpoint uses the

new selected security level when it receives the Security Level

Changed Acknowledged chunk. The sender MUST NOT send a new SecLevCHD

chunk when an unacknowledged SecLevCHD chunk exists.

Security level (SL): 2 bits

This 2-bit value indicates the sender's new security level.

5.1.10. Security Level Changed Acknowledged chunk (SecLevCHD_Ack)

This chunk is used to acknowledge the receipt of the SecLevCHD

chunk. When the endpoint receives the SecLevCHD chunk, it

immediately sends the SecLevCHD_Ack chunk.

5.1.11. Encrypted Data Chunk (EncData)

Each S-SCTP packet includes at most one encrypted data chunk, and

the packet could also include several (normal, unencrypted) data

chunks. The encrypted data chunk may contain one or several data

chunks. The EncData chunk includes a padding chunk when it is

needed.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0xD7 | Reserved=0 | Length=4 |

 +-+

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Type=0xD8 | Reserved=0 |SL| Length=4 |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0xD9 | Reserved=0 | Length=4 |

 +-+

¶

¶

Length: 16 bits unsigned integer

The length field contains the size of the chunk in bytes,including

the chunk header and encrypted data.

Master secret key reference number: 16 bits unsigned integer

The association can be updated by changing the master secret key

several times during the association lifetime. The association keeps

old secret keys. The number of the kept old secret keys depends on

the implementation. This field helps to identify which key (old or

new) has been used for encryption. That means the endpoint is able

to receive messages, which were encrypted with an old key, after the

update of a master secret key.

Random number length: 16 bits unsigned integer

This field contains the size of the random number which is defined

below.

Random number: Variable length

This field indicates the random number which is used as

initialisation vector of the cipher block chaining (CBC) mode for

encryption.

Encrypted data: Variable length

Contains a byte vector that consists of the encrypted data chunks.

Before encryption, the chunk(s) MUST fulfil the following

conditions. If encryption is performed using the DES or 3DES

algorithm, the total size of the chunk(s) MUST be a multiple of 8

bytes. If encryption is performed using the AES algorithm, the total

size of the chunk(s) MUST be a multiple of 16 bytes. If the total

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0x10 | Reserved=0 | Length |

 +-+

 | Master secret key reference # | Random number length |

 +-+

 \ \

 / Random number /

 \ \

 +-+

 \ \

 / Encrypted data /

 \ \

 +-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

size of the chunk(s) is not a multiple of 8 bytes or 16 bytes, the

sender MUST add appropriate padding at the chunk's end.

5.1.12. Padding chunk (PADDING)

This padding chunk is used with an EncData chunk. The symmetric

encryption algorithms use a block oriented encryption of the user

data. For example DES uses 64 bit blocks, and AES uses 128 bit

blocks. Before encryption, the user data which has to be encrypted

has to be formatted according to the required block size. If the

last block is not completely full, padding has to be added. If less

than 4 bytes padding are required, the block is filled up will all

zeros. The receiver can calculate the number of padding bytes based

on the length field of the original data chunks. If 4 bytes or more

are required, a padding chunk of appropriate length is added.

The algorithms split user data into blocks when the data length is

greater than the block size. The blocks MUST be full. If 104 bits

are to be encrypted using DES algorithm with 64 bit block size, user

data is split into two blocks of 64 and 40 bits. The second block

must be padded with 24 bits up to the full block size of 64 bits.

Length: Variable length

This field indicates the padding size. The padding follows the

padding chunk. The length includes the padding chunk and padding.

Padding: Variable length

The padding is a random number. The random number generation is

implementation specific.

5.1.13. Authentication chunk (AUTH)

This chunk is dedicated to the authentication of an S-SCTP packet.

S-SCTP inserts this chunk into the packet when the security level

requires authentication.

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0x12 | Reserved=0 | Length |

 +-+

 | Padding |

 +-+

¶

¶

¶

¶

¶

¶

Length: 16 bits unsigned integer

The length field contains the size of the chunk in bytes, including

the chunk header, master secret key reference, reserved field and

MAC.

Master secret key reference number: 16 bits unsigned integer

The association can update the secret keys several times during the

association lifetime. The association keeps old secret keys. The

number of the kept old secret keys depends on the implementation.

This field identifies the key which is used for authentication. If

the endpoint receives a message which was authenticated by an old

key, this message can still be authenticated after an update of the

master secret key.

HMAC: Variable length

This field contains the authentication code for the SCTP packet. The

message authentication uses the HMAC algorithm defined in RFC 2104.

The hash function used in the HMAC algorithm is derived from the

negotiated cipher suite, which was chosen by the server.

