
Internet-Draft M. Brown
November 2006 RedPhone Security
Expires: May 2007 R. Housley
 Vigil Security

 Transport Layer Security (TLS) Evidence Extensions
 <draft-housley-evidence-extns-01.txt>

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2006). All Rights Reserved.

Abstract

 This document specifies evidence creation extensions to the Transport
 Layer Security (TLS) Protocol. Extension types are carried in the
 client and server hello message extensions to confirm that both
 parties support the protocol features needed to perform evidence
 creation. The syntax and semantics of the evidence creation alerts
 and messages are described in detail.

Brown & Housley [Page 1]

https://datatracker.ietf.org/doc/html/draft-housley-evidence-extns-01.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft November 2006

1. Introduction

 Transport Layer Security (TLS) protocol [TLS1.0][TLS1.1] is being
 used in an increasing variety of operational environments, including
 ones that were not envisioned when the original design criteria for
 TLS were determined. The extensions specified in this document
 support evidence creation in environments where the peers in the TLS
 session cooperate to create persistent evidence of the TLS-protected
 application data. Such evidence may be necessary to meet business
 requirements, including regulatory requirements. Also, evidence may
 be used in tandem with authorization information to make high
 assurance access control and routing decisions in military and
 government environments. Evidence created using this extension may
 also be used to audit various aspects of the TLS handshake, including
 the cipher suite negotiation and the use of other TLS extensions. In
 many cases, the evidence does not need to be validated by third
 parties; however, in other cases, the evidence might be validated by
 third parties. To accommodate all of these situations, the evidence
 is generated using a digital signature. Since validation of a
 digital signature requires only public information, evidence
 generated with this mechanism is suitable for sharing with third
 parties.

 When digital certificates are to be employed in evidence creations,
 the client must obtain the public key certificate (PKC) for the
 server, and the server must obtain the PKC for the client. This is
 most easily accomplished by using the PKCs provided in the Handshake
 Protocol Certificate messages. Further, both parties SHOULD have an
 opportunity to validate the PKC that will be used by the other party
 before evidence creation. Again, this is naturally accomplished
 using the Handshake Protocol, where the TLS session can be rejected
 if the PKC cannot be validated.

 This document describes evidence creation TLS extensions supporting
 both TLS 1.0 and TLS 1.1. These extensions observe the conventions
 defined for TLS Extensions [TLSEXT]. The extensions are designed to
 be backwards compatible, meaning that the protocol alerts and
 messages associated with the evidence creation extensions will be
 exchanged only if the client indicates support for them in the client
 hello message and the server indicates support for them in the server
 hello message.

 Clients typically know the context of the TLS session before it is
 established. As a result, the client can request the use of the
 evidence creation extensions in sessions where they might be needed.
 Servers accept extended client hello messages, even if the server
 does not support the all of the listed extensions. However, the
 server will not indicate support for any extensions that are not

Brown & Housley [Page 2]

Internet-Draft November 2006

 "understood" by the implementation. At the end of the hello message
 exchange, the client may reject communications with servers that do
 not support the evidence creation extensions, or the client may
 accept the situation and proceed, whichever is appropriate.

1.1. Conventions

 The syntax for the evidence creation messages is defined using the
 TLS Presentation Language, which is specified in Section 4 of
 [TLS1.0].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [STDWORDS].

1.2. Overview

 Figure 1 illustrates the placement of the evidence creation alerts
 and messages in the TLS session. The first pair of evidence creation
 alerts indicates the beginning of the protected content that will be
 covered by the evidence. The first pair of alerts can appear any
 place after the TLS Handshake Protocol Finished messages, which
 ensures that they are integrity protected. The second pair of
 evidence creation alerts indicates the ending of the protected
 content that will be covered by the evidence. Immediately after the
 reception of the final alert, a pair of Evidence Protocol messages is
 exchanged to create the persistent evidence.

 Generating evidence is not compatible with Diffie-Hellman Ephemeral
 (DHE) key exchanges. DHE does not permit the same keying material to
 be generated for validation of the evidence after the TLS session is
 over. Persistent evidence requires the use of a digital signature so
 that it can be validated well after the TLS session is over.

