Network Working Group R. Housley ToC

Internet-Draft Vigil Security, LLC

Intended status:

Standards Track R. Reddy

National Security

Expires: April 6, 2008
Agency

C. wallace
Cygnacom Solutions

October 04, 2007

Trust Anchor Management Protocol (TAMP)
draft-housley-tamp-00

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 6, 2008.

Abstract

This document describes a transport independent, request-response
protocol for the management of trust anchors and community identifiers
stored in a device. The protocol makes use of the Cryptographic Message
Syntax (CMS), and a digital signature is used to provide integrity
protection and data origin authentication. Each trust anchor is
associated with a list of functions within devices that make use of
digital signature mechanisms. Digital signatures can be validated
directly with the public key associated with the trust anchor, or they
can be validated with a certified public key whose X.509 certification
path terminates with the trust anchor public key.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Tab

1.

i

[[

BB [© |0 N[0 |0
BBl R PE

le of Contents

Introduction
1.1. Terminology
1.2. Trust Anchors
1.2.1. Apex Trust Anchors

1.2.2. Management Trust Anchors

1.2.3. Identity Trust Anchors
1.3. Architectural Elements
1.3.1. Cryptographic Module

1.3.2. TAMP Protocol Processing Dependencies

1.3.3. Application-Specific Protocol Processing
1.4. ASN.1 Encoding

Cryptographic Message Syntax Profile

2.1. Content Info

2.2. SignedbData Info

2.2.1. SignerInfo

2.2.2. EncapsulatedContentInfo
2.2.3. Signed Attributes
2.2.4. Unsigned Attributes

Trust Anchor Information Syntax
Trust Anchor Management Protocol Messages
4.1. TAMP Status Query
4.2. TAMP Status Query Response
4.3. Trust Anchor Update
4.4. Trust Anchor Update Confirm
4.5. Apex Trust Anchor Update
4.6. Apex Trust Anchor Update Confirm
4.7. Community Update
4.8. Community Update Confirm
4.9. Sequence Number Adjust
4.10. Sequence Number Adjust Confirm
4.11. TAMP Error
Status Codes
Sequence Number Processing
Subordination Processing
Implementation Considerations
Security Considerations

IANA Considerations

References

11.1. Normative References

11.2. 1Informative References

Appendix A. ASN.1 Modules

[(Vop N Vep]

A.1. ASN.1 Module Using 1993 Syntax

A.2. ASN.1 Module Using 1988 Syntax

Authors' Addresses

Intellectual Property and Copyright Statements

1. Introduction TOC

This document describes the Trust Anchor Management Protocol (TAMP).
TAMP may be used to manage the trust anchors and community identifiers
in any device that uses digital signatures; however, this specification
was written with the requirements of cryptographic modules in mind. For
example, TAMP can support signed firmware packages, where the trust
anchor public key can be used to validate digital signatures on
firmware packages or validate the X.509 certification path [RFC3280]
(Housley, R., Polk, W., Ford, W., and D. Solo, “Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” April 2002.)[X.509] (, “ITU-T Recommendation X.509 - The
Directory - Authentication Framework,” 2000.) of the firmware package
signer [RFC4108] (Housley, R., “Using Cryptographic Message Syntax
(CMS) to Protect Firmware Packages,” August 2005.).

Most TAMP messages are digitally signed to provide integrity protection
and data origin authentication. Both signed and unsigned TAMP messages
employ the Cryptographic Message Syntax (CMS) [RFC3852] (Housley, R.,
“Cryptographic Message Syntax (CMS),” July 2004.). The CMS is a data
protection encapsulation syntax that makes use of ASN.1 [X.680] (,
“ITU-T Recommendation X.680: Information Technology - Abstract Syntax
Notation One,” 1997.).

This specification does not provide for confidentiality of TAMP
messages. If confidentiality is required, then the communications
environment that is used to transfer TAMP messages must provide it.

1.1. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119]
(Bradner, S., “Key words for use in RFCs to Indicate Requirement
Levels,” March 1997.).

1.2. Trust Anchors TOC

TAMP manages trust anchors, but TAMP does not dictate a particular
structure for the storage of trust anchor information in cryptographic

modules. A trust anchor contains a public key that is used to validate
digital signatures.

There are three types of trust anchors: apex trust anchors, management
trust anchors, and identity trust anchors.

All trust anchors, regardless of their type, are named by the public
key, and all trust anchors consist of the following components:

*A public key signature algorithm identifier and associated public
key, which MAY include parameters

*A public key identifier
*An OPTIONAL human readable trust anchor title
*OPTIONAL X.509 certification path controls

The apex trust anchor and management trust anchors that issue TAMP
messages also include a sequence number for replay detection.

The public key is used to name a trust anchor, and the public key
identifier is used to identify the trust anchor as the signer. This
public key identifier can be stored with the trust anchor, or in most
public key identifier assignment methods, it can be computed from the
public key whenever needed. The trust anchor X.500 distinguished name
within the OPTIONAL X.509 certification path controls is used when the
trust anchor public key is used to validate an X.509 certification
path. In this case, the certificate subject is the signer. Use of an X.
509 certification path represents delegation, and delegation is
possible only when the trust anchor configuration includes an X.500
distinguished name.

A trust anchor public key can be used in two different ways to support
digital signature validation. In the first approach, the trust anchor
public key is used directly to validate the digital signature. In the
second approach, the trust anchor public key is used to validate an X.
509 certification path, and then the subject public key in the final
certificate in the certification path is used to validate the digital
signature. When the second approach is employed, the certified public
key can be used for things other than digital signature validation; the
other possible actions are constrained by the key usage certificate
extension. Cryptographic modules MUST support validation of X.509
certificates that are directly signed by a trust anchor; however,
support for longer certification paths is RECOMMENDED. The CMS provides
a location to carry X.509 certificates, and this facility can be used
to transfer certificates to aid in the construction of the
certification path.

1.2.1. Apex Trust Anchors

wWithin the context of a single cryptographic module, one trust anchor
is superior to all others. This trust anchor is referred to as the apex
trust anchor. This trust anchor represents the ultimate authority over
the cryptographic module. The ultimate authority could be the legal
owner of the device in a commercial setting. Much of this authority can
be delegated to other trust anchors.

The apex trust anchor private key is expected to be controlled by an
entity with information assurance responsibility for the cryptographic
module. The apex trust anchor is by definition unconstrained and
therefore does not have explicit authorization information associated
with it. In order to make processing of messages as uniform as
possible, the apex has an implicit OID associated with it that
represents the special anyContentType value. This OID will be used as
input to processing algorithms to represent the apex trust anchor
authorization.

Due to the special nature of the apex trust anchor, TAMP includes
separate facilities to change it. In particular, TAMP includes a
facility to securely replace the apex trust anchor. This action might
be taken for one or more of the following reasons:

*The crypto period for the apex trust anchor public/private key
pair has come to an end

*The apex trust anchor private key is no longer available
*The apex trust anchor public/private key pair needs to be revoked

*The authority has decided to use a different digital signature
algorithm or the same digital signature algorithm with different
parameters, such as a different elliptic curve

*The authority has decided to use a different key size

*The authority has decided to transfer control to another
authority

To accommodate these requirements, the apex trust anchor has a
different structure than other trust anchors; it includes two public
keys. Whenever the apex trust anchor is updated, both public keys are
replaced. The first public key, called the operational public key, is
used in the same manner as other trust anchors. Any type of TAMP
message, including an Apex Trust Anchor Update message, can be
validated with the operational public key. The second public key,
called the contingency public key, can only be used to update the apex
trust anchor. The contingency private key SHOULD be used at only one
point in time; it is used only to sign an Apex Trust Anchor Update
message which results in its own replacement (as well as the
replacement of the operational public key). The contingency public key

is distributed in encrypted form. When the contingency public key 1is
used to validate an Apex Trust Anchor Update message, the symmetric key
needed to decrypt the contingency public key is provided as part of the
signed Apex Trust Anchor Update message that is to be verified with the
contingency public key.

1.2.2. Management Trust Anchors TOC

Management trust anchors are used in the management of cryptographic
modules. For example, the TAMP messages specified in this document are
validated to a management trust anchor. Likewise, a signed firmware
package as specified in [RFC4108] (Housley, R., “Using Cryptographic
Message Syntax (CMS) to Protect Firmware Packages,” August 2005.) is
validated to a management trust anchor.

Authorization checking is needed for management messages, and these
checks are based on the content type of the management message. As a
result, management trust anchors include a list of object identifiers
(0IDs) that name authorized content types along with OPTIONAL
constraints.

1.2.3. Identity Trust Anchors TOC

Identity trust anchors are used to validate certification paths, and
they represent the trust anchor for a public key infrastructure. They
are most often used in the validation of certificates associated with
non-management applications.

1.3. Architectural Elements TOC

TAMP does not assume any particular architecture; however, for TAMP to
be useful in an architecture, it MUST include a cryptographic module,
TAMP protocol processing, and other application-specific protocol
processing.

A globally unique algorithm identifier MUST be assigned for each one-
way hash function, digital signature generation/validation algorithm,
and symmetric key unwrapping algorithm that is implemented. To support
CMS, an object identifier (0OID) is assigned to name a one-way hash
function, and another 0ID is assigned to name each combination of a
one-way hash function when used with a digital signature algorithm.
Similarly, certificates associate OIDs assigned to public key
algorithms with subject public keys, and certificates make use of an

OID that names both the one-way hash function and the digital signature
algorithm for the certificate issuer digital signature.

1.3.1. Cryptographic Module TOC
The cryptographic module MUST include the following capabilities:

*Each cryptographic module within a family of cryptographic
modules (which are generally produced by the same manufacturer)
MUST have a unique serial number (with respect to other modules
within the same family). The cryptographic module family is
represented as an ASN.1 object identifier (0ID), and the unique
serial number is represented as a string of octets.

*Each cryptographic module MUST have the capability to securely
store one or more community identifiers. The community identifier
is an 0ID, and it identifies a collection of cryptographic
modules that can be the target of a single TAMP message or the
intended recipients for a particular firmware package.

*The cryptographic module MUST support the secure storage of
exactly one apex trust anchor. The cryptographic module SHOULD
support the secure storage of at least one additional trust
anchor .

*The cryptographic module MUST support the secure storage of a
digital signature private key to sign TAMP responses and either a
certificate containing the associated public key or a certificate
designator. In the latter case, the certificate is stored
elsewhere but is available to parties that need to validate
cryptographic module digital signatures. The designator is a
public key identifier.

*The cryptographic module MUST support at least one one-way hash
function, one digital signature validation algorithm, one digital
signature generation algorithm, and one symmetric key unwrapping
algorithm. If only one one-way hash function is present, it MUST
be consistent with the digital signature validation and digital
signature generation algorithms. If only one digital signature
validation algorithm is present, it must be consistent with the
apex trust anchor operational public key. If only one digital
signature generation algorithm is present, it must be consistent
with the cryptographic module digital signature private key.
These algorithms MUST be available for processing TAMP messages,
including the content types defined in [RFC3852] (Housley, R.,
“Cryptographic Message Syntax (CMS),” July 2004.), and for
validation of X.509 certification paths.

1.3.2. TAMP Protocol Processing Dependencies TOC
TAMP processing MUST include the following capabilities:

*TAMP processing MUST have a means of locating an appropriate
trust anchor. Two mechanisms are available. The first mechanism
is based on the public key identifier for digital signature
verification, and the second mechanism is based on the trust
anchor X.500 distinguished name and other X.509 certification
path controls for certificate path discovery and validation. The
first mechanism MUST be supported, but the second mechanism can
also be used.

*TAMP processing MUST be able to invoke the digital signature
validation algorithm using the public key held in secure storage
for trust anchors.

*TAMP processing MUST have read and write access to secure storage
for sequence numbers associated with each TAMP message source as
described in Section 6.

*TAMP processing MUST have read and write access to secure storage
for trust anchors in order to update them. Update operations
include adding trust anchors, removing trust anchors, and
modifying trust anchors. Application-specific access controls
MUST be securely stored with each management trust anchor as
described in Section 1.3.3.

*TAMP processing MUST have read access to secure storage for the
community membership list to determine whether a targeted message
ought to be accepted.

*To implement the OPTIONAL community identifier update feature,
TAMP processing MUST have read and write access to secure storage
for the community membership list.

*To generate signed confirmation messages, TAMP processing MUST be
able to invoke the digital signature generation algorithm using
the cryptographic module digital signature private key, and it
MUST have read access to the cryptographic module certificate or
its designator. TAMP uses X.509 certificates [RFC3280] (Housley,
R., Polk, W., Ford, W., and D. Solo, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” April 2002.).

*The TAMP processing MUST have read access to the cryptographic
module family identifier, serial number, and community membership
list.

1.3.3. Application-Specific Protocol Processing TOC

The apex trust anchor and management trust anchors managed with TAMP
can be used by the TAMP application. Other management applications MAY
make use of all three types of trust anchors, but non-management
applications SHOULD only make use of identity trust anchors.

The application-specific protocol processing MUST be provided the
following services:

*The application-specific protocol processing MUST have a means of
locating an appropriate trust anchor. Two mechanisms are
available to applications. The first mechanism is based on the
public key identifier for digital signature verification, and the
second mechanism is based on the trust anchor X.500 distinguished
name and other X.509 certification path controls for certificate
path discovery and validation.

*The application-specific protocol processing MUST be able to
invoke the digital signature validation algorithm using the
public key held in secure storage for trust anchors.

*The application-specific protocol processing MUST have read
access to the content types and any associated constraints held
in storage with management trust anchors to make authorization
decisions for that application. The authorization decisions apply
to the management trust anchor as well as any public key that is
validated to the management trust anchor via an X.509
certification path.

*If the application-specific protocol requires digital signatures
on confirmation messages or receipts, then the application-
specific protocol processing MUST be able to invoke the digital
signature generation algorithm with the cryptographic module
digital signature private key and its associated certificate or
certificate designator. Digital signature generation MUST be
controlled in a manner that ensures that the content type of
signed confirmation messages or receipts is appropriate for the
application-specific protocol processing.

*The application-specific protocol processing MUST have read
access to the cryptographic module family identifier, serial
number, and community membership list.

It is expected that application-specific protocol processing will also
include constraints processing. In some applications, management trust
anchors could be authorized for a subset of the functionality
associated with a particular content type.

1.4. ASN.1 Encoding TOC

The CMS uses Abstract Syntax Notation One (ASN.1) [X.680] (, “ITU-T
Recommendation X.680: Information Technology - Abstract Syntax Notation
One,” 1997.). ASN.1 is a formal notation used for describing data
protocols, regardless of the programming language used by the
implementation. Encoding rules describe how the values defined in ASN.1
will be represented for transmission. The Basic Encoding Rules (BER)
[X.690] (, “ITU-T Recommendation X.690 Information Technology - ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distingquished Encoding Rules (DER),” 1997.)
are the most widely employed rule set, but they offer more than one way
to represent data structures. For example, definite length encoding and
indefinite length encoding are supported. This flexibility is not
desirable when digital signatures are used. As a result, the
Distinguished Encoding Rules (DER) [X.690] (, “ITU-T Recommendation X.
690 Information Technology - ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER),” 1997.) were invented. DER is a
subset of BER that ensures a single way to represent a given value. For
example, DER always employs definite length encoding.

Digitally signed structures MUST be encoded with DER. In other
specifications, structures that are not digitally signed do not require
DER, but in this specification, DER is REQUIRED for all structures. By
always using DER, the TAMP processor will have fewer options to
implement.

ASN.1 is used throughout the text of the document for illustrative
purposes. The authoritative source of ASN.1 for the structures defined
in this document is Appendix A.

2. Cryptographic Message Syntax Profile TOC

TAMP makes use of signed and unsigned messages. The Cryptographic
Message Syntax (CMS) is used in both cases. A digital signature is used
to protect the message from undetected modification and provide data
origin authentication. TAMP makes no general provision for encryption
of content.