6. New Error Cause

This part explains the new error causes defined for S-SCTP. When a

secure session or certificate failure is detected in the secure

session open process, the S-SCTP association immediately stops the

process. However, the association continues (without any security

functionality). When the secure session failure happens during an

update of the master secret key the association stops the update

operation and closes the secure session. The following table shows

four general failure groups.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type=0x11 | Reserved=0 | Length |

 +-+

 | Master secret key reference # | Reserved=0 |

 +-+

 \ \

 / HMAC /

 \ \

 +-+

¶

¶

¶

¶

¶

¶

¶

¶

6.1. Secure Session failure

If any error happens in the secure session open and update process,

endpoints alert their peers with these error codes. The next table

shows error codes for what can happen.

Timer expired: The sender starts a timer when it sends the secure

session message. When the sender receives no response from the

receiver before the timer expires, it sends this error code.

Signature failure: Some secure session chunks include a

signature, which identifies and protects the secure session

message. If the receiver checks the signature and cannot identify

the chunk, this error code is used in the error chunk.

Secure Session Open Complete failure: This chunk is a very

important part of the secure session. Both server and client

individually compute the master secret and HMAC secret keys. Both

sides check these secret keys and parameters (i.e. secure session

chunks exchanged before, source and destination ports). If these

keys are not identical, an error chunk is sent containing this

error code.

 Cause Code Value Cause Code

 ---------------- ---------------------------------------

 0x20 Secure Session failure

 0x21 Secure Session Certificate failure

 0x22 Secure Session Decryption failure

 0x23 Secure Session Authentication failure

 0x24 Secure Session Decompression failure

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Cause Code=0x20 | Cause length = 8 |

 +-+

 | Error Code | Reserved=0 |

 +-+

¶

¶

 Error Code Value Error Code

 ---------------- -------------------------------------

 0 Timer expired

 1 Signature failure

 2 Secure Session Open Complete failure

¶

*

¶

*

¶

*

¶

6.2. Secure Session Certificate failure

The certificate failure signals that an error has occurred in

processing the certificates. The next table shows error codes for

what can happen.

No certificate: This error happens when the sender sets the CF

flag and the receiver does not receive the certificate.

Bad certificate: The signature of the certificate is bad and the

certificate could not be verified.

Certificate expired: The certificate is no longer valid.

Unknown certificate: The received certificate a X.509v3

certificate.

6.3. Decryption failure

This error happens when the EncData chunk cannot be decrypted or the

data chunk(s) cannot be identified after decryption. The receiver

discards the EncData and increases a counter by 1. This counter

counts errors. If the number of errors reaches a limit, the secure

session is terminated. The limit of the errors depends on the

implementation.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Cause Code=0x21 | Cause length = 8 |

 +-+

 | Error Code | Reserved=0 |

 +-+

¶

¶

 Error Code Value Error Code

 ---------------- -------------------------------------

 0 No certificate

 1 Bad certificate

 2 Certificate expired

 3 Unknown certificate

¶

*

¶

*

¶

* ¶

*

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Cause Code=0x22 | Cause length = 4 |

 +-+

¶

6.4. Authentication failure

In the event of a HMAC error, the packet is discarded by the

receiver. To check for an error, the receiver computes the HMAC and

compares it to the HMAC field of the packet. If they do not match,

an error is reported back.

6.5. Decompression failure

This error happens when the compressed chunk(s) cannot be

decompressed or the data chunk(s) cannot be identified after

decompression. The receiver discards the decompressed chunk(s).

7. S-SCTP packet format and security levels

S-SCTP has four different security levels, which cover privacy

settings of an S-SCTP association. The S-SCTP application can change

the security levels at any time during the security session

lifetime.

Security level 0: This is the null security level. S-SCTP does

use neither data chunk encryption nor authentication. The S-SCTP

packet is the same as the SCTP packet (this level is fully

compatible to SCTP).

Security level 1: This security level requires packet

authentication but does not use encryption. Every outgoing packet

(including the SCTP common header) is authenticated.

Security level 2: In this security level, data chunks may be

encrypted. When an S-SCTP packet contains an encrypted data

chunk, it MUST include an AUTH chunk as well. That means every

chunk and the packet header are authenticated. When a packet

includes only unencrypted data chunks or control chunks or both

unencrypted data chunks and control chunks, the packet will not

be authenticated.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Cause Code=0x23 | Cause length = 4 |

 +-+

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Cause Code=0x24 | Cause length = 4 |

 +-+

¶

¶

*

¶

*

¶

*

¶

Security level 3: This is the highest security level. S-SCTP

requires both encryption and authentication. Every outgoing chunk

is encrypted and the packet is authenticated.