 The ClientHello message includes an indication that the evidence
 creation messages are supported. The ServerHello message also
 includes an indication that the evidence creation messages are
 supported. Both the client and the server MUST indicate support for
 the evidence protocol alerts and messages; otherwise they MUST NOT be
 employed by either the client or the server.

https://datatracker.ietf.org/doc/html/rfc2119

Brown & Housley [Page 3]

Internet-Draft November 2006

 Client Server

 ClientHello -------->
 ServerHello
 Certificate+
 ServerKeyExchange*
 CertificateRequest+
 <-------- ServerHelloDone
 Certificate+
 ClientKeyExchange
 CertificateVerify+
 ChangeCipherSpec
 Finished -------->
 ChangeCipherSpec
 <-------- Finished
 Application Data <-------> Application Data
 Alert(evidence_start1) -------->
 Application Data
 <-------- Alert(evidence_start2)

 Application Data <-------> Application Data
 Alert(evidence_end1) -------->
 Application Data
 <-------- Alert(evidence_end2)
 EvidenceRequest -------->
 <-------- EvidenceResponse
 Application Data <-------> Application Data

 * Indicates optional or situation-dependent messages that
 are not always sent.
 + Indicates messages optional to the TLS handshake that
 MUST be sent when using TLS evidence.

 Figure 1. Example TLS Session with Evidence Creation.

Brown & Housley [Page 4]

Internet-Draft November 2006

2. Evidence Extension Types

 The general extension mechanisms enable clients and servers to
 negotiate whether to use specific extensions, and how to use specific
 extensions. As specified in [TLSEXT], the extension format used in
 the extended client hello message and extended server hello message
 within the TLS Handshake Protocol is:

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 The extension_type identifies a particular extension type, and the
 extension_data contains information specific to the particular
 extension type.

 As specified in [TLSEXT], for all extension types, the extension type
 MUST NOT appear in the extended server hello message unless the same
 extension type appeared in the preceding client hello message.
 Clients MUST abort the handshake if they receive an extension type in
 the extended server hello message that they did not request in the
 preceding extended client hello message.

 When multiple extensions of different types are present in the
 extended client hello message or the extended server hello message,
 the extensions can appear in any order, but there MUST NOT be more
 than one extension of the same type.

 This document specifies the use of the evidence_creation extension
 type. This specification adds one new type to ExtensionType:

 enum {
 evidence_creation(TBD), (65535)
 } ExtensionType;

 The evidence_creation extension is relevant when a session is
 initiated and also for any subsequent session resumption. However, a
 client that requests resumption of a session does not know whether
 the server has maintained all of the context necessary to accept this
 request, and therefore the client SHOULD send an extended client
 hello message that includes the evidence_creation extension type.
 This indicates that the client requests the server's continued
 cooperation in creating evidence. If the server denies the
 resumption request, then the evidence_creation extension will be
 negotiated normally using the full Handshake protocol.

 Clients MUST include the evidence_creation extension in the extended

Brown & Housley [Page 5]

Internet-Draft November 2006

 client hello message to indicate their desire to send and receive
 evidence creation alerts and messages. The extension_data field
 indicates the evidence creation algorithms that are supported. The
 format is indicated with the EvidenceCreateList type:

 uint16 EvidenceCreateSuite[2];

 struct {
 EvidenceCreateSuite evidence_suites<2..2^16-1>;
 } EvidenceCreateList;

 The EvidenceCreateList enumerates the evidence creation algorithms
 that are supported by the client. The client MUST order the entries
 from most preferred to least preferred, but all of the entries MUST
 be acceptable to the client. Values are defined in Appendix A, and
 others can be registered in the future.

 Servers that receive an extended client hello message containing the
 evidence_creation extension MUST respond with the evidence_creation
 extension in the extended server hello message if the server is
 willing to send and receive evidence creation alerts and messages.
 The evidence_creation extension MUST be omitted from the extended
 server hello message if the server is unwilling to send and receive
 using one of the evidence creation algorithm suites identified by the
 client. The extension_data field indicates the evidence creation
 algorithm suite that the server selected from the list provided by
 the client. The format is indicated with the EvidenceCreateSuite
 type defined above.

