
INTERNET-DRAFT R. Housley
Intended Status: Proposed Standard Vigil Security
Expires: 27 February 2014 26 August 2013

Use of the Hash-based Merkle Tree Signature (MTS) Algorithm
in the Cryptographic Message Syntax (CMS)

<draft-housley-cms-mts-hash-sig-00>

Abstract

 This document specifies the conventions for using the Merkle Tree
 Signatures (MTS) digital signature algorithm with the Cryptographic
 Message Syntax (CMS). The MTS algorithm is one form of hash-based
 digital signature.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Housley [Page 1]

https://datatracker.ietf.org/doc/html/draft-housley-cms-mts-hash-sig-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

INTERNET-DRAFT 26 August 2013

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. MTS Digital Signature Algorithm 3
1.2. LDWM One-time Signature Algorithm 4
1.3. Terminology . 5

2. Algorithm Identifiers and Parameters 5
3. Signed-data Conventions 6
4. Security Considerations 6
4.1. Implementation Security Considerations 6
4.2. Algorithm Security Considerations 6

5. IANA Considerations . 7
6. References . 7
6.1. Normative References 7
6.2. Informative References 8

 Appendix: ASN.1 Module . 8
 Author's Address . 9

Housley [Page 2]

INTERNET-DRAFT 26 August 2013

1. Introduction

 This document specifies the conventions for using the for using the
 Merkle Tree Signatures (MTS) digital signature algorithm with the
 Cryptographic Message Syntax (CMS) [CMS] signed-data content type.
 The MTS algorithm is one form of hash-based digital signature that
 can only be used for a specific number of signatures. The MTS
 algorithm is described in [HASHSIG]. The MTS algorithm uses small
 private and public keys, and it has low computational cost; however,
 the signatures are quite large.

 CMS values are generated using ASN.1 [ASN1-02], using the Basic
 Encoding Rules (BER) and the Distinguished Encoding Rules (DER).

1.1. MTS Digital Signature Algorithm

 Merkle Tree Signatures (MTS) are a method for signing a large but
 fixed number of messages. An MTS system uses two cryptographic
 components: a one-time signature method and a collision-resistant
 hash function. Each MTS public/private key pair is associated with a
 k-way tree with each node containing an n-byte value. Each leaf of
 the tree contains the value of the public key of an Lamport, Diffie,
 Winternitz, and Merkle (LDWM) public/private key pair [HASHSIG]. The
 LDWM algorithm requires a robust one-way function to underpin the
 signature generation and verification. The algorithms in this
 document all make use of the SHA-256 [SHS] one-way hash function,
 which produces a 32 byte result.

 The value at the root of the tree is the MTS public key. Each
 interior node is computed by applying the hash function to the
 concatenation of the values of its children nodes. Once again, the
 algorithms in this document all make use of the SHA-256 [SHS] one-way
 hash function.

 An MTS signature consists of an LDWM signature, a node number that
 identifies the leaf node associated with the signature, and an array
 of values associated with the path through the tree from the LDWM
 signature leaf to the root. The array of values contains contains
 the siblings of the nodes on the path from the leaf to the root but
 does not contain the nodes on the path itself. The array for a tree
 with branching number k and height h will have (k-1)*h values. The
 first (k-1) values are the siblings of the leaf, the next (k-1)
 values are the siblings of the parent of the leaf, and so on.

Housley [Page 3]

INTERNET-DRAFT 26 August 2013

 Four tree sizes are specified in [HASHSIG]:

 MTS_SHA256_K2_H20:
 o k = 2 (2 child nodes for each interior node),
 o h = 20 (20 levels in the tree),
 o n = 32 (32 bytes associated with each node), and
 o mts_algorithm_type = 0x00000001.

 MTS_SHA256_K4_H10:
 o k = 4 (4 child nodes for each interior node),
 o h = 10 (10 levels in the tree),
 o n = 32 (32 bytes associated with each node), and
 o mts_algorithm_type = 0x00000002.

 MTS_SHA256_K8_H7:
 o n = 8 (8 child nodes for each interior node),
 o h = 7 (7 levels in the tree), and
 o n = 32 (32 bytes associated with each node), and
 o mts_algorithm_type = 0x00000003.

 MTS_SHA256_K16_H5:
 o k = 16 (16 child nodes for each interior node),
 o h = 5 (5 levels in the tree),
 o n = 32 (32 bytes associated with each node), and
 o mts_algorithm_type = 0x00000004.

 There are k^h leaves in the tree.