Both endpoints can use different security levels, e.g. the

association can use security functions only for one direction, e.g.

from server to client. In this case the server uses security level 3

and the client uses security level 0. The transmission control block

(TCB) of the association includes the security level as a new

parameter.

8. S-SCTP data format

S-SCTP sorts data chunks before bundling them into the outgoing SCTP

packet. The data chunks are sorted according to whether they have to

be encrypted or not. The chunks belonging to the encryption group

are concatenated and encrypted into an EncData chunk. May be a

PADDING chunk is inserted into the encryption group. Insertion of a

PADDING chunk is done depending on data length and encryption block

size.

An assortment of encrypted and non-encrypted chunks are bundled in

the packet. The control chunk(s) are placed first in the packet when

bundled with other chunks. Finally, an AUTH chunk may be added to

the packet.

HMAC computation is performed over all chunks and the SCTP common

header with a 0 checksum. The checksum is then computed over the

complete packet (including AUTH chunk). The HMAC length depends on

the hash function in the cipher suite. In every security level, the

SCTP packet construction is slightly different. In security level 0

the packet format is same as the SCTP packet format.

9. Procedures

In this section an explanation of the procedures of secure session:

initialisation, termination, update and etc., is given.

9.1. Establishment of a secure session

The following process is used to establish the S-SCTP secure

session. The handshake process runs in parallel with the data

transmission. The secure session start and close is controlled by

the user. The user can establish and close a secure session at any

time during the association lifetime. Each time a secure session is

established, a new set of keys is generated. It is not possible to

create a new secure session when a secure session already exists.

The following describes secure session establishment, which makes

use of a handshake timer and retransmissions in case packets are

lost during transmission. S-SCTP uses a four-way handshake. After

*

¶

¶

¶

¶

¶

¶

all messages of one of the connection "legs" have been sent, client

or server starts a RTO.hand (handshake retransmission time out)

timer. For example, the secure session certificate is the last

handshake message of the first leg. The sender waits for a response

from the receiver until the RTO.hand timer expires. The sender stops

the RTO.hand timer when it receives the expected message(s). If the

RTO.hand timer expires before all expected messages have been

received, the sender retransmits the handshake message(s).

The retransmission uses the following algorithm. The RTO.hand timer

gets a value from RTO of the path where the message is sent to,

which is defined in RFC4960. Before a retransmission, the sender

checks RTN.hand.max (handshake maximum retransmission number). This

initial value is dependent upon specific implementations. The

suggested value for RTN.hand.max is Path.Max.Retrans (see RFC 4960).

RTN.hand.max should be a constant parameter. We introduce a counter

for the number of retransmissions, and if that counter exceeds the

parameter RTN.hand.max, the timer expired error message is sent to

the peer. If a retransmission is required then S-SCTP uses the same

retransmission rules as defined in RFC4960. If the receiver receives

a retransmission of a handshake message that was already received,

the message last received MUST be dropped. The endpoint discards the

message(s) when they are unexpected. A secure session initialisation

begins when one of the associated endpoints sets the security level

to a value higher than 0. The endpoint starting a secure session

initialisation is called client and the other associated endpoint is

called server.

The client sends the SSOpReq chunk to the server. If the client

has a certificate, it sets the CF flag of the SSOPReq chunk to 1.

The client sends the SSCert chunk immediately after the SSOpReq

chunk. The SSCert chunk can be bundled with the SSOpReq chunk or

with other chunk(s). When the CF flag is set to 0, the client

sends only the SSOpReq chunk.

The server receives a SSOpReq chunk and checks the CF flag. If

the CF flag is set to 1, the server waits for the SSCert chunk.

Upon receipt, the server checks the certificate and if there is a

problem with it, the server stops the handshake and goes to an

error state, aborts secure session setup and reports the cause to

its peer. It there is no error, the server chooses the cipher

suite and sends the SSOpReq_Ack chunk with CF=1 flag to the

client when the server has a certificate. The server immediately

sends the certificate and the SSSerKey chunks after the

SSOpReq_Ack chunk. All three chunks may be bundled together or

with other chunks. The server sends only the SSOpReq_Ack chunk

with the SSSerKey chunk if CF=0. Before sending the server key

exchange chunk, the server generates key material. The server

¶

¶

¶

*

¶

*

starts the update master secret key operation when it receives

the SSOpReq chunk after secure session establishment. If the

server receives the SSCert chunk before the SSOpReq chunk, it

stores the SSCert chunk and waits until it receives the SSOpReq

chunk. But the server drops a second SSCert chunk.