CMS is used to construct a signed TAMP message. The CMS ContentInfo
content type MUST always be present, and it MUST encapsulate the CMS

SignedData content type. The CMS SignedData content type MUST
encapsulate the TAMP message. A unique content type identifier
identifies the particular TAMP message. The CMS encapsulation of a
signed TAMP message is summarized by:

ContentInfo {

contentType id-signedData, -- (1.2.840.113549.1.7.2)
content SignedData

}

SignedData {
version CMSVersion, -- Always set to 3
digestAlgorithms DigestAlgorithmIdentifiers, -- Only one
encapContentInfo EncapsulatedContentInfo,
certificates CertificateSet, -- OPTIONAL signer certificates
crls CertificateRevocationLists, -- OPTIONAL
signerInfos SET OF SignerInfo -- Only one

}

SignerInfo {
version CMSVersion, -- Always set to 3
sid SignerIdentifier,
digestAlgorithm DigestAlgorithmIdentifier,
signedAttrs SignedAttributes,

-- REQUIRED in TAMP messages
signatureAlgorithm SignatureAlgorithmIdentifier,
signature SignatureVvalue,
unsignedAttrs UnsignedAttributes -- OPTIONAL; may only be
} -- present in Apex Trust
-- Anchor Update messages

EncapsulatedContentInfo {
eContentType OBJECT IDENTIFIER, -- Names TAMP message type
eContent OCTET STRING -- Contains TAMP message

When a TAMP message is used to update the apex trust anchor, this same
structure is used; however, the digital signature will be validated
with either the apex trust anchor operational public key or the
contingency public key. When the contingency public key is used, the
symmetric key needed to decrypt the previously stored contingency
public key is provided as a contingency-public-key-decrypt-key unsigned
attribute. Section 4.5 of this document describes the Apex Trust Anchor
Update message.

CMS is also used to construct an unsigned TAMP message. The CMS
ContentInfo structure MUST always be present, and it MUST be the
outermost layer of encapsulation. A unique content type identifier

identifies the particular TAMP message. The CMS encapsulation of an
unsigned TAMP message is summarized by:

ContentInfo {

contentType OBJECT IDENTIFIER, -- Names TAMP message type
content OCTET STRING -- Contains TAMP message
}
2.1. Content Info TOC

CMS requires the outer-most encapsulation to be ContentInfo [RFC3852
(Housley, R., “Cryptographic Message Syntax (CMS),” July 2004.). The
fields of ContentInfo are used as follows:

*contentType indicates the type of the associated content, and for
TAMP, the encapsulated type is either SignedData or the content
type identifier associated with an unsigned TAMP message. When
the id-signedData (1.2.840.113549.1.7.2) object identifier is
present in this field, then a signed TAMP message is in the
content. Otherwise, an unsigned TAMP message is in the content.

*content holds the content, and for TAMP, the content is either a
SignedData content or an unsigned TAMP message.

2.2. SignedData Info TOC

The SignedData content type [RFC3852] (Housley, R., “Cryptographic
Message Syntax (CMS),” July 2004.) contains the signed TAMP message and
a digital signature value; the SignedData content type MAY also contain
the certificates needed to validate the digital signature. The fields
of SignedData are used as follows:

*version is the syntax version number, and for TAMP, the version
number MUST be set to 3.

*digestAlgorithms is a collection of one-way hash function
identifiers, and for TAMP, it contains a single one-way hash
function identifier. The one-way hash function employed by the
TAMP message originator in generating the digital signature MUST
be present.

*encapContentInfo is the signed content, consisting of a content
type identifier and the content itself. The use of the
EncapsulatedContentInfo type is discussed further in Section
2.2.2.

*certificates is an OPTIONAL collection of certificates. It MAY be
omitted, or it MAY include the X.509 certificates needed to
construct the certification path of the TAMP message originator.
For TAMP messages sent to a cryptographic module where an apex
trust anchor or management trust anchor is used directly to
validate the TAMP message digital signature, this field SHOULD be
omitted. When an apex trust anchor or management trust anchor is
used to validate an X.509 certification path [RFC3280] (Housley,
R., Polk, W., Ford, W., and D. Solo, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” April 2002.), and the subject public key from the final
certificate in the certification path is used to validate the
TAMP message digital signature, the certificate of the TAMP
message originator SHOULD be included, and additional
certificates to support certification path construction MAY be
included. For TAMP messages sent by a cryptographic module, this
field SHOULD include only the cryptographic module certificate or
be omitted. A TAMP message recipient MUST NOT reject a valid TAMP
message that contains certificates that are not needed to
validate the digital signature. PKCS#6 extended certificates
[PKCS#6] (, “PKCS #6: Extended-Certificate Syntax Standard,
Version 1.5,” November 1993.) and attribute certificates (either
version 1 or version 2) [RFC3281] (Farrell, S. and R. Housley,
“An Internet Attribute Certificate Profile for Authorization,”
April 2002.) MUST NOT be included in the set of certificates;
these certificate formats are not used in TAMP. Certification
Authority (CA) certificates and end entity certificates MUST
conform to the profiles defined in [RFC3280] (Housley, R., Polk,
W., Ford, W., and D. Solo, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” April 2002.).

*crls is an OPTIONAL collection of certificate revocation lists
(CRLs).

*signerInfos is a collection of per-signer information, and for

TAMP, the collection MUST contain exactly one SignerInfo. The use
of the SignerInfo type is discussed further in Section 2.2.1.

T0C

2.2.1. SignerInfo

The TAMP message originator is represented in the SignerInfo type. The
fields of SignerInfo are used as follows:

*version is the syntax version number. With TAMP, the version MUST
be set to 3.

*sid identifies the TAMP message originator’s public key. The
subjectKeyIdentifier alternative is always used with TAMP, which
identifies the public key directly. When an apex trust anchor
operational public key or a management trust anchor public key is
used directly, this identifier is the keyId from the associated
TrustAnchorInfo. When the public key is included in an X.509
certificate, this identifier is included in the
subjectKeyIdentifier certificate extension.

*digestAlgorithm identifies the one-way hash function, and any
associated parameters, used by the TAMP message originator. It
MUST contain the one-way hash functions employed by the
originator. This message digest algorithm identifier MUST match
the one carried in the digestAlgorithms field in SignedData. The
message digest algorithm identifier is carried in two places to
facilitate stream processing by the receiver.

*signedAttrs is an OPTIONAL set of attributes that are signed
along with the content. The signedAttrs are OPTIONAL in the CMS,
but signedAttrs is REQUIRED for all signed TAMP messages. The SET
OF Attribute MUST be encoded with the distinguished encoding
rules (DER) [X.690] (, “ITU-T Recommendation X.690 Information
Technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER),” 1997.). Section 2.2.3 of
this document lists the signed attributes that MUST be included
in the collection. Other signed attributes MAY be included, but
the cryptographic module MUST ignore any unrecognized signed
attributes.

*signatureAlgorithm identifies the digital signature algorithm,
and any associated parameters, used by the TAMP message
originator to generate the digital signature.

*signature is the digital signature value generated by the TAMP
message originator.

*unsignedAttrs is an OPTIONAL set of attributes that are not
signed. For TAMP, this field is usually omitted. It is present
only in Apex Trust Anchor Update messages that are to be
validated using the apex trust anchor contingency public key. In
this case, the SET OF Attribute MUST include the symmetric key

needed to decrypt the contingency public key in the contingency-
public-key-decrypt-key unsigned attribute. Section 2.2.4 of this
document describes this unsigned attribute.

2.2.2. EncapsulatedContentInfo TOC

The EncapsulatedContentInfo structure contains the TAMP message. The
fields of EncapsulatedContentInfo are used as follows:

*eContentType is an object identifier that uniquely specifies the
content type, and for TAMP, the value identifies the TAMP
message. The list of TAMP message content types is provided in
Section 4.

*eContent is the TAMP message, encoded as an octet string. In
general, the CMS does not require the eContent to be DER-encoded
before constructing the octet string. However, TAMP messages MUST
be DER encoded.

2.2.3. Signed Attributes TOC

The TAMP message originator MUST digitally sign a collection of
attributes along with the TAMP message. Each attribute in the
collection MUST be DER-encoded. The syntax for attributes is defined in
[X.501] (, “ITU-T Recommendation X.501 - The Directory - Models,”
1993.). X.500 Directory provides a rich attribute syntax. A very simple
subset of this syntax is used extensively in [RFC3852] (Housley, R.,
“Cryptographic Message Syntax (CMS),” July 2004.), where
ATTRIBUTE.&Type and ATTRIBUTE.&id are the only parts of the ATTRIBUTE
class that are employed.

The attribute syntax is repeated here for convenience:

Attribute ::= SEQUENCE {
type
values SET SIZE (1..

ATTRIBUTE.&id ({SupportedAttributes}),

MAX) OF ATTRIBUTE.&Type

({SupportedAttributes}{@type}) }

SupportedAttributes ATTRIBUTE

ATTRIBUTE ::= CLASS {
&derivation
&Type

= {00}

ATTRIBUTE OPTIONAL,
OPTIONAL,

-- either &Type or &derivation REQUIRED

&equality-match
&ordering-match
&substrings-match
&single-valued
&collective

-- operational extensions
&no-user-modification

MATCHING-RULE OPTIONAL,
MATCHING-RULE OPTIONAL,
MATCHING-RULE OPTIONAL,
BOOLEAN DEFAULT FALSE,
BOOLEAN DEFAULT FALSE,

BOOLEAN DEFAULT FALSE,

&usage AttributeUsage DEFAULT
userApplications,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

[SUBTYPE OF &derivation]

[WITH SYNTAX &Type]

[EQUALITY MATCHING RULE &equality-match]

[ORDERING MATCHING RULE &ordering-match]

[SUBSTRINGS MATCHING RULE &substrings-match]

[SINGLE VALUE &single-valued]

[COLLECTIVE &collective]

[NO USER MODIFICATION &no-user-modification]

[USAGE &usage]

ID &id }
MATCHING-RULE ::= CLASS {

&AssertionType OPTIONAL,

&id OBJECT IDENTIFIER UNIQUE }
WITH SYNTAX {

[SYNTAX &AssertionType]

ID &id }
AttributeType ::= ATTRIBUTE.&id
AttributevValue = ATTRIBUTE.&Type
AttributeUsage = ENUMERATED {

userApplications (0),
directoryOperation (1),

distributedOperation

(2),

dSAOperation (3) }

Each of the attributes used with this CMS profile has a single
attribute value. Even though the syntax is defined as a SET OF
Attributevalue, there MUST be exactly one instance of Attributevalue
present.

The SignedAttributes syntax within signerInfo is defined as a SET OF
Attribute. The SignedAttributes MUST include only one instance of any
particular attribute. TAMP messages that violate this rule MUST be
rejected as malformed.

The TAMP message originator MUST include the content-type and message-
digest attributes. The TAMP message originator MAY also include the
binary-signing-time signed attribute.

The TAMP message originator MAY include any other attribute that it
deems appropriate. The intent is to allow additional signed attributes
to be included if a future need is identified. This does not cause an
interoperability concern because unrecognized signed attributes MUST be
ignored.

The following summarizes the signed attribute requirements for TAMP
messages:

*content-type MUST be supported.
*message-digest MUST be supported.

*content-hints MAY be supported. Only present when more than one
layer of encapsulation is employed.

*binary-signing-time MAY be supported. Generally ignored by the
recipient.

*other attributes MAY be supported. Unrecognized attributes MUST
be ignored by the recipient.

2.2.3.1. Content-Type Attribute TOC

The TAMP message originator MUST include a content-type attribute; it
is an object identifier that uniquely specifies the content type.
Section 11.1 of [RFC3852] (Housley, R., “Cryptographic Message Syntax
(CMS),” July 2004.) defines the content-type attribute. For TAMP, the
value identifies the TAMP message. The list of TAMP message content
types and their identifiers is provided in Section 4.

A content-type attribute MUST contain the same object identifier as the
content type contained in the EncapsulatedContentInfo.

2.2.3.2. Message-Digest Attribute TOC

The TAMP message originator MUST include a message-digest attribute,
having as its value the output of a one-way hash function computed on
the TAMP message that is being signed. Section 11.2 of [RFC3852
(Housley, R., “Cryptographic Message Syntax (CMS),” July 2004.) defines
the message-digest attribute.

2.2.3.3. Content-Hints Attribute TOC

Many applications find it useful to have information that describes the
innermost content when multiple layers of encapsulation have been
applied. Since this version of TAMP only has one layer of
encapsulation, the encapContentInfo provides the content type of the
innermost content. To accommodate future versions of TAMP that might
include additional layers of encapsulation, the content-hints attribute
MUST be included in every instance of SignedData that does not directly
encapsulate a TAMP message. Section 2.9 of [RFC2634] (Hoffman, P.,
“Enhanced Security Services for S/MIME,” June 1999.) defines the
content-hints attribute.

The content-hints attribute contains two fields: contentDescription and
contentType. The contentType field MUST be present, and the
contentDescription field MAY be present. The fields of the content-
hints attribute are used as follows:

*contentDescription is OPTIONAL. The TAMP message signer MAY
provide a brief description of the purpose of the TAMP message.
The text is intended for human consumption, not machine
processing. The text is encoded in UTF-8 [RFC3629] (Yergeau, F.,
“UTF-8, a transformation format of ISO 10646,” November 2003.),
which accommodates most of the world’s writing systems. The
implementation MUST provide the capability to constrain the
character set.

*contentType is mandatory. This field indicates the content type
that will be discovered when CMS protection content types are
removed.

T0C

2.2.3.4. Binary-Signing-Time Attribute

The TAMP message originator MAY include a binary-signing-time
attribute, specifying the time at which the digital signature was
applied to the TAMP message. The binary-signing-time attribute is
defined in [RFC4049] (Housley, R., “BinaryTime: An Alternate Format for
Representing Date and Time in ASN.1,” April 2005.).

No processing of the binary-signing-time attribute is REQUIRED of a
TAMP message recipient; however, the binary-signing-time attribute MAY
be included by the TAMP message originator as a form of message
identifier.

2.2.4. \Unsigned Attributes TOC

For TAMP, unsigned attributes are usually omitted. An unsigned
attribute is present only in Apex Trust Anchor Update messages that are
to be validated by the apex trust anchor contingency public key. In
this case, the symmetric key to decrypt the previous contingency public
key is provided in the contingency-public-key-decrypt-key unsigned
attribute. This attribute MUST be supported, and it is described in
Section 2.2.4.1.

The TAMP message originator SHOULD NOT include other unsigned
attributes, and the cryptographic module MUST ignore unrecognized
unsigned attributes.

The UnsignedAttributes syntax within signerInfo is defined as a SET OF
Attribute. The UnsignedAttributes MUST include only one instance of any
particular attribute. TAMP messages that violate this rule MUST be
rejected as malformed.

2.2.4.1. Contingency Public Key Decrypt Key Attribute TOC

The contingency-public-key-decrypt-key attribute provides the plaintext
symmetric key needed to decrypt the previously distributed apex trust
anchor contingency public key. The symmetric key MUST be useable with
the symmetric algorithm used to previously encrypt the contingency
public key.

The contingency-public-key-decrypt-key attribute has the following
syntax:

contingency-public-key-decrypt-key ATTRIBUTE ::= {
WITH SYNTAX PlaintextSymmetricKey
SINGLE VALUE TRUE

ID id-aa-TAMP-contingencyPublicKeyDecryptKey }

id-aa-TAMP-contingencyPublicKeyDecryptKey

OBJECT IDENTIFIER ::= { id-attributes 63 }
PlaintextSymmetricKey ::= OCTET STRING
3. Trust Anchor Information Syntax TOC

An implementation MAY store trust anchor information in any format;
however, a common syntax is used throughout the TAMP specification for

trust anchor information. This section describes the TrustAnchorInfo
ASN.1 type.