1.2. LDWM One-time Signature Algorithm

 Merkle Tree Signatures (MTS) depend on a LDWM one-time signature
 method. The four variants described in [HASHSIG] depend on SHA-256
 [SHS] and SHA-256-20, which is the same as SHA-256, except that the
 hash result is truncated to 20 bytes.

 Four LDWN one-time signature algorithms are defined in [HASHSIG]:

 LDWM_SHA256_M20_W1:
 o ldwm_algorithm_type = 0x00000001; and
 o the signature value is the 4-byte ldwm_algorithm_type
 followed by 265 20-byte values.

 LDWM_SHA256_M20_W2:
 o ldwm_algorithm_type = 0x00000002; and
 o the signature value is the 4-byte ldwm_algorithm_type
 followed by 133 20-byte values.

Housley [Page 4]

INTERNET-DRAFT 26 August 2013

 LDWM_SHA256_M20_W4:
 o ldwm_algorithm_type = 0x00000003; and
 o the signature value is the 4-byte ldwm_algorithm_type
 followed by 67 20-byte values.

 LDWM_SHA256_M20_W8:
 o ldwm_algorithm_type = 0x00000004; and
 o the signature value is the 4-byte ldwm_algorithm_type
 followed by 32 20-byte values.

1.3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [KEYWORDS].

2. Algorithm Identifiers and Parameters

 The algorithm identifier for an MTS signature is id-alg-mts-hashsig:

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 16 }

 id-alg OBJECT IDENTIFIER ::= { id-smime 3 }

 id-alg-mts-hashsig OBJECT IDENTIFIER ::= { id-alg 17 }

 When the id-alg-mts-hashsig algorithm identifier is used for a
 signature, the AlgorithmIdentifier parameters field MUST be absent.

 The first 4 bytes of the signature value contains the
 mts_algorithm_type as defined in Section 4.5 of [HASHSIG]. For
 convenience, these values are repeated in above in Section 1.1 of
 this document. This value tells how to parse the remaining parts of
 the signature value, which is composed of an LDWM signature value, a
 4-byte signature leaf number, and the MTS path.

 The first 4 bytes of the LDWM signature value contains the
 ldwm_algorithm_type as defined in Section 3.10 of [HASHSIG]. For
 convenience, these values are repeated in above in Section 1.2 of
 this document.

 The signature format is designed for easy parsing. Each format
 starts with a 4-byte enumeration value that indicates all of the
 details of the signature algorithm, indirectly providing all of the
 information that is needed to parse the value during signature
 validation.

https://datatracker.ietf.org/doc/html/rfc2119

Housley [Page 5]

INTERNET-DRAFT 26 August 2013

3. Signed-data Conventions

 digestAlgorithms SHOULD contain the one-way hash function used to
 compute the message digest on the eContent value. Since the hash-
 based signature algorithms all depend on SHA-256, it is strongly
 RECOMMENDED that SHA-256 also be used to compute the message digest
 on the content.

 Further, the same one-way hash function SHOULD be used to compute the
 message digest on both the eContent and the signedAttributes value if
 signedAttributes exist. Again, since the hash-based signature
 algorithms all depend on SHA-256, it is strongly RECOMMENDED that
 SHA-256 be used.

 signatureAlgorithm MUST contain id-alg-mts-hashsig. The algorithm
 parameters field MUST be absent.

 signature contains the single value resulting from the signing
 operation.

4. Security Considerations

4.1. Implementation Security Considerations

 Implementations must protect the private keys. Compromise of the
 private keys may result in the ability to forge signatures. Further,
 a LDWM private key MUST be used only one time, and the LDWM private
 key MUST NOT be used for any other purpose.

 The generation of private keys relies on random numbers. The use of
 inadequate pseudo-random number generators (PRNGs) to generate these
 values can result in little or no security. An attacker may find it
 much easier to reproduce the PRNG environment that produced the keys,
 searching the resulting small set of possibilities, rather than brute
 force searching the whole key space. The generation of quality
 random numbers is difficult. RFC 4086 [RANDOM] offers important
 guidance in this area.

 When computing signatures, the same hash function SHOULD be used for
 all operations. This reduces the number of failure points in the
 signature process.

4.2. Algorithm Security Considerations

 At Black Hat USA 2013, some researchers gave a presentation on the
 current sate of public key cryptography. They said: "Current
 cryptosystems depend on discrete logarithm and factoring which has
 seen some major new developments in the past 6 months" [BH2013].

https://datatracker.ietf.org/doc/html/rfc4086

Housley [Page 6]

INTERNET-DRAFT 26 August 2013

 They encouraged preparation for a day when RSA and DSA cannot be
 depended upon.