The client receives the handshake messages and checks the

certificate in the SSSerKey chunk. If the client detects any

errors, it stops the handshake and goes to an error state, aborts

secure session setup and reports the cause to its peer. The

client generates key material and sends the SSCliKey chunk to the

server. The client sends the SSOpCom chunk immediately after the

client key exchange chunk. Before sending the handshake-finished

chunk, the client computes the encryption secret and MAC secret

keys.

The server receives the SSCliKey chunk and computes the master

secret and the MAC secret keys. It then computes the SSOpCom

chunk and sends it to the client. Finally, the server checks the

SSOpCom chunk of the client. If the server detects any error, it

reports a secure session open complete error and closes the

handshake. The secure session is established only when both sides

detect no errors. The server is ready for secure transmission

when it detects no errors, but the client must wait for the

SSOpCom chunk of the server. When this is received, the client

checks it and reports to the peer a secure session open complete

error if any error is detected before aborting secure session

setup. The handshake may run simultaneously with normal SCTP data

transmission. If the client receives encrypted or authenticated

data chunks before it receives the server's SSOpCom chunk, then

those chunks MUST be discarded.

When both associated endpoints request the initialisation of a

secure session simultaneously (both endpoints send an SSOpReq

message), both ignore the received SSOpReq message and wait a random

time before resending the SSOpReq message. Each endpoint generates

the random time independently. The random number must be small, e.g.

120 seconds maximum.

9.2. Choice of cipher suite and compression method

This section explains how to choose the cipher suite and compression

method which are used for the secure session. Each endpoint

maintains an ordered list of supported cipher suites (cipher suite

list). The ordering in the list indicates the preference with which

a cipher suite should be used (first in the list have higher

preference). The order in the list is defined by the retrospective

S-SCTP user.

¶

*

¶

*

¶

¶

¶

S-SCTP users on both sides can allow all cipher suited in the list

when establishing a secure session or limit the allowed cipher

suites to a subset. The complete list or the selected subset can be

indicated to the server in the SSOpReq. If the complete list is

sent, the default cipher suite list must be located first in the

list. The server uses the following rules to choose the cipher suite

to be used for the secure session:

The server chooses the default cipher suite, if the SSOpReq chunk

does not contain any cipher suite.

The server gets the first cipher suites from SSOpReq chunk and

server's cipher suite sequence. When both cipher suites are

identical the server chooses this cipher suite for the secure

session. Otherwise, the server takes its first cipher suite and

looks for a match in the cipher suite sequence of the client. When

there is no matche, the server takes the client's first cipher suite

and searches for match in its cipher suite sequence. S-SCTP checks

the first cipher suite in the SSOpReq chunk against all cipher

suites in the cipher suite list of the server. If no match is found,

all subsequent cipher suites in the SSOpReq are checked sequentially

in the order they appear in the SSOPReq until a match is found. The

first cipher suite supported by both endpoints is chosen. When two

cipher suites match each other then this cipher suite is selected

for the secure session. If not, the server looks, its second cipher

suite, for a match in the cipher suite sequence of the client.

Furthermore, the server uses the same mechanism to look a cipher

suite for the secure session.

The server chooses the default cipher suite, when the cipher suites

in the SSOpReq chunk are not supported by the server.

Both client and server also maintain a list of compression methods.

The choice of the compression mechanism works similarly to the

cipher suite selection mechanism described above. S-SCTP uses a NULL

compression method as default compression method.

9.3. Data transfer

Before transporting the packet over the network, S-SCTP takes the

following steps. First, it checks the security level. If the

security level is:

0, jump to step "d"

1, jump to step "c"

2, check the user data. If the user data requires encryption,

jump to step "a" . If the user data does not require encryption,

jump to step "c"

¶

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

3, jump to step "a"

a) S-SCTP sorts data chunks in two groups, which are encrypted

and unencrypted. The encrypted group consists of those data

chunks requiring encryption. The unencrypted group consists of

those data chunks not requiring encryption. If the secure

session's security level is set to 3, all chunks are sorted into

the encrypted group.

b) The data chunks in the encrypted group are concatenated. After

this, S-SCTP calculates the padding chunk and inserts the padding

chunk on the last position into pre-enc-data if necessary. The

Pre-enc-data size MUST be smaller than the current MTU. If the

pre-enc-data is bigger than the current MTU, S-SCTP must create

two pre-enc-datas. Every pre-enc-data is encrypted and stored in

the encryption data field of the EncData chunk.

c) SCTP builds the packet according to the security level and

inserts the AUTH chunk in the last position in the packet.

d) S-SCTP sends the packet.