TrustAnchorInfo ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
pubKey PublicKeyInfo,
keyId KeyIdentifier,
taType TrustAnchorType,
taTitle TrustAnchorTitle OPTIONAL,
certPath CertPathControls OPTIONAL }

TAMPVersion ::= INTEGER { vi(1), v2(2) }

PublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
publicKey BIT STRING }

KeyIdentifier ::= OCTET STRING

TrustAnchorType ::= CHOICE {
apex [6] ApexTrustAnchorInfo,
mgmt [1] MgmtTrustAnchorInfo,
ident [2] NULL }

ApexTrustAnchorInfo ::= SEQUENCE {
continPubKey ApexContingencyKey,
seqNum SegNumber OPTIONAL }

ApexContingencyKey ::= SEQUENCE {
wrapAlgorithm AlgorithmIdentifier,
wrappedContinPubKey OCTET STRING }

SegNumber ::= INTEGER (0..9223372036854775807)
MgmtTrustAnchorInfo ::= SEQUENCE {

taUsage TrustAnchorUsage,
segNum SegNumber OPTIONAL }

TrustAnchorUsage ::= CMSContentConstraints
CMSContentConstraints ::= ContentTypeConstraintList
ContentTypeConstraintList ::= SEQUENCE SIZE (1..MAX) OF

ContentTypeConstraint

ContentTypeConstraint ::= SEQUENCE {
contentType ContentType,
canSource BOOLEAN DEFAULT TRUE,

attrConstraints AttrConstraintList OPTIONAL }

ContentType ::= OBJECT IDENTIFIER

AttrConstraintList ::= SEQUENCE SIZE (1..MAX) OF AttrConstraint

AttrConstraint ::= SEQUENCE {
attrType AttributeType,
attrvalues SET SIZE (1..MAX) OF Attributevalue }

TrustAnchorTitle = UTF8String (SIZE (1..64))
CertPathControls ::= SEQUENCE {

taName Name,

selfSigned [6] Certificate OPTIONAL,

policySet [1] CertificatePolicies OPTIONAL,

policyFlags [2] CertPolicyFlags OPTIONAL,

clearanceConstr [3] CAClearanceConstraints OPTIONAL,

nameConstr [4] NameConstraints OPTIONAL }
CertificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation
PolicyInformation ::= SEQUENCE {

policyIdentifier CertPolicylId,
policyQualifiers SEQUENCE SIZE (1..MAX) OF
PolicyQualifierInfo OPTIONAL }

CertPolicyId ::= OBJECT IDENTIFIER
CertPolicyFlags ::= BIT STRING {

inhibitPolicyMapping (),
requireeExplicitPolicy (1),

inhibitAnyPolicy (2) }
CAClearanceConstraints ::= SEQUENCE SIZE (1..MAX) OF Clearance
Clearance ::= SEQUENCE {

policyId [6] OBJECT IDENTIFIER,

classList [1] ClassList DEFAULT {unclassified},

securityCategories [2] SET OF SecurityCategory OPTIONAL }

ClassList ::= BIT STRING {
unmarked (0),
unclassified (1),
restricted (2),
confidential (3),
secret (4),
topSecret (5) }

SecurityCategory ::= SEQUENCE {

type [0] SECURITY-CATEGORY.&id({SecurityCategoriesTable}),
value [1] EXPLICIT SECURITY-CATEGORY.&Type

({SecurityCategoriesTable}{@type}) }

SECURITY-CATEGORY ::= TYPE-IDENTIFIER
SecurityCategoriesTable SECURITY-CATEGORY ::= {...}
NameConstraints ::= SEQUENCE {

permittedSubtrees [0] GeneralSubtrees OPTIONAL,
excludedSubtrees [1] GeneralSubtrees OPTIONAL }

GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
GeneralSubtree ::= SEQUENCE {
base GeneralName,

minimum [O@] BaseDistance DEFAULT 0O,
maximum [1] BaseDistance OPTIONAL }

BaseDistance ::= INTEGER (0..MAX)

The fields of TrustAnchorInfo are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*pubKey identifies the public key and algorithm associated with
the trust anchor using the PublicKeyInfo structure. The
PublicKeyInfo structure contains the algorithm identifier
followed by the public key itself. The algorithm identifier is an
AlgorithmIdentifier, which contains an object identifier and
OPTIONAL parameters. The object identifier names the digital
signature algorithm, and it indicates the syntax of the
parameters, if present, as well as the format of the public key.
The public key is encoded as a BIT STRING. For the apex trust
anchor, this field contains the operational public key.

*keyId contains the public key identifier of the trust anchor
public key. For the apex trust anchor, this field contains the
public key identifier of the operational public key.

*taType indicates the type of trust anchor, and it carries
information specific to the type of trust anchor that is being
represented. If an apex trust anchor is represented, then apex
trust anchor information is carried using the ApexTrustAnchorInfo
structure. If a management trust anchor is represented, then
management trust anchor information is carried using the
MgmtTrustAnchorInfo. If an identity trust anchor is represented,
no additional information is carried, which is represented by
NULL.

*taTitle is OPTIONAL. When it is present, it provides a human
readable name for the trust anchor. The text is encoded in UTF-8
[REC3629] (Yergeau, F., “UTF-8, a transformation format of ISO
10646,"” November 2003.), which accommodates most of the world’s
writing systems. The implementation MUST provide the capability
to constrain the character set.

*certPath is OPTIONAL. When it is present, it provides the
controls needed to initialize an X.509 certification path
validation algorithm implementation (see Section 6 in [RFC3280
(Housley, R., Polk, W., Ford, W., and D. Solo, “Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” April 2002.)). When absent, the trust anchor
cannot be used to validate the signature on an X.509 certificate.
For the apex trust anchor, this field contains the certification
path controls associated with the operational public key.

The fields of ApexTrustAnchorInfo are used as follows:

*continPubKey contains the encrypted apex trust anchor contingency
public key using the ApexContingencyKey structure.

*seqNum is OPTIONAL. When it is present, it contains the current
sequence number value stored by the cryptographic module for the
apex trust anchor operational public key. When seqNum is absent,
the cryptographic module is prepared to accept any sequence
number value for the apex trust anchor operational public key.
Section 6 provides sequence number processing details.

The fields of ApexContingencyKey are used as follows:

*wrapAlgorithm identifies the symmetric algorithm used to encrypt
the apex trust anchor contingency public key. If this public key
is ever needed, the symmetric key needed to decrypt it will be
provided in the TAMP message that is to be validated using it.
The algorithm identifier is an AlgorithmIdentifier, which
contains an object identifier and OPTIONAL parameters. The object
identifier indicates the syntax of the parameters, if present.

*wrappedContinPubKey is the encrypted apex trust anchor
contingency public key. Once decrypted, it yields the
PublicKeyInfo structure, which consists of the algorithm
identifier followed by the public key itself. The algorithm
identifier is an AlgorithmIdentifier that contains an object
identifier and OPTIONAL parameters. The object identifier
indicates the format of the public key and the syntax of the
parameters, if present. The public key is encoded as a BIT
STRING.

The fields of MgmtTrustAnchorInfo are used as follows:

*taUsage represents the authorized uses of the management trust
anchor using the TrustAnchorUsage structure.

*seqNum is OPTIONAL. When it is present, it contains the current
sequence number value stored by the cryptographic module for this
management trust anchor. When segNum is absent, the cryptographic
module is prepared to accept any sequence number value for this
management trust anchor. Section 6 provides sequence number
processing details.

The TrustAnchorUsage is defined using the CMSContentConstraints type
defined in [CCC] (Housley, R. and C. Wallace, “Cryptographic Message
Syntax (CMS) Content Signature Constraints X.509 Certificate
Extension,” in progress.). The CMSContentConstraints is a list of
permitted content types and associated constraints. The management
trust anchor can be used to validate digital signatures on the
permitted content types, including TAMP message content types.

The anyContentType object identifier can be used to indicate that the
trust anchor is unconstrained. The apex trust anchor has an implicit
CMSContentConstraints field with a single permitted content type of
anyContentType.

The fields of ContentTypeConstraint are used as follows:

*contentType indicates the encapsulated content type identifier
that can be validated using the management trust anchor. For
example, it contains id-ct-firmwarePackage when the management
trust anchor can be used to validate digital signatures on
firmware packages [RFC4108] (Housley, R., “Using Cryptographic
Message Syntax (CMS) to Protect Firmware Packages,”

August 2005.). A particular content type MUST NOT appear more
than once in the list. The CMS-related content types need not be
included in the list of permitted content types. These content
types are always authorized to facilitate the use of CMS in the
protection of content, and they MUST NOT appear in the permitted
list. The always authorized content types are:

-id-signedData,
-id-envelopedData,
-id-digestedData,
-id-encryptedData,
-id-ct-authEnvData,
-id-ct-authData,

-id-ct-compressedData,

-id-ct-contentCollection
-id-ct-contentWithAttrs.

*canSource is a Boolean flag, and it applies to direct signatures
or direct authentication for the specified content type. If the
canSource flag is FALSE, then the management trust anchor cannot
be used to directly sign or authenticate the specified content
type. Regardless of the flag value, a management trust anchor can
be used to sign or authenticate outer layers when multiple layers
of CMS protected content type are present.

*attrConstraints is an OPTIONAL field that contains a sequence of
content type specific constraints. If the attrConstraints field
is absent, then the management trust anchor can be used to verify
the specified content type without any further checking. If the
attrConstraints field is present, then the management trust
anchor can only be used to verify the specified content type if
all of the constraints for that content type are satisfied.
Content type constraints are checked by matching the attribute
values in the AttrConstraintList against the attribute value in
the content. The constraints checking fails if the attribute is
present and the attribute value is not one of the values provided
in AttrConstraintList.

The AttrConstraintList contains a sequence of attributes, which is
defined in [CCC] (Housley, R. and C. Wallace, “Cryptographic Message
Syntax (CMS) Content Signature Constraints X.509 Certificate
Extension,” in progress.) and repeated above. The fields of
AttrConstraint are used as follows:

*attrType is the object identifier of the signed attribute carried
in the SignerInfo of the content. For a signed content to satisfy
the constraint, if the SignerInfo includes a signed attribute of
the same type, then the signed attribute MUST contain one of the
values supplied in the attrValues field.

*attrvalues provides one or more acceptable signed attribute
values. It is a set of Attributevalue. For a signed content to
satisfy the constraint, if the SignerInfo includes a signed
attribute of the type identified in the attrType field, then the
signed attribute MUST contain one of the values in the set.

The fields of CertPathControls are used as follows:

*taName provides the X.500 distinguished name associated with the
trust anchor, and this distinguished name is used to construct
and validate an X.509 certification path. The name MUST NOT be an
empty sequence. An identity trust anchor is of little use without
a distinguished name.

*selfSigned provides an OPTIONAL self-signed X.509 certificate,
which can be used in some environments to represent the trust
anchor in certification path development and validation. If the
self-signed certificate is present, the subject name in the
certificate MUST exactly match the X.500 distinguished name
provided in the taName field. The complete description of the
syntax and semantics of the Certificate are provided in [RFC3280]
(Housley, R., Polk, W., Ford, W., and D. Solo, “Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” April 2002.).

*policySet is OPTIONAL. When present, it contains sequence of
certificate policy identifiers to be provided as inputs to the
certification path validation algorithm. When absent, the special
value any-policy is provided as the input to the certification
path validation algorithm. The complete description of the syntax
and semantics of the CertificatePolicies are provided in
[RFC3280] (Housley, R., Polk, W., Ford, W., and D. Solo,
“Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” April 2002.),
including the syntax for PolicyInformation. In this context, the
OPTIONAL policyQualifiers structure MUST NOT be included.

*policyFlags is OPTIONAL. When present, three Boolean values for
input to the certification path validation algorithm are provided
in a BIT STRING. When absent, the input to the certification path
validation algorithm is { FALSE, FALSE, FALSE }, which represents
the most liberal setting for these flags. The three bits are used
as follows:

-inhibitPolicyMapping indicates if policy mapping is allowed in
the certification path. When set to TRUE, policy mapping is
not permitted. This value represents the initial-policy-
mapping-inhibit input value to the certification path
validation algorithm described in section 6.1.1 of [RFC3280
(Housley, R., Polk, W., Ford, W., and D. Solo, “Internet X.509
Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” April 2002.).

-requireExplicitPolicy indicates if the certification path MUST
be valid for at least one of the certificate policies in the
policySet. When set to TRUE, all certificates in the
certification path MUST contain an acceptable policy
identifier in the certificate policies extension. This value
represents the initial-explicit-policy input value to the
certification path validation algorithm described in section
6.1.1 of [RFC3280] (Housley, R., Polk, W., Ford, W., and D.
Solo, “Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile,” April 2002.).

An acceptable policy identifier is a member of the policySet
or the identifier of a policy that is declared to be
equivalent through policy mapping. This bit MUST be set to
FALSE if policySet is absent.

-inhibitAnyPolicy indicates whether the special anyPolicy
policy identifier, with the value { 2 5 29 32 0 }, is
considered an explicit match for other certificate policies.
When set to TRUE, the special anyPolicy policy identifier is
only considered a match for itself. This value represents the
initial-any-policy-inhibit input value to the certification
path validation algorithm described in section 6.1.1 of
[RFC3280] (Housley, R., Polk, W., Ford, W., and D. Solo,
“Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” April 2002.).

*clearanceConstr is OPTIONAL. It has the same syntax and semantics
as the CA Clearance Constraints certificate extension as
specified in [ClearConstr] (Turner, S., “Clearance and CA
Clearance Constraints Certificate Extensions,” in progress.).
When it is present, constraints are provided on the CA Clearance
Constraints certificate extension and Clearance certificate
extension that might appear in subordinate X.509 certificates.
For a subordinate certificate to be valid, it MUST conform to
these constraints. When it is absent, no constraints are imposed
on the CA Clearance Constraints certificate extension and
Clearance certificate extension that might appear in subordinate
X.509 certificates.

*nameConstr is OPTIONAL. It has the same syntax and semantics as
the Name Constraints certificate extension [RFC3280] (Housley,
R., Polk, W., Ford, W., and D. Solo, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL)
Profile,” April 2002.), which includes a list of permitted names
and a list of excluded names. The definition of GeneralName can
be found in [RFC3280] (Housley, R., Polk, W., Ford, W., and D.
Solo, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” April 2002.). When it
is present, constraints are provided on names (including
alternative names) that might appear in subordinate X.509
certificates. When applied to CA certificates, the CA can apply
further constraints by including the Name Constraints certificate
extension in subordinate certificates. For a subordinate
certificate to be valid, it MUST conform to these constraints.
When it is absent, no constraints are imposed on names that
appear in subordinate X.509 certificates.

When the trust anchor is used to validate a certification path,
CertPathControls provides limitations on certification paths that will

successfully validate. An application that is validating a
certification path MUST NOT ignore these limitations, but the
application can impose additional limitations to ensure that the
validated certification path is appropriate for the intended
application context. As input to the certification path validation
algorithm, an application MAY:

*Provide a subset of the certification policies provided in the
policySet;

*Provide a TRUE value for any of the flags in the policyFlags;

*Provide a subset of clearance values provided in the
clearanceConstr;

*Provide a subset of the permitted names provided in the
nameConstr;

*Provide additional excluded names to the ones that are provided
in the nameConstr

4. Trust Anchor Management Protocol Messages TOC

TAMP makes use of signed and unsigned messages. The CMS is used in both
cases. An object identifier is assigned to each TAMP message type, and
this object identifier is used as a content type in the CMS.

TAMP specifies eleven message types. The following provides the content
type identifier for each TAMP message type, and it indicates whether a
digital signature is REQUIRED. If the following indicates that the TAMP
message MUST be signed, then implementations MUST reject a message of
that type that is not signed.

*The TAMP Status Query message MUST be signed. It uses the
following object identifier: { id-tamp 1 }.

*The TAMP Status Response message SHOULD be signed. It uses the
following object identifier: { id-tamp 2 }.

*The Trust Anchor Update message MUST be signed. It uses the
following object identifier: { id-tamp 3 }.

*The Trust Anchor Update Confirm message SHOULD be signed. It uses
the following object identifier: { id-tamp 4 }.

*The Apex Trust Anchor Update message MUST be signed. It uses the
following object identifier: { id-tamp 5 }.

*The Apex Trust Anchor Update Confirm SHOULD be signed. It uses
the following object identifier: { id-tamp 6 }.

*The Community Update message MUST be signed. It uses the
following object identifier: { id-tamp 7 }.

*The Community Update Confirm message SHOULD be signed. It uses
the following object identifier: { id-tamp 8 }.

*The Sequence Number Adjust MUST be signed. It uses the following
object identifier: { id-tamp 10 }.