3. Alert Messages

 This document specifies the use of four new alert message
 descriptions: the evidence_start1, evidence_start2, evidence_end1,
 and evidence_end2. These descriptions are specified in Sections 3.1,
 3.2, 3.3, and 3.4, respectively. The alert descriptions are
 presented below in the order they MUST be sent; sending alerts in an
 unexpected order results in a fatal error. These descriptions are
 always used with the warning alert level. This specification adds
 four new types to AlertDescription:

 enum {
 evidence_start1(TBD),
 evidence_start2(TBD),
 evidence_end1(TBD),
 evidence_end2(TBD),
 evidence_failure(TBD),
 (255)
 } AlertDescription;

Brown & Housley [Page 6]

Internet-Draft November 2006

3.1. The evidence_start1 Description

 The client and the server need to synchronize evidence creation.
 Either party may indicate the desire to start creating evidence by
 sending the evidence_start1 alert. If the other party is ready to
 begin creating evidence, then the other party MUST send an
 evidence_start2 alert in response to the evidence_start1 alert that
 was sent. If the other party is unwilling to begin creating
 evidence, the other party MUST respond with fatal
 evidence_failure(TBD) alert and terminate the TLS session.

 Evidence may be collected more than once during a TLS session;
 however, evidence gathering MUST NOT be nested. That is, a party
 sending the a second evidence_start1 alert before evidence_end2 alert
 has occurred and the evidence protocol has completed is a protocol
 violation. Reception of an evidence_start1 alert that would result
 in evidence nesting MUST be responded to with a fatal
 evidence_failure(TBD) alert and terminating the TLS session.

 Digital signatures are used in evidence creation. If an
 evidence_start1 alert is received before the other party has provided
 a valid PKC, then the evidence_start1 alert recipient MUST terminate
 the TLS session using a fatal certificate_unknown alert.

3.2. The evidence_start2 Description

 The evidence_start2 alert is sent in response to the evidence_start1
 alert. By sending the evidence_start2 alert, the sending party
 indicates that they are also ready to begin creating evidence. After
 this pair of alerts is exchanged, both the client and the server use
 the hash function indicated in the extended server hello message to
 start computing the evidence. Each party computes two independent
 hash values: one for each octet that is written, and one for each
 octet that is read.

 Digital signatures are used in evidence creation. If an
 evidence_start2 alert is received before the other party has provided
 a valid PKC, then the evidence_start2 alert recipient MUST terminate
 the TLS session using a fatal certificate_unknown alert.

3.3. The evidence_end1 Description

 Either party may initiate the closure of an evidence-creating
 interval and the exchange of evidence messages by sending the
 evidence_end1 alert. Upon sending evidence_end1, the sender MUST not
 send any more application data on this connection until the Evidence
 Protocol messages are exchanged.

Brown & Housley [Page 7]

Internet-Draft November 2006

 The evidence_end1 alert sender MAY initiate the Evidence Protocol as
 described in Section 4 at any time following this alert. The
 evidence_end1 alert sender SHOULD ensure that it has received all
 pending application data writes from the other party before
 initiating the Evidence Protocol. One way to ensure that all of the
 application data has been received it to wait for the receipt of an
 evidence_end2 alert. If the Evidence Protocol begins before all of
 the application data is available, the result will be a fatal
 evidence_failure(TBD) alert when signature verification fails.

3.4. The evidence_end2 Description

 The evidence_end2 alert is sent in response to the evidence_end1
 alert. The evidence_end1 alert receiver SHOULD complete any pending
 writes. The intent is to include any application data that would be
 sent in response to application data that was received before the
 evidence_end1 alert as part of evidence creation. Once the pending
 writes are complete, the evidence_end1 alert receiver sends the
 evidence_end2 alert.

 At this point, each party completes the hash value computations.

 The evidence_end2 alert receiver MUST respond by initiating the
 Evidence Protocol as described in Section 4, if it has not already
 done so.