 A post-quantum cryptosystem is a system that is secure against
 quantum computers that have more than a trivial number of quantum
 bits. It is open to conjecture whether it is feasible to build such
 a machine. RSA, DSA, and ECDSA are not post-quantum secure.

 The LDWM one-time signature and MTS system do not depend on discrete
 logarithm or factoring, and these algorithms are considered to be
 post-quantum secure.

 Today, RSA is often used to digitally sign software updates. This
 means that the distribution of software updates could be compromised
 if a significant advance is made in factoring or a quantum computer
 is invented. The use of MTS signatures to protect software update
 distribution, perhaps using the format described in [FWPROT], will
 allow the deployment of software that implements new cryptosystems.

5. IANA Considerations

 {{ RFC Editor: Please remove this section prior to publication. }}

 This document has no actions for IANA.

6. References

6.1. Normative References

 [ASN1-02] ITU-T, "ITU-T Recommendation X.680, X.681, X.682, and
 X.683", ITU-T X.680, X.681, X.682, and X.683, 2002.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

 [HASHSIG] McGrew, D., and M. Curcio, "Hash-Based Signatures", Work
 in progress. <draft-mcgrew-hash-sigs-01>

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [SHS] National Institute of Standards and Technology (NIST),
 FIPS Publication 180-3: Secure Hash Standard, October
 2008.

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Housley [Page 7]

INTERNET-DRAFT 26 August 2013

6.2. Informative References

 [BH2013] Ptacek, T., T. Ritter, J. Samuel, and A. Stamos, "The
 Factoring Dead: Preparing for the Cryptopocalypse", August
 2013.
 [https://media.blackhat.com/us-13/us-13-Stamos-The-
 Factoring-Dead.pdf]

 [CMSASN1] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
 Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911,
 June 2010.

 [FWPROT] Housley, R., "Using Cryptographic Message Syntax (CMS) to
 Protect Firmware Packages", RFC 4108, August 2005.

 [PKIXASN1] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
 June 2010.

 [PQC] Bernstein, D., "Introduction to post-quantum
 cryptography", 2009.
 [http://www.pqcrypto.org/www.springer.com/cda/content/
 document/cda_downloaddocument/9783540887010-c1.pdf]

 [RANDOM] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 June 2005.

https://datatracker.ietf.org/doc/html/rfc5911
https://datatracker.ietf.org/doc/html/rfc4108
https://datatracker.ietf.org/doc/html/rfc5912
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086

Housley [Page 8]

INTERNET-DRAFT 26 August 2013

Appendix: ASN.1 Module

 MTS-HashSig-2013
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 id-smime(16) id-mod(0) id-mod-mts-hashsig-2013(64) }

 DEFINITIONS EXPLICIT TAGS ::= BEGIN

 EXPORTS ALL;
 IMPORTS
 SIGNATURE-ALGORITHM PUBLIC-KEY
 FROM AlgorithmInformation-2009 -- RFC 5911 [CMSASN1]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) }

 mda-sha256
 FROM PKIX1-PSS-OAEP-Algorithms-2009 -- RFC 5912 [PKIXASN1]
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-rsa-pkalgs-02(54) } ;

 --
 -- Object Identifiers
 --

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 16 }

 id-alg OBJECT IDENTIFIER ::= { id-smime 3 }

 id-alg-mts-hashsig OBJECT IDENTIFIER ::= { id-alg 17 }

 --
 -- Signature Algorithm and Public Key
 --

 sa-MTS-HashSig SIGNATURE-ALGORITHM ::= {
 IDENTIFIER id-alg-mts-hashsig
 HASHES { mda-sha256, ... }
 PUBLIC-KEYS { pk-MTS-HashSig } }

 pk-MTS-HashSig PUBLIC-KEY ::= {
 IDENTIFIER id-alg-mts-hashsig
 KEY MTS-HashSig-PublicKey }

https://datatracker.ietf.org/doc/html/rfc5911
https://datatracker.ietf.org/doc/html/rfc5912

Housley [Page 9]

INTERNET-DRAFT 26 August 2013

 MTS-HashSig-PublicKey ::= OCTET STRING

 HashSignatureAlgs SIGNATURE-ALGORITHM ::= {
 sa-MTS-HashSig, ... }

 END

Author's Address

 Russ Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA

 EMail: housley@vigilsec.com

Housley [Page 10]