*The Sequence Number Adjust Confirm message SHOULD be signed. It
uses the following object identifier: { id-tamp 11 }.

*The TAMP Error message SHOULD be signed. It uses the following
object identifier: { id-tamp 9 }.

A typical interaction between a trust anchor manager and a

cryptographic module will follow the message flow shown in Figure 4-1.
Figure 4-1 does not illustrate a flow where an error occurs.

| Trust Anchor Status Query |

I I
| R LR ETEPEPLEPRLLEY > |
I I I I
	Trust Anchor Status Response	
Trust R T	Crypto	
Anchor		Module
Manager	Trust Anchor Update	
	oo >	
I I I I		
	Trust Anchor Update Confirm	
	<o	
I | I I
e + S SRS +

Figure 4-1: Typical TAMP Message Flow

Each TAMP query and update message include an indication of the type of
response that is desired. The response can either be terse or verbose.
All cryptographic modules MUST support both the terse and verbose
responses.

Cryptographic modules MUST be able to process and properly act upon the
valid payload of the TAMP Status Query message, the Trust Anchor Update
message, the Apex Trust Anchor Update message, and the Sequence Number
Adjust message. Cryptographic modules MAY also process and act upon the
valid payload of the Community Update message.

Cryptographic modules MUST support generation of the TAMP Status
Response message, the Trust Anchor Update Confirm message, the Apex
Trust Anchor Update Confirm message, the Sequence Number Adjust Confirm
message, and the TAMP Error message. If a cryptographic module supports
the Community Update message, then the cryptographic module MUST also
support generation of the Community Update Confirm message.

4.1. TAMP Status Query TOC

The TAMP Status Query message is used to request information about the
trust anchors that are currently installed in a cryptographic module,
and for the list of communities to which the cryptographic module
belongs. The TAMP Status Query message MUST be signed. For the query
message to be valid, the cryptographic module MUST be an intended
recipient of the query, the sequence number checking described in
Section 6 MUST be successful when the TAMP message source is a trust
anchor, and the digital signature MUST be validated by the apex trust
anchor operational public key, a management trust anchor authorized for
the id-ct-TAMP-statusQuery content type, or via a valid X.509
certification path originating with such a trust anchor.

If the digital signature on the TAMP Status Query message is valid,
sequence number checking is successful, the signer is authorized for
the id-ct-TAMP-statusQuery content type, and the cryptographic module
is an intended recipient of the TAMP message, then a TAMP Status
Response message MUST be returned. If a TAMP Status Response message is
not returned, then a TAMP Error message MUST be returned.

The TAMP Status Query content type has the following syntax:

PKCS7-CONTENT-TYPE ::= TYPE-IDENTIFIER

tamp-status-query PKCS7-CONTENT-TYPE ::=
{ TAMPStatusQuery IDENTIFIED BY id-ct-TAMP-statusQuery }

id-ct-TAMP-statusQuery OBJECT IDENTIFIER ::= { id-tamp 1 }

TAMPStatusQuery ::= SEQUENCE {

Version [0] TAMPVersion DEFAULT v2,

terse [1] TerseOrVerbose DEFAULT verbose,
query TAMPMsgRef }

TerseOrVerbose ::= ENUMERATED { terse(1), verbose(2) }

TAMPMsgRef ::= SEQUENCE {
target TargetIdentifier,
seqNum SeqNumber }

TargetIdentifier ::= CHOICE {
hwModules [1] HardwareModuleIdentifierList,
communities [2] CommunityIdentifierList,
allModules [3] NULL }

HardwareModuleIdentifierList ::= SEQUENCE SIZE (1..MAX) OF
HardwareModules
HardwareModules ::= SEQUENCE {
hwType OBJECT IDENTIFIER,

hwSerialEntries SEQUENCE SIZE (1..MAX) OF HardwareSerialEntry }

HardwareSerialEntry ::= CHOICE {
all NULL,
single OCTET STRING,
block SEQUENCE {
low OCTET STRING,
high OCTET STRING } }

CommunityIdentifierList ::= SEQUENCE SIZE (1..MAX) OF Community

Community ::= OBJECT IDENTIFIER

The fields of TAMPStatusQuery are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*terse indicates the type of response that is desired. A terse
response is indicated by a value of 1, and a verbose response is
indicated by a value of 2, which is omitted during encoding since
it is the default value.

*query contains two items: the target and the segNum. target
identifies the cryptographic module or collection of
cryptographic modules that are the target of the query message.
seqNum is a single use value that will be used to match the TAMP
Status Query message with the TAMP Status Response message. The
sequence number is also used to detect TAMP message replay. The
sequence number processing described in Section 6 MUST
successfully complete before a response is returned.

The fields of TAMPMsgRef are used as follows:

*target identifies the cryptographic modules or community of
cryptographic modules that are the target of the query. To
identify a cryptographic module, a combination of a cryptographic
type and serial number are used. The cryptographic type is
represented as an ASN.1 object identifier, and the unique serial
number is represented as a string of octets. To facilitate
compact representation of serial numbers, a contiguous block can
be specified by the lowest included serial number and the highest
included serial number. When present, the high and low octet
strings MUST have the same length. The HardwareModuleIdentifiers
sequence MUST NOT contain duplicate hwType values, so that each
member of the sequence names all of the cryptographic modules of
this type. Object identifiers are also used to identify
communities of cryptographic modules. A sequence of these object
identifiers is used if more than one community is the target of
the message. A cryptographic module is considered a target if it
is a member of any of the listed communities. An explicit NULL
value is used to identify all modules that consider the signer of
the TAMP message to be an authorized source for that message

type.

*seqNum contains a single use value that will be used to match the
TAMP Status Query message with the successful TAMP Status
Response message. The sequence number processing described in
Section 6 MUST successfully complete before a response is
returned.

To determine whether a particular cryptographic module serial number is
considered part of a specified block, all of the following conditions
MUST be met. First, the cryptographic module serial number MUST be the
same length as both the high and low octet strings. Second, the
cryptographic module serial number MUST be greater than or equal to the

low octet string. Third, the cryptographic module serial number MUST be
less than or equal to the high octet string.

One octet string is equal to another if they are of the same length and
are the same at each octet position. An octet string, S1, is greater
than another, S2, where S1 and S2 have the same length, if and only if
S1 and S2 have different octets in one or more positions, and in the
first such position, the octet in S1 is greater than that in S2,
considering the octets as unsigned binary numbers. Note that these
octet string comparison definitions are consistent with those in clause
6 of [X.690] (, “ITU-T Recommendation X.690 Information Technology -
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),”

1997.).

4.2. TAMP Status Query Response TOC

The TAMP Status Response message is a reply by a cryptographic module
to a valid TAMP Status Query message. The TAMP Status Response message
provides information about the trust anchors that are currently
installed in the cryptographic module and the list of communities to
which the cryptographic module belongs, if any. The TAMP Status
Response message MAY be signed or unsigned. A TAMP Status Response
message MUST be signed if the cryptographic module is capable of
signing it.

The TAMP Status Response content type has the following syntax:

tamp-status-response PKCS7-CONTENT-TYPE ::=
{ TAMPStatusResponse IDENTIFIED BY id-ct-TAMP-statusResponse }

id-ct-TAMP-statusResponse OBJECT IDENTIFIER ::= { id-tamp 2 }

TAMPStatusResponse ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
query TAMPMsgRef,
response StatusResponse }

StatusResponse ::= CHOICE {

terseResponse [0] TerseStatusResponse,

verboseResponse [1] VerboseStatusResponse }
TerseStatusResponse ::= SEQUENCE {

taKeyIds KeyIdentifiers,

communities CommunityIdentifierList OPTIONAL }
KeyIdentifiers ::= SEQUENCE SIZE (1..MAX) OF KeyIdentifier
VerboseStatusResponse ::= SEQUENCE {

taInfo TrustAnchorInfolList,

continPubKeyDecryptAlg AlgorithmIdentifier,

communities CommunityIdentifierList OPTIONAL }
TrustAnchorInfolList ::= SEQUENCE SIZE (1..MAX) OF TrustAnchorInfo

The fields of TAMPStatusResponse are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*query identifies the TAMPStatusQuery to which the cryptographic
module is responding. The query structure repeats the TAMPMsgRef
from the TAMP Status Query message (see Section 4.1). The
sequence number processing described in Section 6 MUST
successfully complete before any response is returned.

*response contains either a terse response or a verbose response.
The terse response is represented by TerseStatusResponse, and the
verbose response is represented by VerboseStatusResponse.

The fields of TerseStatusResponse are used as follows:

*taKeyIds contains a sequence of key identifiers. Each trust
anchor contained in the cryptographic module is represented by
one key identifier. The apex trust anchor is represented by the

first key identifier in the sequence, which contains the key
identifier of the operational public key.

*communities is OPTIONAL. When present, it contains a sequence of
object identifiers. Each object identifier names one community to
which this cryptographic module belongs. When the module belongs
to no communities, this field is omitted.

The fields of VerboseStatusResponse are used as follows:

*taInfo contains a sequence of TrustAnchorInfo structures. One
entry in the sequence is provided for each trust anchor contained
in the cryptographic module. The apex trust anchor is the first
trust anchor in the sequence.

*continPubKeyDecryptAlg indicates the decryption algorithm needed
to decrypt the currently installed apex trust anchor contingency
public key.

*communities is OPTIONAL. When present, it contains a sequence of
object identifiers. Each object identifier names one community to
which this cryptographic module belongs. When the module belongs
to no communities, this field is omitted.

The fields of TrustAnchorInfo are described in Section 3.

4.3. Trust Anchor Update TOC

The Trust Anchor Update message is used to add, remove, and change
management and identity trust anchors. The Trust Anchor Update message
cannot be used to update the apex trust anchor. The Trust Anchor Update
message MUST be signed. For a Trust Anchor Update message to be valid,
the cryptographic module MUST be an intended receipient of the update,
the sequence number checking described in Section 6 MUST be successful
when the TAMP message source is a trust anchor, and the digital
signature MUST be validated using the apex trust anchor operational
public key, a management trust anchor authorized for the id-ct-TAMP-
update content type, or via an authorized X.509 certification path
originating with such a trust anchor.

If the digital signature on the Trust Anchor Update message is valid,
sequence number checking is successful, the signer is authorized for
the id-ct-TAMP-update content type, and the cryptographic module is an
intended recipient of the TAMP message, then the cryptographic module
MUST perform the specified updates and return a Trust Anchor Update
Confirm message. If a Trust Anchor Update Confirm message is not
returned, then a TAMP Error message MUST be returned.

The Trust Anchor Update content type has the following syntax:

tamp-update PKCS7-CONTENT-TYPE ::=
{ TAMPUpdate IDENTIFIED BY id-ct-TAMP-update }

id-ct-TAMP-update OBJECT IDENTIFIER ::= { id-tamp 3 }

TAMPUpdate ::= SEQUENCE {
version [©] TAMPVersion DEFAULT v2,
terse [1] TerseOrVerbose DEFAULT verbose,
msgRef TAMPMsgRef,
updates SEQUENCE SIZE (1..MAX) OF TrustAnchorUpdate }

TrustAnchorUpdate ::= CHOICE {
add [1] EXPLICIT TrustAnchorInfo,
remove [2] PublicKeyInfo,
change [3] TrustAnchorChangeInfo }

TrustAnchorChangeInfo ::= SEQUENCE {
pubKey PublicKeyInfo,
keyId KeyIdentifier OPTIONAL,
mgmtTAType [0] MgmtTrustAnchorInfo OPTIONAL,
taTitle [1] TrustAnchorTitle OPTIONAL,
certPath [2] CertPathControls OPTIONAL }

The fields of TAMPUpdate are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*terse indicates the type of response that is desired. A terse
response is indicated by a value of 1, and a verbose response is
indicated by a value of 2, which is omitted during encoding since
it is the default value.

*msgRef contains two items: the target and the segNum. target
identifies the cryptographic module or collection of
cryptographic modules that are the target of the update message.
The TargetIdentifier syntax is described in Section 4.1. seqNum
is a single use value that will be used to match the Trust Anchor
Update message with the Trust Anchor Update Confirm message. The
sequence number is also used to detect TAMP message replay. The
sequence number processing described in Section 6 MUST
successfully complete before any of the updates are processed.

*updates contains a sequence of updates, which are used to add,
remove, and change management or identity trust anchors. Each
entry in the sequence represents one of these actions, and is
indicated by an instance of TrustAnchorUpdate. The actions are a

batch of updates that MUST be processed in the order that they
appear, but each of the updates is processed independently. Each
of the updates MUST satisfy the subordination checks described in
Section 7. Even if one or more of the updates fail, then the
remaining updates MUST be processed. These updates MUST NOT make
any changes to the apex trust anchor.

The TrustAnchorUpdate is a choice of three structures, and each
alternative represents one of the three possible actions: add, remove,
and change. A description of the syntax associated with each of these
actions follows:

*add is used to insert a new management or identity trust anchor
into the cryptographic module. The TrustAnchorInfo structure is
used to provide the trusted public key and all of the information
associated with it. However, the action MUST fail if the
subordination checks described in Section 7 are not satisfied.
See Section 3 for a discussion of the TrustAnchorInfo structure.
The apex trust anchor cannot be introduced into a cryptographic
module using this action; therefore taType MUST NOT use
ApexTrustAnchorInfo. The privileges of the existing trust anchors
are unchanged by this action. An attempt to add a management or
identity trust anchor that is already in place with the same
values for every field in the TrustAnchorInfo structure, except
the segNum field, MUST be treated as a successful addition. When
the segNum field does not match the most recently stored sequence
number, the larger value MUST be stored by the cryptographic
module. An attempt to add a management or identity trust anchor
that is already present with the same keyId and pubKey values,
but with different values for any of the fields in the
TrustAnchorInfo structure other than the seqNum field, MUST
result in an error.

*remove is used to delete an existing management or identity trust
anchor from the cryptographic module, including the deletion of
the management trust anchor associated with the TAMP message
signer. However, the action MUST fail if the subordination checks
described in Section 7 are not satisfied. The public key
contained in PublicKeyInfo names the management or identity trust
anchor to be deleted. An attempt to delete a trust anchor that is
not present MUST be treated as a successful deletion. The
privileges of the deleted trust anchor are not distributed to
other trust anchors in any manner. The apex trust anchor cannot
be removed using this action, which ensures that this action
cannot place the cryptographic module in an unrecoverable
configuration.

*change is used to update the information associated with an
existing management or identity trust anchor in the cryptographic

module. The public key contained in the PublicKeyInfo field of
TrustAnchorChangeInfo names the to-be-updated trust anchor.
However, the action MUST fail if the subordination checks
described in Section 7 are not satisfied. An attempt to change a
trust anchor that is not present MUST result in a failure with
the trustAnchorNotFound status code. The TrustAnchorChangeInfo
structure is used to provide the revised configuration of the
management or identity trust anchor. If the update fails for any
reason, then the original trust anchor configuration MUST be
preserved. The apex trust anchor information cannot be changed
using this action.

The fields of TrustAnchorChangeInfo are used as follows:

*pubKey contains the algorithm identifier and the public key of
the management or identity trust anchor. It is used to locate the
to-be-updated trust anchor in the cryptographic module storage.

*keyId is OPTIONAL, and when present, it contains the public key
identifier of the trust anchor public key. If this field is not
present, then the public key identifier remains unchanged. If
this field is present, the provided public key identifier
replaces the previous one.

*mgmtTAType is OPTIONAL, and when present, it carries information
specific to the management trust anchor using the
MgmtTrustAnchorInfo structure. This structure can be used to
convert an identity trust anchor to a management trust anchor.
There is not a way to use a single Trust Anchor Update message to
convert a management trust anchor to an identity trust anchor. If
this structure is not present, then the previous taType is
preserved. The syntax and semantics of MgmtTrustAnchorInfo is
discussed in Section 3. Each of the updates MUST satisfy the
subordination checks described in Section 7. Normally, the
sequence number for the management trust anchor is updated by
receiving a signed TAMP message, including the Sequence Number
Adjust message. The seqNum field is an alternative mechanism for
advancing the sequence number values stored in a cryptographic
module. When this integer value is present, the provided value is
stored if it is greater than the currently stored value. When
this integer value is not present, the previous value is
preserved.