3.5. The evidence_failure Description

 The evidence_failure fatal alert is sent to indicate a failure in
 evidence creation. During evidence synchronization, this alert
 indicates that the sending party is unwilling to begin evidence
 creation. During the Evidence Protocol, this alert indicates that
 the evidence provided by the other party is not acceptable or cannot
 be validated.

4. Evidence Protocol

 This document specifies an additional TLS Protocol: the Evidence
 Protocol. It is used to create persistent evidence of the TLS
 session content. This specification adds one new Record layer
 ContentType:

 enum {
 evidence(TBD),
 (255)
 } ContentType;

Brown & Housley [Page 8]

Internet-Draft November 2006

 Persistence evidence of the TLS session content is produced by the
 TLS Evidence Protocol. Evidence messages are supplied to the TLS
 Record Layer, where they are encapsulated within one or more
 TLSPlaintext structures, which are processed and transmitted as
 specified by the current active session state.

 The Evidence Protocol structure follows:

 enum {
 request(1), response(2), (255)
 } EvidenceMsgType;

 struct {
 EvidenceMsgType evidence_msg_type;
 uint24 length; /* number of octets in message */
 select (EvidenceMsgType) {
 case request: EvidenceRequest;
 case response: EvidenceResponse;
 } body;
 } EvidenceProtocol;

 The Evidence Protocol messages are presented below in the order they
 MUST be sent; sending evidence messages in an unexpected order
 results in a fatal unexpected_message(10) alert. The EvidenceRequest
 message and the EvidenceResponse message are specified in Section 4.2
 and Section 4.3, respectively. Section 4.1 describes structures that
 are used in the EvidenceRequest and EvidenceResponse messages.

4.1. Certificates and Digital Signatures

 The evidence Protocol makes use of the ASN.1Cert definition used
 elsewhere in TLS. It is repeated here for convenience.

 opaque ASN.1Cert<1..2^24-1>;

Brown & Housley [Page 9]

Internet-Draft November 2006

 The EvidenceSignature definition is very similar to the Signature
 definition used elsewhere in TLS. The EvidenceSignature definition
 signs hash[hash_size], but the Signature definition used elsewhere in
 TLS signs a combination of an md5_hash and a sha_hash. Also, the
 EvidenceSignature definition excludes the anonymous case.

 enum { rsa, dsa, ecdsa } EvidenceSignatureAlgorithm;

 select (EvidenceSignatureAlgorithm)
 { case rsa:
 digitally-signed struct {
 opaque hash[hash_size];
 };
 case dsa:
 digitally-signed struct {
 opaque hash[hash_size];
 };
 case ecdsa:
 digitally-signed struct {
 opaque hash[hash_size];
 };
 } EvidenceSignature;

 The hash algorithm and the hash_size depend on evidence create
 algorithm suite selected by the server in the evidence_creation
 extension.

4.2. EvidenceRequest Message

 The EvidenceRequest message contains the evidence_end1 alert sender's
 contribution to the persistent evidence. It employs the evidence
 create algorithm suite selected by the server in the
 evidence_creation extension in the extended server hello message.

 struct {
 Evidence evidence<1..2^16-1>;
 ASN.1Cert party1_certificate;
 EvidenceSignature party1_signature;
 } EvidenceRequest;

Brown & Housley [Page 10]

Internet-Draft November 2006

 struct {
 EvidenceCreateSuite evidence_suite;
 uint64 gmt_unix_time;
 uint64 app_data_sent_offset;
 uint64 app_data_received_offset;
 opaque handshake_protocol_hash<1..512>;
 opaque app_data_sent_hash<1..512>;
 opaque app_data_received_hash<1..512>;
 } Evidence;

 The elements of the EvidenceRequest structure are described below:

 evidence
 Contains an evidence create algorithm identifier, a timestamp,
 and three hash values in the Evidence structure as described
 below.

 party1_certificate
 Contains the X.509 certificate of the signer. While this
 certificate was probably exchanged and validated in the
 Handshake Protocol, inclusion here makes it clear which
 certificate was employed by the signer when the evidence is
 validated in the future, possibly by a third party.