9.4. Closing of a secure session

The termination of a secure session begins when one of the endpoints

sends the secure session close chunk. This chunk includes the last

encrypted data TSN and OF. The endpoint (sender) stops the

encryption or authentication of all chunks or packets after it has

sent the secure session close chunk. But normal (unsecured) data

transfer will continue. The endpoint then waits until it receives

the SSClose_Ack chunk. After receiving the SSClose_Ack chunk, the

association clears the TCB parameters belonging to the secure

session. The receiver (other endpoint) immediately stops encryption

and authentication of all chunks or packets after it receives the

secure session close chunk. Before sending the SSClose_Ack, the

receiver waits for outstanding data (encrypted or authenticated

data), which are the receiver's unacknowledged data chunks and

sender's data chunks that have a TSN less than the last encrypted

data TSN in the SSClose chunk. If the receiver does not receive the

outstanding data chunks before RTO.hand timer expires, the S-SCTP

association closes the secure session and outstanding data chunks

will be dropped. The receiver ignores the last TSN of SSClose chunk

and waits only for the receiver's unacknowledged data chunks when

SSClose chunk's OF=1. The SSClose and SSClose_Ack chunks may be

bundled with other chunks. If the sender does not receive the

acknowledge chunk, the client follows the standard retransmission

rule for messages. After the termination of the secure session, the

TCB parameters belonging to the secure session MUST be set to zero.

If the SCTP association begins to close the current association, the

* ¶

¶

¶

¶

¶

SSClose chunk is sent. If the SCTP association creates an ABORT

chunk, the secure session closes immediately and the TCB parameters

belonging to the secure session MUST be set to zero.

9.5. Generation of the Master secret key

Secret key generation uses the 3DES_CBC algorithm. Both server and

client compute the master secret key separately. The key material is

split into 64 bit blocks. Every block will be input to the 3DES_CBC

encryption. The key material is as follows:

If the secure session key exchange algorithm uses DH, the key

material consists of the DH's secret key.

If the secure session key exchange algorithm uses RSA, the key

material consists of random numbers of both client and server.

9.6. Update of the master secret key

A secure update mechanism of the secret keys is a very important

requirement for a secure session. The secret keys consist of the

master secret key, which is used for data chunk encryption, and the

HMAC secret key, which is used for packet authentication. If an

association exists for a long time, the S-SCTP association needs to

update the secret keys. Both the client and the server can request

an update of the secret keys. A three way handshake, called an

abbreviated handshake, is used to update the master secret keys. All

actions of the handshake are encrypted by the current master secret

key. The current security level does not affect the packets, which

contain the handshake messages. The key update handshake works

similar to the first establishment handshake (e.g. the endpoints

start an RTO.hand timer when sending handshake chunks). Format and

function of the chunks used to update keys are the same as for the

handshake. When an endpoint receives a SSOpReq chunk (after a secure

session establishment) it begins to update secret keys. Both the

server and client key exchange chunks always use the RSA key

exchange algorithm. The random numbers in SSSerKey and SSCliKey

chunks are encrypted by the current master secret key. The following

describes the method used to update the master secret key:

The client generates a random number and sends the SSopReq chunk

with the SSCliKey chunk. The key material length in the handshake

request chunk may be equal to 0. If not, the number indicates the

size of the new key material. If 0, both sides will use the key

material length which was used in the last handshake. The server

sends the SSop_Ack, the SSSerKey and the SSOpCom chunks immediately

after receiving the SSOpReq and the SSCliKey chunks. After receiving

the handshake messages from the server, the client computes a new

master secret key and checks the SSOpCom chunk of the server. If it

¶

¶

*

¶

*

¶

¶

detects any error, the client closes the secure session and reports

an error to the peer. The client computes the SSOpCom chunk and

sends it to the server. After sending the SSOpCom chunk the client

is ready to use the new master secret key. The server receives the

SSOpCom chunk of the client and checks the new keys. If it detects

any error, the server closes the secure session and reports an error

to the peer. Before receiving the client's SSOpCom chunk, the server

discards any encrypted or authenticated chunk that make use of the

new master secret key.

The encrypted and unencrypted user data transmission works in

parallel with the update operation. After the update operation, the

new master secret key is used for data encryption and

authentication. When both client and server receive an SSOpReq chunk

simultaneously, the client ignores the server's SSopReq chunk and

the server accepts the client's SSOpReq chunk. The next steps are

the same as for the secure session initialisation.