*taTitle is OPTIONAL, and when present, it provides a human
readable name for the management or identity trust anchor. When
absent in a change trust anchor update, any title that was
previously associated with the trust anchor is removed.
Similarly, when present in a change trust anchor update, the
title in the message is associated with the trust anchor. If a

previous title was associated with the trust anchor, then the
title is replaced. If a title was not previously associated with
the trust anchor, then the title from the update message is
added.

*certPath is OPTIONAL, and when present, it provides the controls
needed to construct and validate an X.509 certification path.
When absent in a change trust anchor update, any controls that
were previously associated with the management or identity trust
anchor are removed, which means that delegation is no longer
permitted. Similarly, when present in a change trust anchor
update, the controls in the message are associated with the
management or identity trust anchor. If previous controls,
including the trust anchor distinguished name, were associated
with the trust anchor, then the controls are replaced, which
means that delegation continues to be supported, but that
different certification paths will be valid. If controls were not
previously associated with the management or identity trust
anchor, then the controls from the update message are added,
which enables delegation. The syntax and semantics of
CertPathControls is discussed in Section 3.

4.4. Trust Anchor Update Confirm TOC

The Trust Anchor Update Confirm message is a reply by a cryptographic
module to a valid Trust Anchor Update message. The Trust Anchor Update
Confirm message provides success and failure information for each of
the requested updates. The Trust Anchor Update Confirm message MAY be
signed or unsigned. A Trust Anchor Update Confirm message MUST be
signed if the cryptographic module is capable of signing it.

The Trust Anchor Update Confirm content type has the following syntax:

tamp-update-confirm PKCS7-CONTENT-TYPE ::=
{ TAMPUpdateConfirm IDENTIFIED BY id-ct-TAMP-updateConfirm }

id-ct-TAMP-updateConfirm OBJECT IDENTIFIER ::= { id-tamp 4 }

TAMPUpdateConfirm ::= SEQUENCE {
version [0] TAMPVersion DEFAULT v2,
update TAMPMsgRef,
confirm UpdateConfirm }

UpdateConfirm ::= CHOICE
terseConfirm [0] TerseUpdateConfirm,
verboseConfirm [1] VerboseUpdateConfirm }

TerseUpdateConfirm ::= StatusCodelList
StatusCodelList ::= SEQUENCE SIZE (1..MAX) OF StatusCode
VerboseUpdateConfirm ::= SEQUENCE {

status StatusCodelist,
taInfo TrustAnchorInfolList }

The fields of TAMPUpdateConfirm are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*update identifies the TAMPUpdate message to which the
cryptographic module is responding. The update structure repeats
the TAMPMsgRef from the Trust Anchor Update message (see Section
4.3). The sequence number processing described in Section 6 MUST
successfully complete before any of the updates are processed.

*confirm contains either a terse update confirmation or a verbose
update confirmation. The terse update confirmation is represented
by TerseUpdateConfirm, and the verbose response is represented by
VerboseUpdateConfirm.

The TerseUpdateConfirm contains a sequence of status codes, one for
each TrustAnchorUpdate structure in the Trust Anchor Update message.
The status codes appear in the same order as the TrustAnchorUpdate
structures to which they apply, and the number of elements in the
status code list MUST be the same as the number of elements in the
trust anchor update list. Each of the status codes is discussed in
Section 5.

The fields of VerboseUpdateConfirm are used as follows:

*status contains a sequence of status codes, one for each
TrustAnchorUpdate structure in the Trust Anchor Update message.
The status codes appear in the same order as the
TrustAnchorUpdate structures to which they apply, and the number
of elements in the status code list MUST be the same as the
number of elements in the trust anchor update list. Each of the
status codes is discussed in Section 5.

*taInfo contains a sequence of TrustAnchorInfo structures. One
entry in the sequence is provided for each trust anchor contained
in the cryptographic module. These represent the state of the
trust anchors after the updates have been processed. See Section
3 for a discussion of the TrustAnchorInfo structure. The apex
trust anchor is the first trust anchor in the sequence.

4.5. Apex Trust Anchor Update TOC

The Apex Trust Anchor Update message replaces both the operational and
the contingency public keys associated with the apex trust anchor. Each
cryptographic module has exactly one apex trust anchor. Since the apex
trust anchor represents the ultimate authority over the cryptographic
module, no constraints are associated with the apex trust anchor. The
public key identifier of the operational public key is used to identify
the apex trust anchor in subsequent TAMP messages. The digital
signature on the Apex Trust Anchor Update message is validated with
either the current operational public key or the current contingency
public key. For the Apex Trust Anchor Update message that is validated
with the operational public key to be valid, the cryptographic module
MUST be a target of the update, the sequence number MUST be larger than
the most recently stored sequence number for the operational public
key, and the digital signature MUST be validated directly with the
operational public key. That is, no delegation via a certification path
is permitted. For the Apex Trust Anchor Update message that is
validated with the contingency public key to be valid, the
cryptographic module MUST be a target of the update, the provided
decryption key MUST properly decrypt the contingency public key, and
the digital signature MUST be validated directly with the decrypted
contingency public key. Again, no delegation via a certification path
is permitted.

If the Apex Trust Anchor Update message is validated using the
operational public key, then sequence number processing is handled
normally, as described in Section 6. If the Apex Trust Anchor Update
message is validated using the contingency public key, then the
TAMPMsgRef sequence number MUST contain a zero value. A sequence number
for subsequent messages that will be validated with the new operational

public key can optionally be provided. If no value is provided, then
the cryptographic module MUST be prepared to accept any sequence number
in the next TAMP message validated with the newly-installed apex trust
anchor operational public key. If the Apex Trust Anchor Update message
is valid and the clearTrustAnchors flag is set to TRUE, then all of the
management and identity trust anchors stored in the cryptographic
module MUST be deleted. That is, the new apex trust anchor MUST be the
only trust anchor remaining in the cryptographic module. If the Apex
Trust Anchor Update message is valid and the clearCommunities flag is
set to TRUE, then all community identifiers stored in the cryptographic
module MUST be deleted.

The SignedData structure includes a sid value, and it identifies the
apex trust anchor public key that will be used to validate the digital
signature on this TAMP message. The public key identifier for the
operational public key is known in advance, and it is stored as part of
the apex trust anchor. The public key identifier for the contingency
public key is not known in advance; however, the presence of the
unsigned attribute containing the symmetric key needed to decrypt the
contingency public key unambiguously indicates that the TAMP message
signer used the contingency private key to sign the Apex Trust Anchor
Update message.

If the digital signature on the Apex Trust Anchor Update message is
valid using either the apex trust anchor operational public key or the
apex trust anchor contingency public key, sequence number checking is
successful, and the cryptographic module is an intended recipient of
the TAMP message, then the cryptographic module MUST update the apex
trust anchor and return an Apex Trust Anchor Update Confirm message. If
an Apex Trust Anchor Update Confirm message is not returned, then a
TAMP Error message MUST be returned. Note that the sequence number MUST
be zero if the Apex Trust Anchor Update message is validated with the
apex trust anchor contingency public key.

The Apex Trust Anchor Update content type has the following syntax:

tamp-apex-update PKCS7-CONTENT-TYPE ::=
{ TAMPApexUpdate IDENTIFIED BY id-ct-TAMP-apexUpdate }

id-ct-TAMP-apexUpdate OBJECT IDENTIFIER ::= { id-tamp 5 }
TAMPApexUpdate ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
terse [1] TerseOrVerbose DEFAULT verbose,
msgRef TAMPMsgRef,

clearTrustAnchors BOOLEAN,
clearCommunities BOOLEAN,
apexTA TrustAnchorInfo }

The fields of TAMPApexUpdate are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*terse indicates the type of response that is desired. A terse
response is indicated by a value of 1, and a verbose response is
indicated by a value of 2, which is omitted during encoding since
it is the default value.

*msgRef contains two items: the target and the segNum. target
identifies the cryptographic module or collection of
cryptographic modules that are the target of the Apex Trust
Anchor Update message. The TargetIdentifier syntax as described
in Section 4.1 is used. seqNum is a single use value that will be
used to match the Apex Trust Anchor Update message with the Apex
Trust Anchor Update Confirm message. The sequence number is also
used to detect TAMP message replay if the message is validated
with the apex trust anchor operational public key. The sequence
number processing described in Section 6 MUST successfully
complete before any action is taken. However, segqNum MUST contain
a zero value if the message is validated with the apex trust
anchor contingency public key.

*clearTrustAnchors is a Boolean. If the value is set to TRUE, then
all of the management and identity trust anchors stored in the
cryptographic module MUST be deleted, leaving the newly installed
apex trust anchor as the only trust anchor in the cryptographic
module. If the value is set to FALSE, the other trust anchors
MUST NOT be changed.

*clearCommunities is a Boolean. If the value is set to TRUE, then
all of the community identifiers stored in the cryptographic
module MUST be deleted, leaving none. If the value is set to
FALSE, the list of community identifiers MUST NOT be changed.

*apexTA provides the information for the replacement apex trust
anchor. The TrustAnchorInfo structure is used to provide the
trusted public key and all of the information associated with it.
See Section 3 for a discussion of the TrustAnchorInfo structure;
the taType MUST use the apex choice. The pubKey, keyId, taTitle,
and certPath fields apply to the operational public key of the
apex trust anchor.

TOC

4.6. Apex Trust Anchor Update Confirm

The Apex Trust Anchor Update Confirm message is a reply by a
cryptographic module to a valid Apex Trust Anchor Update message. The
Apex Trust Anchor Update Confirm message provides success or failure
information for the apex trust anchor update. The Apex Trust Anchor
Update Confirm message MAY be signed or unsigned. An Apex Trust Anchor
Update Confirm message MUST be signed if the cryptographic module is
capable of signing it.

The Apex Trust Anchor Update Confirm content type has the following
syntax:

tamp-apex-update-confirm PKCS7-CONTENT-TYPE ::=
{ TAMPApexUpdateConfirm IDENTIFIED BY
id-ct-TAMP-apexUpdateConfirm }

id-ct-TAMP-apexUpdateConfirm OBJECT IDENTIFIER ::= { id-tamp 6 }

TAMPApexUpdateConfirm ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
apexReplace TAMPMsgRef,
apexConfirm ApexUpdateConfirm }

ApexUpdateConfirm ::= CHOICE {
terseApexConfirm [06] TerseApexUpdateConfirm,
verboseApexConfirm [1] VerboseApexUpdateConfirm }

TerseApexUpdateConfirm ::= StatusCode
VerboseApexUpdateConfirm ::= SEQUENCE {

status StatusCode,

taInfo TrustAnchorInfolList,

communities CommunityIdentifierList OPTIONAL }

The fields of TAMPApexUpdateConfirm are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*apexReplace identifies the Apex Trust Anchor Update message to
which the cryptographic module is responding. The apexReplace
structure repeats the TAMPMsgRef from the beginning of the Apex
Trust Anchor Update message (see Section 4.5). When the Apex
Trust Anchor Update message is validated with the operational
public key, the sequence number processing described in Section 6
MUST successfully complete before an Apex Trust Anchor Update
Confirm message is generated. When the Apex Trust Anchor Update
message is validated with the contingency public key, normal

sequence number processing is ignored, but the seqNum MUST be
zero.

*apexConfirm contains either a terse update confirmation or a
verbose update confirmation. The terse update confirmation is
represented by TerseApexUpdateConfirm, and the verbose response
is represented by VerboseApexUpdateConfirm.

The TerseApexUpdateConfirm contains a single status code, indicating
the success or failure of the apex trust anchor update. If the apex
trust anchor update failed, then the status code provides the reason
for the failure. Each of the status codes is discussed in Section 5.
The fields of VerboseApexUpdateConfirm are used as follows:

*status contains a single status code, indicating the success or
failure of the apex trust anchor update. If the apex trust anchor
update failed, then the status code provides the reason for the
failure. Each of the status codes is discussed in Section 5.

*taInfo contains a sequence of TrustAnchorInfo structures. One
entry in the sequence is provided for each trust anchor contained
in the cryptographic module. These represent the state of the
trust anchors after the apex trust anchor update has been
processed. See Section 3 for a description of the TrustAnchorInfo
structure. The apex trust anchor is the first trust anchor in the
sequence.

*communities is OPTIONAL. When present, it contains a sequence of
object identifiers. Each object identifier names one community to
which this cryptographic module belongs. When the module belongs
to no communities, this field is omitted.

4.7. Community Update TOC

The cryptographic module maintains a list of identifiers for the
communities of which it is a member. The Community Update message can
be used to remove or add community identifiers from this list. The
Community Update message MUST be signed. For the Community Update
message to be valid, the cryptographic module MUST be a target of the
update, the sequence number checking described in Section 6 MUST be
successful when the TAMP message source is a trust anchor, and the
digital signature MUST be validated by the apex trust anchor
operational public key, a management trust anchor authorized for the
id-ct-TAMP-communityUpdate content type, or via an X.509 certification
path originating with such a trust anchor.

If the cryptographic module supports the Community Update message, the
digital signature on the Community Update message is valid, sequence
number checking is successful, the signer is authorized for the id-ct-
TAMP-communityUpdate content type, and the cryptographic module is an
intended recipient of the TAMP message, then the cryptographic module
MUST make the specified updates and return a Community Update Confirm
message. If a Community Update Confirm message is not returned, then, a
TAMP Error message MUST be returned.

The Community Update message contains a batch of updates, and all of
the updates MUST be accepted for the cryptographic module to return a
successful Community Update Confirm message. The remove updates, if
present, MUST be processed before the add updates. This approach
prevents community identifiers that are intended to be mutually
exclusive from being installed by a successful addition and a failed
removal.

The Community Update content type has the following syntax:

tamp-community-update PKCS7-CONTENT-TYPE ::=
{ TAMPCommunityUpdate IDENTIFIED BY id-ct-TAMP-communityUpdate }

id-ct-TAMP-communityUpdate OBJECT IDENTIFIER ::= { id-tamp 7 }

TAMPCommunityUpdate ::= SEQUENCE {
version [0] TAMPVersion DEFAULT v2,
terse [1] TerseOrVerbose DEFAULT verbose,
msgRef TAMPMsgRef,
updates CommunityUpdates }

CommunityUpdates ::= SEQUENCE {
add [1] CommunityIdentifierList OPTIONAL,
remove [2] CommunityIdentifierList OPTIONAL }
-- At least one MUST be present

The fields of TAMPCommunityUpdate are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*terse indicates the type of response that is desired. A terse
response is indicated by a value of 1, and a verbose response is
indicated by a value of 2, which is omitted during encoding since
it is the default value.

*msgRef contains two items: the target and the segNum. target
identifies the cryptographic module or collection of
cryptographicmodules that are the target of the update message.
The TargetIdentifier syntax as described in Section 4.1 is used.
seqNum is a single use value that will be used to match the

Community Update message with the Community Update Confirm
message. The sequence number is also used to detect TAMP message
replay. The sequence number processing described in Section 6
MUST successfully complete before any of the updates are
processed.

*updates contains a sequence of community identifiers to be
removed and a sequence of community identifiers to be added.
These are represented by the CommunityUpdates structure.

The CommunityUpdates is a sequence of two OPTIONAL sequences, but at
least one of these sequences MUST be present. The first sequence
contains community identifiers to be removed, and if there are none, it
is absent. The second sequence contains community identifiers to be
added, and if there are none, it is absent. The remove updates, if
present, MUST be processed before the add updates. An error is
generated if any of the requested removals or additions cannot be
accomplished. However, requests to remove community identifiers that
are not present are treated as successful removals. Likewise, requests
to add community identifiers that are already present are treated as
successful additions. If an error is generated, the cryptographic
module community list MUST NOT be changed.

A description of the syntax associated with each of these actions
follows:

*remove is used to remove one or more community identifiers from
the cryptographic module.

*add is used to insert one or more new community identifiers into
the cryptographic module.