 party1_signature
 Contains the digital signature computed by the sender of the
 evidence_end1 alert using the evidence creation algorithm suite
 identified in evidence_create_suite. The hash value is
 computed as:

 Hash(evidence)

 The elements of the Evidence structure are described below:

 evidence_suite
 Indicates the evidence creation algorithm suite selected by the
 server in the evidence_creation extension in the Handshake
 Protocol. This value determines the structure of the hash
 values and digital signatures.

 gmt_unix_time
 Indicates the current date and time according to the local
 system clock used by the sender of the evidence_end1 alert.
 This time value is intended to represent the moment in time
 that evidence_end1 was sent. Unlike other places in the TLS
 protocol, a 64-bit value is used to ensure that time values do
 not wrap in 2038.

Brown & Housley [Page 11]

Internet-Draft November 2006

 app_data_sent_offset
 Indicates the number of octets that were sent as part of this
 TLS session before evidence collection began.

 app_data_received_offset
 Indicates the number of octets that were received as part of
 this TLS session before evidence collection began.

 handshake_protocol_hash
 Compute as:

 Hash(handshake_messages),

 where handshake_messages refers to all Handshake Protocol
 messages sent or received, beginning with the most recent
 client hello message. If the double handshake mechanism
 described in the security considerations of [TLSAUTHZ] is used
 to encrypt the Handshake Protocol, the plaintext form of these
 messages is used in calculating this hash value.

 Verification of the handshake_protocol_hash is performed using
 the plaintext form of the Handshake protocol messages. For
 this hash value to be validated at a later time, this
 information must be saved as part of the overall evidence. Any
 attempt to save this data must ensure that it is not
 inappropriately disclosed by employing suitable physical
 protection or cryptographic mechanisms that are at least as
 strong as the selected TLS ciphersuite. Suitable controls are
 discussed further in the Security Considerations; see Section

6.

 In the case of successful TLS session resumption, the most
 recent client hello message will contain a valid
 ClientHello.session_id value as well as extensions, and these
 extensions may include sensitive data. The TLS Authorization
 Extension [AUTHZ] is one example where an extension might
 contain sensitive information. Thus, even when session
 resumption is employed, the content of the Handshake protocol
 messages ought to be protected.

 TLS users should ensure that the content of the Handshake
 protocol messages contain sufficient evidence to determine the
 intent of the signers, where "signers" are defined as the
 subject identities in the exchanged X.509 certificates.
 Clients and servers MAY record the protocol messages containing
 an expression of the intent of the signers using a suitable TLS
 extension [TLSEXT], such as [TLSAUTHZ]. For example, a client
 may request access to a resource provided by the server,

Brown & Housley [Page 12]

Internet-Draft November 2006

 provide sufficient authentication and authorization information
 grounds to convince the server to grant the requested access,
 and receive an affirmative response from the server. A record
 of TLS Handshake protocol messages representing this example
 may provide a sufficient record of the intent of both the
 client and the server.

 app_data_sent_hash
 Compute as:

 Hash(sent_application_data),

 where sent_application_data refers to all of the Application
 Data messages sent since the most recent evidence_start1 or
 evidence start2 alert was sent, and ending with the sending of
 the evidence_end1 alert. The alerts are not application data,
 and they are not included in the hash computation.

 app_data_received_hash
 Compute as:

 Hash(received_application_data),

 where received_application_data refers to all of the
 Application Data messages received since the most recent
 evidence_start1 or evidence start2 alert was received, and
 ending with the receipt of the evidence_end2 alert. The alerts
 are not application data, and they are not included in the hash
 computation.

4.3. EvidenceResponse Message

 The EvidenceResponse message contains the complete persistent
 evidence. The value is saved by one or both parties as evidence of
 the TLS session content identified by the evidence_start1,
 evidence_start2, evidence_end1, and evidence_end2 alerts.

 struct {
 Evidence evidence<1..2^16-1>;
 ASN.1Cert party1_certificate;
 EvidenceSignature party1_signature;
 ASN.1Cert party2_certificate;
 EvidenceSignature party2_signature;
 } EvidenceResponse;

Brown & Housley [Page 13]