The new master secret key generation uses the same algorithm as

described above. The secure session includes one parameter which is

called secure session lifetime. This parameter is used to initialise

a timer which indicates the secure session secret key's lifetime in

seconds. When the timer expires, the association automatically

updates the secret keys. The user can define this parameter. If the

user does not define it, the parameter assumes a default value. This

default value depends on the implementation. The implementation MUST

define secure session's lifetime initial value. We suggest a value

of 600 seconds for the lifetime as a compromise between security and

overhead.

9.7. Random number generation

As the security of S-SCTP depends on the quality of the random

number generator, we suggest to use one according to RFC4086 [5].

9.8. HMAC algorithm

S-SCTP uses the HMAC algorithm which is defined in RFC2104 [1] for

the packet authentication.

10. HMAC algorithm

ULP-to-SCTP primitives deliver upper layer requests to S-SCTP. The

following part describes new ULP-to-SCTP primitives and thus

enhances the section 10 of RFC4960. All new ULP-to-SCTP primitives

described below are defined in the ssctp.h header file.

INITSECSESS: This primitive initialises a new secure session.

¶

¶

¶

¶

¶

¶

¶

Format: {initSecSess(secure session ID, key material length, cipher

suites list, compression methods list, certiticate(s)) --> result}

secure session ID: This parameter identifies a secure session.

key material length: This defines the key material length which

is used in the SSOPReq chunk.

cipher suite list: Eligible cipher suites for a new secure

session.

compression method list: Eligible compression methods for a new

secure session.

certificate(s): Local endpoint certificate(s).

SETSECLEVEL: This primitive sets a new security level for an

existing secure session.

Format: {setSecLevel(secure session ID, security level) --> result}

secure session ID: local handle to the secure session

security level: This parameter indicates the new security level

GETSECLEVEL: This primitive gets the current security level of a

secure session.

Format: {getSecLevel(secure session ID) --> security level}

secure session ID: local handle to the secure session

SENDSEC: This primitive sends secure data via S-SCTP.

Format: {sctp_send_enc(association id, buffer address, byte count,

context, stream id, life time, destination transport address,

unorder flag, no-bundle flag, payload protocol-id, encryption flag,

compression flag) --> result}

Every parameter, except the encryption and compression flags,

defined in this function is the same as the corresponding parameter

defined in the SEND function of RFC4960 section 10.

encryption flag: This flag defines if a current user data message

needs encryption or not.

compression flag: This flag defines if a current user data

message needs compression or not.

¶

* ¶

*

¶

*

¶

*

¶

* ¶

¶

¶

* ¶

* ¶

¶

¶

* ¶

¶

¶

¶

*

¶

*

¶

GETSECSTATUS: This primitive gets the security status of an

association. The security status indicates if the SCTP association

is using a secure session or not.

Format: {setSecStatus(association ID) --> status}

association ID: local handle to the SCTP association.

SETSECSESSTTL: This primitive sets a new lifetime for a secure

session.

Format: {setSecSessTTL(secure session ID, Time) --> result}

secure session ID: local handle to the secure session.

time: The new lifetime in seconds.

SHUTSECSESS: This primitive deletes a secure session.

Format: {shutSecSess(secure session ID) --> result}

secure session ID: local handle to the secure session.

security level: This parameter indicates the new security level.

11. S-SCTP to ULP

S-SCTP defines new notifications to deliver information to the upper

layer. The notifications extend the section 10.2 of RFC4960 [6]. All

new notifications are defined in the ssctp.h header file.

SECSESSUP:

This notification indicates that S-SCTP is ready to send or receive

secure data ({secsessUpNotif()}).

SECSESSDOWN:

This notification indicates that an association has lost a secure

session ({secsessdownNotif()}).

SECSESSREKEY:

This notification indicates that a secure session updated the secret

keys ({secsessrekeyNotif()}).

Additional changes had to be made in the socket API implementation

to access the new sctplib functions described above. A user calls

the same socket API functions as in standard SCTP to send and

receive user data, but has to set an additional encryption flag

¶

¶

* ¶

¶

¶

* ¶

* ¶

¶

¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

(MSG_ENC) to request encryption of user data. Also, a compression

flag (MSG_COMP) has to be set in ext_send, ext_sendto, ext_sendmsg

to request compression of user data. S-SCTP compression performs per

user message not per chunk or per packet. In the SCTP DATA chunk, a

new flag is defined, which indicates if the data is compressed or

not. On the receiver side there are no changes.

12. Transmission Control Block (TCB) extension

A SCTP TCB contains parameters which are related to an association

(e.g. an association id, port number, IP address list...). S-SCTP

defines several parameters which are related to a secure session and

it extends the TCB defined in section 12 of RFC4960.