4.8. Community Update Confirm TOC

The Community Update Confirm message is a reply by a cryptographic
module to a valid Community Update message. The Community Update
Confirm message provides success or failure information for the
requested updates. Success is returned only if the whole batch of
updates is successfully processed. If any of the requested updates
cannot be performed, then a failure is indicated, and the set of
community identifiers stored in the cryptographic module is unchanged.
The Community Update Confirm message MAY be signed or unsigned. A
Community Update Confirm message MUST be signed if the cryptographic
module is capable of signing it.

The Community Update Confirm content type has the following syntax:

tamp-community-update-confirm PKCS7-CONTENT-TYPE ::=
{ TAMPCommunityUpdateConfirm IDENTIFIED BY
id-ct-TAMP-communityUpdateConfirm }

id-ct-TAMP-communityUpdateConfirm OBJECT IDENTIFIER ::=
{ id-tamp 8 }

TAMPCommunityUpdateConfirm ::= SEQUENCE {
version [@6] TAMPVersion DEFAULT v2,
update TAMPMsgRef,

commConfirm CommunityConfirm }

CommunityConfirm ::= CHOICE {
terseCommConfirm [@] TerseCommunityConfirm,
verboseCommConfirm [1] VerboseCommunityConfirm }

TerseCommunityConfirm ::= StatusCode
VerboseCommunityConfirm ::= SEQUENCE {
status StatusCode,

communities CommunityIdentifierList OPTIONAL }

The fields of TAMPCommunityUpdateConfirm are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*update identifies the Community Update message to which the
cryptographic module is responding. The update structure repeats
the TAMPMsgRef from the Community Update message (see Section
4.7). The sequence number processing described in Section 6 MUST
successfully complete before any of the updates are processed.

*commConfirm contains either a terse community update confirmation
or a verbose community update confirmation. The terse response is
represented by TerseCommunityConfirm, and the verbose response is
represented by VerboseCommunityConfirm.

The TerseCommunityConfirm contains a single status code, indicating the
success or failure of the Community Update message has been processed.
If the community update failed, then the status code indicates the
reason for the failure. Each of the status codes is discussed in
Section 5.

The fields of VerboseCommunityConfirm are used as follows:

*status contains a single status code, indicating the success or
failure of the Community Update message has been processed. If

the community update failed, then the status code indicates the
reason for the failure. Each of the status codes is discussed in
Section 5.

*communities contains the sequence of community identifiers
present in the cryptographic module after the update is
processed. When the module belongs to no communities, this field
is omitted.

4.9. Sequence Number Adjust TOC

The cryptographic module maintains the current sequence number for the
apex trust anchor and each management trust anchor. Sequence number
processing is discussed in Section 6. The Sequence Number Adjust
message can be used provide the most recently used sequence number to
one or more cryptographic modules, thereby reducing the possibility of
replay. The Sequence Number Adjust message MUST be signed. For the
Sequence Number Adjust message to be valid, the cryptographic module
MUST be an intended recipient of the Sequence Number Adjust message,
the sequence number MUST be equal to or larger than the most recently
stored sequence number for the originating trust anchor, and the
digital signature MUST be validated by the apex trust anchor
operational public key or a management trust anchor that is authorized
for the id-ct-TAMP-seqNumAdjust content type.

If the digital signature on the Sequence Number Adjust message is
valid, the sequence number is equal to or larger than the most recently
stored sequence number for the originating trust anchor, the signer is
authorized for the id-ct-TAMP-seqNumAdjust content type, and the
cryptographic module is an intended recipient of the TAMP message, then
the cryptographic module MUST update the sequence number associated
with the originating trust anchor and return a Sequence Number Adjust
Confirm message. If a Sequence Number Adjust Confirm message is not
returned, then a TAMP Error message MUST be returned.

The Sequence Number Adjust message contains an adjustment for the
sequence number of the TAMP message signer.

The Sequence Number Adjust content type has the following syntax:

tamp-sequence-number-adjust PKCS7-CONTENT-TYPE ::=
{ SequenceNumberAdjust IDENTIFIED BY id-ct-TAMP-seqNumAdjust }

id-ct-TAMP-segNumAdjust OBJECT IDENTIFIER ::= { id-tamp 10 }

SequenceNumberAdjust ::= SEQUENCE {
Version [0] TAMPVersion DEFAULT v2,
msgRef TAMPMsgRef }

The fields of SequenceNumberAdjust are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*msgRef contains two items: the target and the segNum. target
identifies the cryptographic module or collection of
cryptographic modules that are the target of the sequence number
adjust message. The TargetIdentifier syntax as described in
Section 4.1 is used. The allModules target is expected to be used
for Sequence Number Adjust messages. segNum MUST be equal to or
larger than the most recently stored sequence number for this
TAMP message source, and the value will be used to match the
Sequence Number Adjust message with the Sequence Number Adjust
Confirm message. The sequence number processing described in
Section 6 applies, except that the sequence number in a Sequence
Number Adjust message is acceptable if it matches the most
recently stored sequence number for this TAMP message source. If
sequence number checking completes successfully, then the
sequence number is adjusted, otherwise it remains unchanged.

4.10. Sequence Number Adjust Confirm TOC

The Sequence Number Adjust Confirm message is a reply by a
cryptographic module to a valid Sequence Number Adjust message. The
Sequence Number Adjust Confirm message provides success or failure
information. Success is returned only if the sequence number for the
trust anchor that signed the Sequence Number Adjust message originator
is adjusted. If the sequence number cannot be adjusted, then a failure
is indicated, and the sequence number stored in the cryptographic
module is unchanged. The Sequence Number Adjust Confirm message MAY be
signed or unsigned. A Sequence Number Adjust Confirm message MUST be
signed if the cryptographic module is capable of signing it.

The Sequence Number Adjust Confirm content type has the following
syntax:

tamp-sequence-number-adjust-confirm PKCS7-CONTENT-TYPE ::=
{ SequenceNumberAdjustConfirm IDENTIFIED BY
id-ct-TAMP-seqNumAdjustConfirm }

id-ct-TAMP-segNumAdjustConfirm OBJECT IDENTIFIER ::=
{ id-tamp 11 }

SequenceNumberAdjustConfirm ::= SEQUENCE {
version [0] TAMPVersion DEFAULT v2,
adjust TAMPMsgRef,
status StatusCode }

The fields of SequenceNumberAdjustConfirm are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*adjust identifies the Sequence Number Adjust message to which the
cryptographic module is responding. The adjust structure repeats
the TAMPMsgRef from the Sequence Number Adjust message (see
Section 4.9). The sequence number processing described in Section
6 MUST successfully complete to adjust the sequence number
associated with the Sequence Number Adjust message originator.

*status contains a single status code, indicating the success or
failure of the Sequence Number Adjust message processing. If the
adjustment failed, then the status code indicates the reason for
the failure. Each of the status codes is discussed in Section 5.

4.11. TAMP Error TOC

The TAMP Error message is a reply by a cryptographic module to any
invalid TAMP message. The TAMP Error message provides an indication of
the reason for the error. The TAMP Error message MAY be signed or
unsigned. A TAMP Error message MUST be signed if the cryptographic
module is capable of signing it.

The object identifier names the TAMP Error message content:

tamp-error PKCS7-CONTENT-TYPE ::=
{ TAMPError IDENTIFIED BY id-ct-TAMP-error }

id-ct-TAMP-error OBJECT IDENTIFIER ::= { id-tamp 9 }

TAMPError ::= SEQUENCE {
version [0] TAMPVersion DEFAULT v2,
msgType OBJECT IDENTIFIER,
status StatusCode,
msgRef TAMPMsgRef OPTIONAL }

The fields of TAMPError are used as follows:

*version identifies version of TAMP. For this version of the
specification, the default value, v2, MUST be used.

*msgType indicates the content type of the TAMP message that
caused the error.

*status contains a status code that indicates the reason for the
error. Each of the status codes is discussed in Section 5.

*msgRef is OPTIONAL, but whenever possible it SHOULD be present.
It identifies the TAMP message that caused the error. It repeats
the target and segNum from the TAMP message that caused the error
(see Sections 4.1, 4.3, 4.5, 4.7 and 4.9).

5. Status Codes TOC

The Trust Anchor Update Confirm, the Apex Trust Anchor Update Confirm,
the Community Update Confirm, the Sequence Number Adjust Confirm, and
the TAMP Error messages include status codes. The syntax for the status
codes is:

StatusCode ::= ENUMERATED {

success (0),
decodeFailure (1),
badContentInfo (2),
badSignedData (3),
badEncapContent (4),
badCertificate (5),
badSignerInfo (6),
badSignedAttrs (7),
badUnsignedAttrs (8),
missingContent (9),
noTrustAnchor (10),
notAuthorized (11),
badDigestAlgorithm (12),
badSignatureAlgorithm (13),
unsupportedKeySize (14),
unsupportedParameters (15),
signatureFailure (16),
insufficientMemory (17),
unsupportedTAMPMsgType (18),
apexTAMPAnchor (19),
improperTAAddition (20),
seqNumFailure (21),
contingencyPublicKeyDecrypt (22),
incorrectTarget (23),
communityUpdateFailed (24),
trustAnchorNotFound (25),
unsupportedTAAlgorithm (26),
unsupportedTAKeySize (27),
unsupportedContinPubKeyDecryptAlg (28),
missingSignature (29),
resourcesBusy (30),
versionNumberMismatch (31),
missingPolicySet (32),
revokedCertificate (33),
other (127) %}

The various values of StatusCode are used as follows:

*success is used to indicate that an update, portion of an update,
or adjust was processed successfully.

*decodeFailure is used to indicate that the cryptographic module
was unable to successfully decode the provided message. The
specified content type and the provided content do not match.

*badContentInfo is used to indicate that the ContentInfo syntax is
invalid or that the contentType carried within the ContentInfo is
unknown or unsupported.

*pbadSignedData is used to indicate that the SignedData syntax is
invalid, the version is unknown or unsupported, or more than one
entry is present in digestAlgorithms.

*badEncapContent is used to indicate that the
EncapsulatedContentInfo syntax is invalid. This error can be
generated due to problems located in SignedData.

*badCertificate is used to indicate that the syntax for one or
more certificates in CertificateSet is invalid.

*badSignerInfo is used to indicate that the SignerInfo syntax is
invalid, or the version is unknown or unsupported.

*badSignedAttrs is used to indicate that the signedAttrs syntax
within SignerInfo is invalid.

*badUnsignedAttrs is used to indicate that the unsignedAttrs
within SignerInfo contains an attribute other than the
contingency-public-key-decrypt-key unsigned attribute, which is
the only unsigned attribute supported by this specification.

*missingContent is used to indicate that the OPTIONAL eContent is
missing in EncapsulatedContentInfo, which is REQUIRED in this
specification. This error can be generated due to problems
located in SignedData.

*noTrustAnchor is used to indicate one of two possible error
situations. In one case, the subjectKeyIdentifier does not
identify the public key of a trust anchor or a certification path
that terminates with an installed trust anchor. In the other
case, the issuerAndSerialNumber is used to identify the TAMP
message signer, which is prohibited by this specification.

*notAuthorized is used to indicate one of two possible error
situations. In one case the sid within SignerInfo leads to an
installed trust anchor, but that trust anchor is not an
authorized signer for the received TAMP message content type.
Identity trust anchors are not authorized signers for any of the
TAMP message content types. In the other case, the signer of a
Trust Anchor Update message is not authorized to manage the to-
be-updated trust anchor as determined by a failure of the
subordination processing in Sec. 7.

*badDigestAlgorithm is used to indicate that the digestAlgorithm
in either SignerInfo or SignedData is unknown or unsupported.

*badSignatureAlgorithm is used to indicate that the
signatureAlgorithm in SignerInfo is unknown or unsupported.

*unsupportedKeySize is used to indicate that the
signatureAlgorithm in SignerInfo is known and supported, but the
TAMP message digital signature could not be validated because an
unsupported key size was employed by the signer.

*unsupportedParameters is used to indicate that the
signatureAlgorithm in SignerInfo is known, but the TAMP message
digital signature could not be validated because unsupported
parameters were employed by the signer.

*signatureFailure is used to indicate that the signatureAlgorithm
in SignerInfo is known and supported, but the digital signature
in the signature field within SignerInfo could not be validated.

*insufficientMemory indicates that the update could not be
processed because the cryptographic module did not have
sufficient memory to store the resulting trust anchor
configuration or community identifier.

*unsupportedTAMPMsgType indicates that the TAMP message could not
be processed because the cryptographic module does not support
the provided TAMP message type. This code will be used if the id-
ct-TAMP-communityUpdate content type is provided and the
cryptographic module does not support the Community Update
message. This status code will also be used if the contentType
value within eContentType is not one that is defined in this
specification.

*apexTAMPAnchor indicates that the update could not be processed
because the Trust Anchor Update message tried to remove the apex
trust anchor.

*improperTAAddition indicates that a trust anchor update is trying
to add a new trust anchor that may already exist, but some
attributes of the to-be-added trust anchor are being modified in
an improper manner. The desired trust anchor configuration may be
attainable with a change operation instead of an add operation.

*seqNumFailure indicates that the TAMP message could not be
processed because the processing of the sequence number, which is
described in Section 6, resulted in an error.

*contingencyPublicKeyDecrypt indicates that the update could not
be processed because an error occurred while decrypting the
contingency public key.

*incorrectTarget indicates that the query, update, or adjust
message could not be processed because the cryptographic module
is not the intended recipient. The target cryptographic module is
identified in one of two ways. HardwareModule identifies the
cryptographic module by the module type and serial number; in
which case, either one or both of these values does not match the
responding cryptographic module. Alternatively, community
identifies a group of cryptographic modules; in which case, the
responding cryptographic module does not belong to the identified
group.

*communityUpdateFailed indicates that the community update
requested the addition of a community identifier or the removal
of a community identifier, but the request could not be honored.

*trustAnchorNotFound indicates that a change to a trust anchor was
requested, but the referenced trust anchor is not represented in
the cryptographic module.

*unsupportedTAAlgorithm indicates that an update message would
result in the trust anchor with a public key associated with a
digital signature validation algorithm that is not implemented in
the cryptographic module. In addition, this status code is used
if the algorithm is supported, but the parameters associated with
the algorithm are not supported.

*unsupportedTAKeySize indicates that the trust anchor would
include a public key of a size that is not supported.

*unsupportedContinPubKeyDecryptAlg indicates that the decryption
algorithm for the apex trust anchor contingency public key is not
supported.

*missingSignature indicates that an unsigned TAMP message was
received, but the received TAMP message type MUST be signed.

*resourcesBusy indicates that the resources necessary to process
the TAMP message are not available at the present time, but the
resources might be available at some point in the future.

*versionNumberMismatch indicates that the version number in a
received TAMP message is not acceptable.

*missingPolicySet indicates that the policyFlags associated with a
trust anchor are set in a fashion that requires the policySet to
be present, but the policySet is missing.

*revokedCertificate indicates that one or more of the certificates
needed to properly process the TAMP message has been revoked.

*other indicates that the update could not be processed, but the
reason is not covered by any of the assigned status codes. Use of
this status code SHOULD be avoided.

6. Sequence Number Processing TOC

The sequence number processing facilities in TAMP represent a balance
between replay protection, operational considerations, and
cryptographic module memory management. The goal is to provide replay
protection without making TAMP difficult to use, creating an
environment where surprising error conditions occur on a regular basis,
or imposing onerous memory management requirements on implementations.
This balance is achieved by performing sequence number checking on TAMP
messages that are signed directly by a trust anchor, and skipping these
checks whenever the TAMP message originator is represented by a
certificate.

The TAMP Status Query, Trust Anchor Update, Apex Trust Anchor Update,
Community Update, and Sequence Number Adjust messages include a
sequence number. This single-use identifier is used to match a TAMP
message with the response to that TAMP message. When the TAMP message
is signed directly by a trust anchor, the sequence number is also used
to detect TAMP message replay.

To provide replay protection, each TAMP message originator MUST treat
the sequence number as a monotonically increasing non-negative integer.
The sequence number counter is associated with the signing operation
performed by the private key. The cryptographic module MUST ensure that
a newly received TAMP message that is validated directly by a trust
anchor public key contains a sequence number that is greater than the
most recent successfully processed TAMP message from that originator.
Note that the Sequence Number Adjust message is considered valid if the
sequence number is greater than or equal to the most recent
successfully processed TAMP message from that originator. If the
sequence number in a received TAMP message does not meet these
conditions, then the cryptographic module MUST reject the TAMP message,
returning a sequence number failure (seqNumFailure) error.