Internet-Draft November 2006

 The elements of the EvidenceResponse structure are described below:

 evidence
 Contains an evidence create algorithm identifier, a timestamp,
 and three hash values in the Evidence structure as described in

section 4.2. The evidence creation algorithm MUST match the
 evidence create algorithm suite selected by the server in the
 evidence_creation extension in the extended server hello
 message. The timestamp MUST be acceptable to the
 EvidenceRequest recipient as the same value is provided in the
 EvidenceResponse message. The three hash values received in
 the EvidenceRequest message MUST match locally computed values
 over the same data. Note that the app_data_sent_hash and the
 app_data_received_hash values represent the session from the
 perspective of the EvidenceRequest originator, and the values
 are not swapped to represent the EvidenceRequest recipient
 perspective. If any of these conditions is not met, then the
 EvidenceResponse message MUST NOT be sent, and the TLS session
 MUST be closed immediately after sending a fatal
 evidence_failure(TBD) alert.

 party1_certificate
 Contains the X.509 certificate of the sender of the
 evidence_end1 alert. If this certificate cannot be validated,
 then TLS session must be closed immediately after sending one
 of the following fatal alerts: bad_certificate(42),
 unsupported_certificate(43), certificate_revoked(44), or
 certificate_expired(45). These alerts are described in Section

7.2.2 of [TLS1.1].

 party1_signature
 Contains the digital signature computed by the sender of the
 evidence_end1 alert. If this signature cannot be validated,
 then TLS session must be closed immediately after sending a
 fatal evidence_failure(TBD) alert.

 party2_certificate
 Contains the X.509 certificate of the sender of the
 evidence_end2 alert. While this certificate was probably
 exchanged and validated in the Handshake Protocol, inclusion
 here make it clear which certificate was employed by the signer
 when the evidence is validated in the future, possibly by a
 third party.

Brown & Housley [Page 14]

Internet-Draft November 2006

 Party2_signature
 Contains the digital signature computed by the sender of the
 evidence_end2 alert using the evidence creation algorithm suite
 identified in evidence_suite. The hash value is computed as:

 Hash(evidence)

5. IANA Considerations

 This document defines one TLS extension: evidence_creation(TBD).
 This extension type value is assigned from the TLS Extension Type
 registry defined in [TLSEXT].

 This document defines five TLS alert descriptions: the
 evidence_start1(TBD), evidence_start2(TBD), evidence_end1(TBD),
 evidence_end2(TBD), and evidence_failure(TBD). These alert
 descriptions are assigned from the TLS Alert registry defined in
 [TLS1.1].

 This document defines one TLS ContentType: evidence(TBD). This
 ContentType value is assigned from the TLS ContentType registry
 defined in [TLS1.1].

 This document establishes a registry for TLS Evidence Protocol
 EvidenceMsgType. The first two entries in the registry are
 request(1) and response(2). All additional TLS Evidence Protocol
 EvidenceMsgType values are assigned by Standards Action as described
 in [IANA].

 This document establishes a registry for Evidence Create Algorithm
 suite identifiers. Appendix A lists the initial values for this
 registry. Evidence Create Algorithm suite identifier values with the
 first byte in the range 0-191 (decimal) inclusive are assigned by
 Standards Action as described in [IANA]. Values with the first byte
 in the range 192-254 (decimal) are assigned by Specification Required
 as described in [IANA]. Values with the first byte 255 (decimal) are
 reserved for Private Use as described in [IANA].

6. Security Considerations

 This document describes an extension to the TLS protocol, and the
 security considerations in [TLS1.1] and [TLSEXT] apply.
 Additionally, temporal and storage security considerations are
 discussed below.

Brown & Housley [Page 15]

Internet-Draft November 2006

6.1. Temporal Considerations

 Generating evidence that covers Application Data values that do not
 explicitly or implicitly indicate the point in time at which the
 Application Data was transferred over the TLS session might give rise
 to replay attacks, post-dating, pre-dating, or other temporal
 disputes. To avoid these concerns, the evidence includes an
 indication of the date and time. The TLS implementation MUST NOT
 attempt to extract date and time values from the Application Data;
 doing so is likely to be error prone. Instead, the date and time
 SHOULD come from a local clock or a trustworthy time server. Date
 and time are provided by one of the parties, and the other party
 determines that the date and time value is sufficiently accurate.