Security level:

This parameter contains the association's current security level.

Second security level:

This is the security level of the associated second endpoint.

Key material length:

The size of the key material, which was last used for key

generation.

Secure session status:

This parameter indicates whether the association is using a secure

session or not.

Secure session lifetime:

This parameter indicates the lifetime of the secret keys of a secure

session.

Server indication:

This parameter indicates if an endpoint is server or client. If the

parameter is equal to 1 then it is a server, otherwise it is a

client.

Secure session ID:

This parameter indicates the local secure session ID.

Master secret key reference:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This is an "array of secret data" collection and every array element

includes the following parameters.

Selected cipher suite: This parameter indicates the encryption

and authentication algorithms that are used in a secure session.

Selected compression: This parameter indicates the compression

method that is used in a secure session.

Encryption key: This is a secret key which is used for

encryption.

Authentication key: This is a secret key which is used for

authentication.

This information is used in EncData and AUTH chunks.

13. Socket API extensions for Secure SCTP

S-SCTP defines new socket options for the ext_setsockopt() and

ext_getsockopt() socket functions to initialise, delete and rekey a

secure session. A user calls the ext_setsockopt or ext_getsockopt

functions with a new option. It is not necessary to define new

socket API functions, as this is a more standard socket API fashion.

The following paragraphs describe the new socket options.

SSCTP-INIT:

This socket option is used to initialise or update a secure session.

The following structure is used to access these parameters.

secsessID: This parameter indicates a current secure session ID.

key_length: This parameter defines the length of a key material.

num_cipher: This parameter defines the number of cipher suites.

cipher_suites: This parameter includes a list of cipher suites.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

struct ssctp_init {

 uint16_t secsessID;

 uint16_t key_length;

 uint8_t num_cipher;

 uint8_t *cipher_suites;

 uint8_t num_comp;

 uint8_t *comp_methods;

 uint8_t *certificate;

};

¶

* ¶

* ¶

* ¶

* ¶

num_comp: This parameter defines the number of compression

methods.

comp_methods: This parameter includes a list of compression

methods.

certificate: This parameter includes a certificate of the

endpoint.

SSCTP-SECLEVEL:

This socket option is used to set and get a secure session security

level. The following structure is used to access and modify these

parameters.

secsessID: This parameter indicates a current secure session ID.

This parameter MUST be zero when beginning a secure session

initialisation.

seclevel: This parameter contains a new security level before

socket write access or contains the current security level after

socket read access.

SSCTP-SECSTATUS:

This socket option is used to get the secure session status and

secure session ID when a secure session exists. The following

structure is used to access these parameters.

secsessID: This parameter contains the current secure session ID.

This parameter MUST be zero when a secure session does not exist.

sec_status: This parameter contains a security status. This

parameter MUST be zero when a secure session does not exist. This

parameter is equal to 1 when a secure session exists.

SSCTP-SECSESSTTL:

*

¶

*

¶

*

¶

¶

¶

struct ssctp_seclevel {

 uint16_t secsessID;

 uint8_t seclevel;

};

¶

*

¶

*

¶

¶

¶

struct ssctp_secstatus {

 uint16_t secsessID;

 uint8_t sec_status;

};

¶

*

¶

*

¶

¶

[1]

This socket option is used to set and get the secure session

lifetime. The following structure is used to access and modify these

parameters.

secsessID: This parameter indicates the current secure session

ID.

secsessTTL (seconds): This parameter contains a new secure

session lifetime before socket write access or contains a current

secure session lifetime after socket read access.

SSCTP-CLOSE:

This socket option is used to close an existing secure session. The

following structure is used to access these parameters.

secsessID: This parameter contains the current secure session ID.

14. Testbed Platform

A large-scale and realistic Internet testbed platform with support

for the multi-homing feature of the underlying SCTP protocol is

NorNet. A description of NorNet is provided in [9], some further

information can be found on the project website [10].

15. Security Considerations

Security has been described in the previous sections.

16. IANA Considerations

This document introduces no additional considerations for IANA.

17. References

17.1. Normative References

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

¶

struct ssctp_secsessTTL {

 uint16_t secsessID;

 uint16_t secsessTTL;

};

¶

*

¶

*

¶

¶

¶

struct ssctp_secclose {

 uint16_t secsessID;

};

¶

* ¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Jungmaier, A., Rescorla, E., and M. Tuexen, "Transport

Layer Security over Stream Control Transmission

Protocol", RFC 3436, DOI 10.17487/RFC3436, December 2002,

<https://www.rfc-editor.org/info/rfc3436>.