Whenever a trust anchor is authorized for TAMP messages, either as a
newly installed trust anchor or as a modification to an existing trust
anchor, if a sequence number value is not provided in the Trust Anchor
Update message, memory MUST be allocated for the sequence number and
set to zero. The first TAMP message signed by that trust anchor is not
rejected based on sequence number checks, and the sequence number from
that first TAMP message is stored. The sequence number for that trust
anchor could also be updated by the OPTIONAL sequence number field of a
Trust Anchor Update message that is received after the trust anchor is
installed. The TAMP message recipient MUST maintain a database of the

most recent sequence number from a successfully processed TAMP message
from each trust anchor. The index for this database is the trust anchor
public key. This could be the apex trust anchor operational public key
or a management trust anchor public key. In the first case, the apex
trust anchor operational public key is used directly to validate the
TAMP message digital signature. In the second case, a management trust
anchor public key is used directly to validate the TAMP message digital
signature.

Sequence number values MUST be 64-bit non-negative integers. Since ASN.
1 encoding of an INTEGER always includes a sign bit, a TAMP message
signer can generate 9,223,372,036,854,775,807 TAMP messages before
exhausting the 64-bit sequence number space, before which the TAMP
message signer MUST transition to a different public/private key pair.
The ability to reset a sequence number provided by the Trust Anchor
Update and Sequence Number Adjust messages is not intended to avoid the
transition to a different key pair; rather, it is intended to aid
recovery from operational errors. A relatively small non-volatile
storage requirement is imposed on the cryptographic module for the apex
trust anchor and each management trust anchor.

When the apex trust anchor or a management trust anchor is replaced or
removed from the cryptographic module, the associated sequence number
storage SHOULD be reclaimed.

7. Subordination Processing TOC

The apex trust anchor is unconstrained, which means that subordination
checking is not performed on Trust Anchor Update messages signed with
the apex trust anchor operational public key. Subordination checking is
performed as part of the validation process of all other Trust Anchor
Update messages.

For a Trust Anchor Update message that is not signed with the apex
trust anchor operational public key to be valid, the digital signature
MUST be validated using a management trust anchor associated with the
id-ct-TAMP-update content type, either directly or via an X.509
certification path originating with the apex trust anchor operational
public key or such a management trust anchor. The following
subordination checks MUST also be performed as part of validation.

Each Trust Anchor Update message contains one or more individual
updates, each of which is used to add, modify or remove a trust anchor.
For each individual update the privileges of the TAMP message signer
MUST be greater than or equal to the privileges of the trust anchor in
the update. The privileges of the TAMP message signer and the to-be-
updated trust anchor are determined based on the applicable CMS Content
Constraints. Specifically, the privileges of the TAMP message signer
are determined as described in section 3 of [CCC] (Housley, R. and C.
wallace, “Cryptographic Message Syntax (CMS) Content Signature

Constraints X.509 Certificate Extension,” in progress.) passing the
special value anyContentType and an empty set of attributes as input;
the privileges of the to-be-updated trust anchor are determined as
described below. If the privileges of a trust anchor in an update
exceed the privileges of the signer, that update MUST be rejected. Each
update is considered and accepted or rejected individually without
regard to other updates in the TAMP message. The privileges of the to-
be-updated trust anchors are determined as follows:

*If the to-be-updated trust anchor is the subject of an add
operation, the privileges are read from the taType.mgmt.taUsage
field of the corresponding TrustAnchorInfo in the update.

*If the to-be-updated trust anchor is the subject of a remove
operation, the trust anchor is located in the message recipient's
trust anchor store using the public key included in the update.
The privileges are read from the taType.mgmt.taUsage (or
equivalent) field in the to-be-updated trust anchor.

*If the to-be-updated trust anchor is the subject of a change
operation, the trust anchor has two distinct sets of privileges
that MUST be checked. The trust anchor's pre-change privileges
are determined by locating the trust anchor in the message
recipient's trust anchor store using the public key included in
the update and reading the privileges from the
taType.mgmt.taUsage (or equivalent) field in the trust anchor.
The trust anchor's post-change privileges are read from the
taType.mgmt.taUsage field of the corresponding
TrustAnchorChangeInfo in the update. If the taType.mgmt.taUsage
field is not present, then the trust anchor’s post-change
privileges are equivalent to the trust anchor’s pre-change
privileges.

The following steps can be used to determine if a Trust Anchor Update
message signer is authorized to manage each to-be-updated trust anchor
contained in a Trust Anchor Update message.

*The TAMP message signer's CMS Content Constraints privileges are
determined as described in section 3 of [CCC] (Housley, R. and C.
wWallace, “Cryptographic Message Syntax (CMS) Content Signature
Constraints X.509 Certificate Extension,” in progress.) passing
the special value anyContentType and an empty set of attributes
as input. Note that it is possible for the TAMP message signer to
have more than one possible certification path that will
authorize it to sign Trust Anchor Update messages, with each
certification path resulting in different CMS Content Constraints
privileges. The update is authorized if the processing below
succeeds for any one certification path of the TAMP message
signer. The resulting cms_permitted_content_types variable is

used to check each to-be-updated trust anchor contained in the
update message. The message signer MUST be authorized for the
Trust Anchor Update message. This can be confirmed using the
steps described in section 4 of [CCC] (Housley, R. and C.
wWallace, “Cryptographic Message Syntax (CMS) Content Signature
Constraints X.509 Certificate Extension,” in progress.).

*The privileges of each to-be-updated trust anchor in the TAMP
message MUST be checked against the message signer's privileges
(represented in the message signer’s cms_permitted_content_types
computed above) using the following steps. For change operations,
the following steps MUST be performed for the trust anchor's pre-
change privileges and the trust anchor's post-change privileges.

-Operations on identity trust anchors are permitted provided
the message signer is authorized for the Trust Anchor Update
message.

-If the to-be-updated trust anchor is unconstrained, the
message signer MUST also be unconstrained, i.e., the message
signer’s cms_permitted_content_types MUST be set to the
special value anyContentType. If the to-be-updated trust
anchor is unconstrained and the message signer is not, then
the message signer is not authorized to manage the trust
anchor and the update MUST be rejected.

-The message signer's authorization for each permitted content
type MUST be checked using the state variables and procedures
similar to those described in sections 3.2 and 3.3 of [CCC]
(Housley, R. and C. Wallace, “Cryptographic Message Syntax
(CMS) Content Signature Constraints X.509 Certificate
Extension,” in progress.). For each permitted content type in
the to-be-updated trust anchor's privileges,

oSet cms_effective_attributes equal to the value of the
attrConstraints field from the permitted content type.

oIf the content type does not match an entry in the message
signer’s cms_permitted_content_types, the message signer is
not authorized to manage the trust anchor and the update
MUST be rejected. Note, the special value anyContentType
produces a match for all content types with the resulting
matching entry containing the content type, canSource set
to TRUE and attrConstraints absent.

oIf the content type matches an entry in the message
signer’s cms_permitted_content_types, the canSource field
of the entry is FALSE and the canSource field in the to-be-
updated trust anchor's privilege is TRUE, the message

signer is not authorized to manage the trust anchor and the
update MUST be rejected.

oIf the content type matches an entry in the message
signer’s cms_permitted_content_types and the entry's
attrConstraints field is present, then constraints MUST be
checked. For each attrType in the entry's attrConstraints,
a corresponding attribute MUST be present in
cms_effective_attributes containing values from the entry's
attrConstraints. If values appear in the corresponding
attribute that are not in the entry's attrConstraints or if
there is no corresponding attribute, the message signer is
not authorized to manage the trust anchor and the update
MUST be rejected.

Once these steps are completed, if the update has not been rejected,
then the message signer is authorized to manage the to-be-updated trust
anchor.

Note that a management trust anchor that has only the id-ct-TAMP-update
permitted content type is useful only for managing identity trust
anchors. It can sign a Trust Anchor Update message, but it cannot
impact a management trust anchor that is associated with any other
content type.

8. Implementation Considerations TOC

A public key identifier is used to identify a TAMP message signer.
Since there is no guarantee that the same public key identifier is not
associated with more than one public key, implementations MUST be
prepared for one or more trust anchor to have the same public key
identifier. In practical terms, this means that when a digital
signature validation fails, the implementation MUST see if there is
another trust anchor with the same public key identifier that can be
used to validate the digital signature. While duplicate public key
identifiers are expected to be rare, implementations MUST NOT fail to
find the correct trust anchor when they do occur.

An X.500 distinguished name is used to identify certificate issuers and
certificate subjects. The same X.500 distinguished name can be
associated with more than one trust anchor. However, the trust anchor
public key will be different. The probability that two trust anchors
will have the same X.500 distinguished name and the same public key
identifier but a different public key is diminishingly small.
Therefore, the authority key identifier certificate extension can be
used to resolve X.500 distinguished name collisions.

9. Security Considerations TOC

The majority of this specification is devoted to the syntax and
semantics of TAMP messages. It relies on other specifications,
especially [RFC3852] (Housley, R., “Cryptographic Message Syntax
(CMS),” July 2004.) and [RFC3280] (Housley, R., Polk, W., Ford, W., and
D. Solo, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” April 2002.), for the
syntax and semantics of CMS protecting content types and X.509
certificates, respectively. Since TAMP messages that change the trust
anchor state of a cryptographic module are always signed by a Trust
Anchor Manager, no further data integrity or data origin authentication
mechanisms are needed; however, no confidentiality for these messages
is provided. Similarly, certificates are digitally signed, and no
additional data integrity or data origin authentication mechanisms are
needed. Trust anchor configurations, Trust Anchor Manager certificates,
and cryptographic module certificates are not intended to be sensitive.
As a result, this specification does not provide for confidentiality of
TAMP messages.

Security factors outside the scope of this specification greatly affect
the assurance provided. The procedures used by certification
authorities (CAs) to validate the binding of the subject identity to
their public key greatly affect the assurance associated with the
resulting certificate. This is particularly important when issuing
certificates to other CAs. In the context of TAMP, the issuance of an
end entity certificate under a management trust anchor is an act of
delegation. However, such end entities cannot further delegate. On the
other hand, issuance of a CA certificate under a management trust
anchor is an act of delegation where the CA can perform further
delegation. The scope of the delegation can be constrained by including
a CMS content constraints certificate extension [CCC] (Housley, R. and
C. wWallace, “Cryptographic Message Syntax (CMS) Content Signature
Constraints X.509 Certificate Extension,” in progress.) in a CA
certificate.

X.509 certification path construction involves comparison of X.500
distinguished names. Inconsistent application of name comparison rules
can result in acceptance of invalid X.509 certification paths or
rejection of valid ones. Name comparison can be extremely complex. To
avoid imposing this complexity on cryptographic modules, any
certificate profile used with TAMP SHOULD employ simple name structures
and impose rigorous restrictions on acceptable distinguished names,
including the way that they are encoded. The goal of that certificate
profile should be to enable simple binary comparison. That is, case
conversion, character set conversion, white space compression, and
leading and trailing white space trimming SHOULD be avoided.

Some digital signature algorithms require the generation of random one-
time values. For example, when generating a DSA digital signature, the
signer MUST generate a random k value [DSS] (, “FIPS Pub 186: Digital

Signature Standard,” May 1994.). Also, the generation of public/private
key pairs relies on random numbers. The use of an inadequate random
number generator (RNG) or an inadequate pseudo-random number generator
(PRNG) to generate such cryptographic values can result in little or no
security. An attacker may find it much easier to reproduce the random
number generation environment, searching the resulting small set of
possibilities, rather than brute force searching the whole space.
Compromise of an identity trust anchor private key permits unauthorized
parties to issue certificates that will be acceptable to all
cryptographic modules configured with the corresponding identity trust
anchor. The unauthorized private key holder will be limited by the
certification path controls associated with the identity trust anchor.
For example, clearance constraints in the identity trust anchor will
determine the clearances that will be accepted in certificates that are
issued by the unauthorized private key holder.

Compromise of a management trust anchor private key permits
unauthorized parties to generate signed messages that will be
acceptable to all cryptographic modules configured with the
corresponding management trust anchor. All devices that include the
compromised management trust anchor can be configured as desired by the
unauthorized private key holder within the limits of the subordination
checks described in Section 7. If the management trust anchor is
associated with content types other than TAMP, then the unauthorized
private key holder can generate signed messages of that type. For
example, if the management trust anchor is associated with firmware
packages, then the unauthorized private key holder can install
different firmware into the cryptographic module.

Compromise of the Apex Trust Anchor operational private key permits
unauthorized parties to generate signed messages that will be
acceptable to all cryptographic modules configured with the
corresponding apex trust anchor. All devices that include that apex
trust anchor can be configured as desired by the unauthorized private
key holder, and the unauthorized private key holder can generate signed
messages of any content type. The contingency private key offers a
potential way to recover from such a compromise.

The compromise of a CA’s private key leads to the same type of problems
as the compromise of an identity or a management trust anchor private
key. The unauthorized private key holder will be limited by the
certification path controls associated with the trust anchor. If the CA
is subordinate to a management trust anchor, the scope of potential
damage caused by a private key compromise is also limited by the CMS
content constraints certificate extension [CCC] (Housley, R. and C.
wWallace, “Cryptographic Message Syntax (CMS) Content Signature
Constraints X.509 Certificate Extension,” in progress.) in the CA
certificate, the CMS content constraints on any superior CA
certificates, and the CMS content constraints on the parent management
trust anchor.

The compromise of an end entity private key leads to the same type of
problems as the compromise of an identity or a management trust anchor

private key, except that the end entity is unable to issue any
certificates. The unauthorized private key holder will be limited by
the certification path controls associated with the trust anchor. If
the certified public key is subordinate to a management trust anchor,
the scope of potential damage caused by a private key compromise is
also limited by the CMS content constraints certificate extension [CCC]
(Housley, R. and C. Wallace, “Cryptographic Message Syntax (CMS)
Content Signature Constraints X.509 Certificate Extension,” in
progress.) in the end entity certificate, the CMS content constraints
on any superior CA certificates, and the CMS content constraints on the
parent management trust anchor.

Compromise of a cryptographic module’s digital signature private key
permits unauthorized parties to generate signed TAMP response messages,
masquerading as the cryptographic module.

Premature disclosure of the key-encryption key used to encrypt the apex
trust anchor contingency public key may result in early exposure of the
apex trust anchor contingency public key.

To implement TAMP, a cryptographic module needs to be able to parse
messages and certificates. Care must be taken to ensure that there are
no implementation defects in the TAMP message parser or the processing
that acts on the message content. A validation suite is one way to
increase confidence in the parsing of TAMP messages, CMS content types,
signed attributes, and certificates.

10. TIANA Considerations TOC

There are no IANA considerations. Please delete this section prior to
RFC publication.

11. References TOC

11.1. Normative References
TOC
[ccc] Housley, R. and C. Wallace, “Cryptographic Message
Syntax (CMS) Content Signature Constraints X.509
Certificate Extension,” in progress.
[ClearConstr] Turner, S., “Clearance and CA Clearance Constraints
Certificate Extensions,” in progress.
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Reguirement Levels,” BCP 14, RFC 2119, March 1997
(TXT, HTML, XML).

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml

[RFC2634]

[RFC3280]

[RFC3629]

[RFC3852]

[RFC4049]

[X.680]

[X.690]

Hoffman, P., “Enhanced Security Services for S/MIME,”
RFC 2634, June 1999 (TXT).

Housley, R., Polk, W., Ford, W., and D. Solo,
“Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile,”

RFC 3280, April 2002 (TXT).

Yergeau, F., “UTF-8, a transformation format of ISO
10646,"” STD 63, RFC 3629, November 2003 (TXT).
Housley, R., “Cryptographic Message Syntax (CMS),”
RFC 3852, July 2004 (TXT).

Housley, R., “BinaryTime: An Alternate Format for
Representing Date and Time in ASN.1,” RFC 4049,

April 2005 (TXT).

“ITU-T Recommendation X.680: Information Technology -
Abstract Syntax Notation One,” 1997.