 When a more highly trusted time source is needed, the Time-Stamp
 Protocol [TSP] can be used to obtain a time-stamp on the evidence
 from a trusted third party.

6.2. Storage Considerations

 Parties that choose to preserve a plaintext record of Application
 Data or Handshake Protocol messages for evidence verification at a
 later time must ensure must ensure that this data is not
 inappropriately disclosed by employing suitable physical protection
 or cryptographic mechanisms that are at least as strong as the
 selected TLS ciphersuite.

 Suitable physical controls for the protection of Application Data or
 Handshake Protocol messages containing keying material or sensitive
 data should use removable storage media in conjunction with durable,
 locking storage containers. If the removable media is transferred
 from one location to another or backup copies are made, secure
 handling protections ought to be employed, which might include the
 use of insured or bonded couriers.

 A suitable cryptographic mechanism provides confidentiality
 protection, since the hash value in the evidence itself provides
 integrity protection. One reasonable solution is to encrypt the
 Handshake Protocol messages and Application Data messages with a
 fresh symmetric encryption key using the same algorithm that was
 negotiated for the selected TLS ciphersuite. The key generation
 should follow the recommendations in [RANDOM]. Then, the symmetric
 key is encrypted for storage with the party's RSA public key or long-
 lived key-encryption key. The Cryptographic Message Syntax (CMS)
 [CMS] offers a convenient way to keep all of this information
 together.

Brown & Housley [Page 16]

Internet-Draft November 2006

 An alternative cryptographic mechanism is to save the TLS session
 itself. The negotiated TLS ciphersuite was already used to protect
 the Application Data messages, and the Handshake Protocol messages
 contain the keying material necessary to decrypt them if the party
 retains the private keys and/or pre-shared secrets.

7. References

7.1. Normative References

 [IANA] Narten, T., and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs", RFC 3434,
 October 1998.

 [DSS] Federal Information Processing Standards Publication
 (FIPS PUB) 186, Digital Signature Standard, 2000.

 [PKCS1] Kaliski, B., "PKCS #1: RSA Encryption Version 1.5",
RFC 2313, March 1998.

 [PKIX1] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet
 Public Key Infrastructure - Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [TLS1.0] Dierks, T., and C. Allen, "The TLS Protocol, Version 1.0",
RFC 2246, January 1999.

 [TLS1.1] Dierks, T., and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol, Version 1.1", RFC 4346, April 2006.

 [TLSEXT] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS) Extensions",

RFC 4366, April 2006.

 [SHA] Federal Information Processing Standards Publication
 (FIPS PUB) 180-2, Secure Hash Algorithm, 2002.

 [STDWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [X9.62] X9.62-1998, "Public Key Cryptography For The Financial
 Services Industry: The Elliptic Curve Digital
 Signature Algorithm (ECDSA)", January 7, 1999.

https://datatracker.ietf.org/doc/html/rfc3434
https://datatracker.ietf.org/doc/html/rfc2313
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Brown & Housley [Page 17]

Internet-Draft November 2006

7.2. Informative References

 [AUTHZ] Brown, M., and R. Housley, "Transport Layer Security
 (TLS) Authorization Extensions", work in progress,

draft-housley-tls-authz-extns.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)",
RFC 3852, July 2004.

 [TSP] Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,
 "Internet X.509 Public Key Infrastructure: Time-Stamp
 Protocol (TSP)", RFC 3161,August 2001.

8. Acknowledgements

 Thanks to C. Robert Beattie, J.D. and Randy V. Sabett, J.D., CISSP
 for their observations and comparisons between the Uniform Electronic
 Transactions Act (1999) prepared by the National Conference of
 Commissioners on Uniform State Laws versus the American Bar
 Association's Digital Signature Guidelines (1996), their observations
 regarding the strengths and weaknesses of these two approaches, and
 their desire to promote trust and reduce potential for litigation in
 online transactions. Their pro bono contribution of time and
 expertise deserves recognition.