Bellovin, S., Ioannidis, J., Keromytis, A., and R.

Stewart, "On the Use of Stream Control Transmission

Protocol (SCTP) with IPsec", RFC 3554, DOI 10.17487/

RFC3554, July 2003, <https://www.rfc-editor.org/info/

rfc3554>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,

"Randomness Requirements for Security", BCP 106, RFC

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/info/rfc4086>.

Stewart, R., Ed., "Stream Control Transmission Protocol",

RFC 4960, DOI 10.17487/RFC4960, September 2007, <https://

www.rfc-editor.org/info/rfc4960>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

17.2. Informative References

Dreibholz, T. and E. G. Gran, "Design and Implementation

of the NorNet Core Research Testbed for Multi-Homed

Systems", Proceedings of the 3nd International Workshop

on Protocols and Applications with Multi-Homing

Support (PAMS) Pages 1094-1100, ISBN 978-0-7695-4952-1,

DOI 10.1109/WAINA.2013.71, 27 March 2013, <https://

www.simula.no/file/

threfereedinproceedingsreference2012-12-207643198512pdf/

download>.

Dreibholz, T., "NorNet – A Real-World, Large-Scale Multi-

Homing Testbed", 2022, <https://www.nntb.no/>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3436
https://www.rfc-editor.org/info/rfc3554
https://www.rfc-editor.org/info/rfc3554
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc8174
https://www.simula.no/file/threfereedinproceedingsreference2012-12-207643198512pdf/download
https://www.simula.no/file/threfereedinproceedingsreference2012-12-207643198512pdf/download
https://www.simula.no/file/threfereedinproceedingsreference2012-12-207643198512pdf/download
https://www.simula.no/file/threfereedinproceedingsreference2012-12-207643198512pdf/download
https://www.nntb.no/

Authors' Addresses

Carsten Hohendorf

University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstraße 29

45326 Essen

Germany

Email: hohend@iem.uni-due.de

Esbold Unurkhaan

Mongolian University of Science and Technology

Bayanzurkh duureg, 2-nd khoroo

313/49 Ulaanbaatar

Mongolia

Email: esbold@csms.edu.mn

Thomas Dreibholz

Simula Metropolitan Centre for Digital Engineering

Pilestredet 52

0167 Oslo

Norway

Email: dreibh@simula.no

URI: https://www.simula.no/people/dreibh

mailto:hohend@iem.uni-due.de
mailto:esbold@csms.edu.mn
mailto:dreibh@simula.no
https://www.simula.no/people/dreibh

	Secure SCTP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	3. A brief description of S-SCTP
	4. Key terms
	5. Additional chunks and parameters
	5.1. New type chunks and definitions
	5.1.1. Secure Session Open request chunk (SSOpReq)
	5.1.2. Secure Session Certificate chunk: (SSCert)
	5.1.3. Secure Session Open Acknowledge chunk (SSOpReq_Ack)
	5.1.4. Secure Session Server Key chunk (SSSerKey)
	5.1.5. Secure Session Client Key chunk (SSCliKey)
	5.1.6. Secure Session Open Complete chunk (SSOpCom)
	5.1.7. Secure Session Close chunk (SSClose)
	5.1.8. Secure Session Close Acknowledge chunk (SSClose_Ack)
	5.1.9. Security Level Changed chunk (SecLevCHD)
	5.1.10. Security Level Changed Acknowledged chunk (SecLevCHD_Ack)
	5.1.11. Encrypted Data Chunk (EncData)
	5.1.12. Padding chunk (PADDING)
	5.1.13. Authentication chunk (AUTH)

	6. New Error Cause
	6.1. Secure Session failure
	6.2. Secure Session Certificate failure
	6.3. Decryption failure
	6.4. Authentication failure
	6.5. Decompression failure

	7. S-SCTP packet format and security levels
	8. S-SCTP data format
	9. Procedures
	9.1. Establishment of a secure session
	9.2. Choice of cipher suite and compression method
	9.3. Data transfer
	9.4. Closing of a secure session
	9.5. Generation of the Master secret key
	9.6. Update of the master secret key
	9.7. Random number generation
	9.8. HMAC algorithm

	10. HMAC algorithm
	11. S-SCTP to ULP
	12. Transmission Control Block (TCB) extension
	13. Socket API extensions for Secure SCTP
	14. Testbed Platform
	15. Security Considerations
	16. IANA Considerations
	17. References
	17.1. Normative References
	17.2. Informative References

	Authors' Addresses