 This material is based, in part, upon work supported by the United
 States Navy Space and Naval Warfare Systems Command under Contract
 No. N00039-06-C-0097.

https://datatracker.ietf.org/doc/html/draft-housley-tls-authz-extns
https://datatracker.ietf.org/doc/html/rfc3852
https://datatracker.ietf.org/doc/html/rfc3161

Brown & Housley [Page 18]

Internet-Draft November 2006

Appendix A. Evidence Create Algorithms

 The following values define the EvidenceCreateSuite identifiers used
 in the TLS Evidence Extensions.

 An EvidenceCreateSuite defines a cipher specification supported by
 TLS Evidence Extensions. A suite identifier names a public key
 signature algorithm and an associated one-way hash function. A
 registration is named as follows:

 <SignatureAlgorithm>_WITH_<HashFunction>

 These components have the following meaning:

 <SignatureAlgorithm>
 Specifies the digital signature algorithm and key length
 associated with the algorithm. It is used to digitally sign
 the evidence. The "RSA_1024" value indicates the use of the
 PKCS#1 v1.5 [PKCS1] digital signature algorithm using a
 1024-bit public key. The "DSS_1024" value indicates the use of
 the DSS digital signature algorithm [DSS] with a 1024-bit
 public key. The "ECDSA_P384" value indicates the use of the
 ECDSA digital signature algorithm [X9.62] using the P-384 named
 elliptic curve.

 <HashFunction>
 Specifies the one-way hash function used as part of the digital
 signature. The "SHA_1", "SHA_224", "SHA_256", "SHA_384", and
 "SHA_512" values identify members of the Secure Hash Algorithm
 family of one-way- hash functions [SHA].

 In most cases it will be appropriate to use the same algorithms and
 certified public keys that were negotiated in the TLS Handshake
 Protocol. The following additional steps are required in order to
 employ the digital signature aspects of a TLS CipherSuite to a valid
 EvidenceCreateSuite:

 1) CipherSuites that do not include signature-capable certificates
 cannot be used as EvidenceCreateSuite.

 2) CipherSuites that specify the use of MD5 one-way hash function
 should not be used as EvidenceCreateSuite.

 Of course, any aspect of a CipherSuite that deals with symmetric
 ciphers and symmetric cipher key lengths is not relevant to the
 EvidenceCreateSuite.

Brown & Housley [Page 19]

Internet-Draft November 2006

 All public key certificate profiles used in TLS are defined by the
 IETF PKIX working group in [PKIX1]. When a key usage extension is
 present, then either the digitalSignature bit or the nonRepudiation
 bit MUST be set for the public key to be eligible for signing
 evidence. If both bits are set, then this requirement is satisfied.

 The following EvidenceCreateSuite definitions are made at this time.
Section 5 specifies the procedures for registering additional

 EvidenceCreateSuite definitions.

 EvidenceCreateSuite RSA_1024_WITH_SHA_1 = { 0x00, 0x01 };
 EvidenceCreateSuite RSA_1024_WITH_SHA_256 = { 0x00, 0x02 };
 EvidenceCreateSuite RSA_2048_WITH_SHA_256 = { 0x00, 0x03 };

 EvidenceCreateSuite DSS_1024_WITH_SHA_1 = { 0x00, 0x11 };
 EvidenceCreateSuite DSS_2048_WITH_SHA_256 = { 0x00, 0x12 };

 EvidenceCreateSuite ECDSA_P256_WITH_SHA_256 = { 0x00, 0x21 };
 EvidenceCreateSuite ECDSA_P384_WITH_SHA_384 = { 0x00, 0x22 };
 EvidenceCreateSuite ECDSA_P521_WITH_SHA_512 = { 0x00, 0x23 };

Brown & Housley [Page 20]

Internet-Draft November 2006

Author's Address

 Mark Brown
 RedPhone Security
 2019 Palace Avenue
 Saint Paul, MN 55105
 USA
 mark <at> redphonesecurity <dot> com

 Russell Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA
 housley <at> vigilsec <dot> com

Full Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this

 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://datatracker.ietf.org/doc/html/bcp78

Brown & Housley [Page 21]