“ITU-T Recommendation X.690 Information Technology -
ASN.1 encoding rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER),” 1997.

11.2. Informative References

[DSS]
[PKCS#6]

[RFC3281]

[RFC4108]

[X.208]

[X.501]

[X.509]

Appendix A.

TOC
“FIPS Pub 186: Digital Signature Standard,” May 1994.
“PKCS #6: Extended-Certificate Syntax Standard, Version
1.5,” November 1993.
Farrell, S. and R. Housley, “An Internet Attribute
Certificate Profile for Authorization,” RFC 3281,
April 2002 (TXT).
Housley, R., "“Using Cryptographic Message Syntax (CMS) to
Protect Firmware Packages,” RFC 4108, August 2005 (TXT).
“ITU-T Recommendation X.208 - Specification of Abstract
Syntax Notation One (ASN.1),” 1988.
“ITU-T Recommendation X.501 - The Directory - Models,”
1993.
“ITU-T Recommendation X.509 - The Directory -
Authentication Framework,” 2000.

ASN.1 Modules TOC

Appendix A.1 provides the normative ASN.1 definitions for the
structures described in this specification using ASN.1 as defined in
[X.680] (, “ITU-T Recommendation X.680: Information Technology -

Abstract Syntax Notation One,” 1997.). Appendix A.2 provides a module

using ASN.1 as defined in [X.208] (, “ITU-T Recommendation X.208 -

mailto:phoffman@imc.org
http://tools.ietf.org/html/rfc2634
http://www.rfc-editor.org/rfc/rfc2634.txt
http://tools.ietf.org/html/rfc3280
http://tools.ietf.org/html/rfc3280
http://www.rfc-editor.org/rfc/rfc3280.txt
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
http://tools.ietf.org/html/rfc3852
http://www.rfc-editor.org/rfc/rfc3852.txt
http://tools.ietf.org/html/rfc4049
http://tools.ietf.org/html/rfc4049
http://www.rfc-editor.org/rfc/rfc4049.txt
http://tools.ietf.org/html/rfc3281
http://tools.ietf.org/html/rfc3281
http://www.rfc-editor.org/rfc/rfc3281.txt
http://tools.ietf.org/html/rfc4108
http://tools.ietf.org/html/rfc4108
http://www.rfc-editor.org/rfc/rfc4108.txt

Specification of Abstract Syntax Notation One (ASN.1),” 1988.). The
module in A.2 removes usage of newer ASN.1 features that provide
support for limiting the types of elements that may appear in certain
SEQUENCE and SET constructions. Otherwise, the modules are compatible
in terms of encoded representation, i.e., the modules are bits-on-the-
wire compatible aside from the limitations on SEQUENCE and SET
constituents. A.2 is included as a courtesy to developers using ASN.1
compilers that do not support current ASN.1.

TOC

A.1. ASN.1 Module Using 1993 Syntax

TrustAnchorManagementProtocolVersion2
{ joint-iso-ccitt(2) country(16) us(840) organization(1)
gov(101) dod(2) infosec(1) modules(®) TBD }

DEFINITIONS IMPLICIT TAGS
BEGIN

IMPORTS
ATTRIBUTE, Attribute
FROM InformationFramework -- from [X.501]

{ joint-iso-itu-t(2) ds(5) module(1)

informationFramework(1) 4 }
ContentType
FROM CryptographicMessageSyntax2004 -- [RFC3852]

{ iso(1) member-body(2) us(840) rsadsi(113549)

pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2004(24) }
AlgorithmIdentifier, Certificate, Name
FROM PKIX1Explicit88 -- from [RFC3280]

{ iso0(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1l-explicit(18) }

CertificatePolicies, KeyIdentifier, NameConstraints
FROM PKIX1Implicit88 -- from <xref target="RFC3280"/>

{ iso0(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-implicit(19) }

CMSContentConstraints
FROM CMSContentConstraintsCertExtn-93 -- [CCC]

{ iso0(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
cmsContentConstraints-93(42) }

CAClearanceConstraints
FROM Clearance-CAClearanceConstraints93 -- from [ClearConstr]
{ joint-iso-ccitt(2) country(16) us(840) organization(1)
gov(101) dod(2) infosec(1l) modules(©®) 9997 } ;
-- Placeholder for TBD

-- Trust Anchor Information

TrustAnchorInfo ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
pubKey PublicKeyInfo,
keyId KeyIdentifier,
taType TrustAnchorType,
taTitle TrustAnchorTitle OPTIONAL,
certPath CertPathControls OPTIONAL }

PublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
publicKey BIT STRING }

KeyIdentifier ::= OCTET STRING

TrustAnchorType ::= CHOICE {
apex [0] ApexTrustAnchorInfo,
mgmt [1] MgmtTrustAnchorInfo,
ident [2] NULL }

ApexTrustAnchorInfo ::= SEQUENCE {
continPubKey ApexContingencyKey,
segNum SeqNumber OPTIONAL }

ApexContingencyKey ::= SEQUENCE {
wrapAlgorithm AlgorithmIdentifier,
wrappedContinPubKey OCTET STRING }

SegNumber ::= INTEGER (0..9223372036854775807)
MgmtTrustAnchorInfo ::= SEQUENCE {

taUsage TrustAnchorUsage,
seqNum SegNumber OPTIONAL }

TrustAnchorUsage ::= CMSContentConstraints
CMSContentConstraints ::= ContentTypeConstraintList
ContentTypeConstraintList ::= SEQUENCE SIZE (1..MAX) OF

ContentTypeConstraint

ContentTypeConstraint ::= SEQUENCE {
contentType ContentType,
canSource BOOLEAN DEFAULT TRUE,

attrConstraints AttrConstraintList OPTIONAL }
AttrConstraintList ::= SEQUENCE SIZE (1..MAX) OF AttrConstraint
AttrConstraint ::= SEQUENCE {

attrType AttributeType,
attrvalues SET SIZE (1..MAX) OF Attributevalue }

ContentType ::= OBJECT IDENTIFIER
TrustAnchorTitle ::= UTF8String (SIZE (1..64))
CertPathControls ::= SEQUENCE {

taName Name,

selfSigned [0] Certificate OPTIONAL,

policySet [1] CertificatePolicies OPTIONAL,

policyFlags [2] CertPolicyFlags OPTIONAL,

clearanceConstr [3] CAClearanceConstraints OPTIONAL,

nameConstr [4] NameConstraints OPTIONAL }
CertPolicyFlags ::= BIT STRING {

inhibitPolicyMapping (0),
requireExplicitPolicy (1),
inhibitAnyPolicy (2) 3}

-- Object Identifier Arc for TAMP Message Content Types

id-tamp OBJECT IDENTIFIER ::= {
joint-iso-ccitt(2) country(16) us(840) organization(1)
gov(101) dod(2) infosec(1l) formats(2) 77 }

-~ CMS Content Types
PKCS7-CONTENT-TYPE ::= TYPE-IDENTIFIER

TAMPContentTypes PKCS7-CONTENT-TYPE ::= {
tamp-status-query |
tamp-status-response |
tamp-update |
tamp-update-confirm |
tamp-apex-update |
tamp-apex-update-confirm |
tamp-community-update |
tamp-community-update-confirm |
tamp-sequence-number-adjust |
tamp-sequence-number-adjust-confirm |
tamp-error,

-- Expect additional content types --

-- TAMP Status Query Message
tamp-status-query PKCS7-CONTENT-TYPE ::=
{ TAMPStatusQuery IDENTIFIED BY id-ct-TAMP-statusQuery }

id-ct-TAMP-statusQuery OBJECT IDENTIFIER ::= { id-tamp 1 }
TAMPStatusQuery ::= SEQUENCE {
version [06] TAMPVersion DEFAULT v2,
terse [1] TerseOrVerbose DEFAULT verbose,
query TAMPMsgRef }
TAMPVersion ::= INTEGER { vi(1), v2(2) }

TerseOrVerbose ::= ENUMERATED { terse(1), verbose(2) }

TAMPMsgRef ::= SEQUENCE {
target TargetIdentifier,
seqNum SegNumber }
TargetIdentifier ::= CHOICE {
hwModules [1] HardwareModuleIdentifierList,
communities [2] CommunityIdentifierList,
allModules [3] NULL }
HardwareModuleIdentifierList ::= SEQUENCE SIZE (1..MAX) OF
HardwareModules
HardwareModules ::= SEQUENCE {
hwType OBJECT IDENTIFIER,

hwSerialEntries SEQUENCE SIZE (1..MAX) OF HardwareSerialEntry }

HardwareSerialEntry ::= CHOICE {
all NULL,
single OCTET STRING,
block SEQUENCE {
low OCTET STRING,
high OCTET STRING } }
CommunityIdentifierList ::= SEQUENCE SIZE (1..MAX) OF Community
Community ::= OBJECT IDENTIFIER

-- TAMP Status Response Message

tamp-status-response PKCS7-CONTENT-TYPE ::=
{ TAMPStatusResponse IDENTIFIED BY id-ct-TAMP-statusResponse }

id-ct-TAMP-statusResponse OBJECT IDENTIFIER ::= { id-tamp 2 }
TAMPStatusResponse ::= SEQUENCE {

version [6] TAMPVersion DEFAULT v2,

query TAMPMsgRef,

response StatusResponse }
StatusResponse ::= CHOICE {

terseResponse [0] TerseStatusResponse,

verboseResponse [1] VerboseStatusResponse }
TerseStatusResponse ::= SEQUENCE {

taKeyIds KeyIdentifiers,

communities CommunityIdentifierList OPTIONAL }

KeyIdentifiers ::= SEQUENCE SIZE (1..MAX) OF KeyIdentifier

VerboseStatusResponse ::= SEQUENCE {
taInfo TrustAnchorInfolist,
continPubKeyDecryptAlg AlgorithmIdentifier,
communities CommunityIdentifierList OPTIONAL }
TrustAnchorInfolList ::= SEQUENCE SIZE (1..MAX) OF TrustAnchorInfo

-- Trust Anchor Update Message

tamp-update PKCS7-CONTENT-TYPE ::=
{ TAMPUpdate IDENTIFIED BY id-ct-TAMP-update }

id-ct-TAMP-update OBJECT IDENTIFIER ::= { id-tamp 3 }
TAMPUpdate ::= SEQUENCE {

version [06] TAMPVersion DEFAULT v2,

terse [1] TerseOrVerbose DEFAULT verbose,

msgRef TAMPMsgRef,

updates SEQUENCE SIZE (1..MAX) OF TrustAnchorUpdate }
TrustAnchorUpdate ::= CHOICE {

add [1] EXPLICIT TrustAnchorInfo,

remove [2] PublicKeyInfo,

change [3] TrustAnchorChangeInfo }
TrustAnchorChangeInfo ::= SEQUENCE {

pubKey PublicKeyInfo,

keyId KeyIdentifier OPTIONAL,

taType [0] TrustAnchorChangeType OPTIONAL,

taTitle [1] TrustAnchorTitle OPTIONAL,

certPath [2] CertPathControls OPTIONAL }
TrustAnchorChangeType ::= CHOICE {

mgmt [1] MgmtTrustAnchorInfo,

ident [2] NULL }

-- Trust Anchor Update Confirm Message

tamp-update-confirm PKCS7-CONTENT-TYPE ::=
{ TAMPUpdateConfirm IDENTIFIED BY id-ct-TAMP-updateConfirm }

id-ct-TAMP-updateConfirm OBJECT IDENTIFIER ::= { id-tamp 4 }

TAMPUpdateConfirm ::= SEQUENCE {
version [06] TAMPVersion DEFAULT v2,

update TAMPMsgRef,

confirm UpdateConfirm }
UpdateConfirm ::= CHOICE {
terseConfirm [0] TerseUpdateConfirm,
verboseConfirm [1] VerboseUpdateConfirm }
TerseUpdateConfirm ::= StatusCodelList
StatusCodelList ::= SEQUENCE SIZE (1..MAX) OF StatusCode
VerboseUpdateConfirm ::= SEQUENCE {
status StatusCodelist,
taInfo TrustAnchorInfolList }

-- Apex Trust Anchor Update Message

tamp-apex-update PKCS7-CONTENT-TYPE ::=
{ TAMPApexUpdate IDENTIFIED BY id-ct-TAMP-apexUpdate }

id-ct-TAMP-apexUpdate OBJECT IDENTIFIER ::= { id-tamp 5 }
TAMPApexUpdate ::= SEQUENCE {

version [@] TAMPVersion DEFAULT v2,

terse [1] TerseOrVerbose DEFAULT verbose,

msgRef TAMPMsgRef,

clearTrustAnchors BOOLEAN,

clearCommunities BOOLEAN,

apexTA TrustAnchorInfo }

-- Apex Trust Anchor Update Confirm Message

tamp-apex-update-confirm PKCS7-CONTENT-TYPE
{ TAMPApexUpdateConfirm IDENTIFIED BY
id-ct-TAMP-apexUpdateConfirm }

id-ct-TAMP-apexUpdateConfirm OBJECT IDENTIFIER ::= { id-tamp 6 }
TAMPApexUpdateConfirm ::= SEQUENCE {
version [06] TAMPVersion DEFAULT v2,
apexReplace TAMPMsgRef,
apexConfirm ApexUpdateConfirm }
ApexUpdateConfirm ::= CHOICE {
terseApexconfirm [0] TerseApexUpdateConfirm,
verboseApexConfirm [1] VerboseApexUpdateConfirm }

TerseApexUpdateConfirm ::= StatusCode

VerboseApexUpdateConfirm ::= SEQUENCE {

status StatusCode,
taInfo TrustAnchorInfolList,
communities CommunityIdentifierList OPTIONAL }

-- Community Update Message

tamp-community-update PKCS7-CONTENT-TYPE ::=
{ TAMPCommunityUpdate IDENTIFIED BY id-ct-TAMP-communityUpdate }

id-ct-TAMP-communityUpdate OBJECT IDENTIFIER ::= { id-tamp 7 }
TAMPCommunityUpdate ::= SEQUENCE {

version [6] TAMPVersion DEFAULT v2,

terse [1] TerseOrVerbose DEFAULT verbose,

msgRef TAMPMsgRef,

updates CommunityUpdates }
CommunityUpdates ::= SEQUENCE {

add [1] CommunityIdentifierList OPTIONAL,

remove [2] CommunityIdentifierList OPTIONAL }

-- At least one must be present

-- Community Update Confirm Message

tamp-community-update-confirm PKCS7-CONTENT-TYPE
{ TAMPCommunityUpdateConfirm IDENTIFIED BY
id-ct-TAMP-communityUpdateConfirm }

id-ct-TAMP-communityUpdateConfirm OBJECT IDENTIFIER ::=
{ id-tamp 8 }

TAMPCommunityUpdateConfirm ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
update TAMPMsgRef,
commConfirm CommunityConfirm }

CommunityConfirm ::= CHOICE {
terseCommConfirm [0] TerseCommunityConfirm,
verboseCommConfirm [1] VerboseCommunityConfirm }

TerseCommunityConfirm ::= StatusCode

VerboseCommunityConfirm ::= SEQUENCE {
status StatusCode,
communities CommunityIdentifierList OPTIONAL }

-- Sequence Number Adjust Message

tamp-sequence-number-adjust PKCS7-CONTENT-TYPE ::=
{ SequenceNumberAdjust IDENTIFIED BY id-ct-TAMP-seqgNumAdjust }

id-ct-TAMP-seqNumAdjust OBJECT IDENTIFIER ::= { id-tamp 10 }

SequenceNumberAdjust ::= SEQUENCE {
version [06] TAMPVersion DEFAULT v2,
msgRef TAMPMsgRef }

-- Sequence Number Adjust Message

tamp-sequence-number-adjust-confirm PKCS7-CONTENT-TYPE ::=
{ SequenceNumberAdjustConfirm IDENTIFIED BY
id-ct-TAMP-segNumAdjustConfirm }

id-ct-TAMP-segNumAdjustConfirm OBJECT IDENTIFIER ::= { id-tamp 11 }

SequenceNumberAdjustConfirm ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
adjust TAMPMsgRef,
status StatusCode }

-- TAMP Error Message

tamp-error PKCS7-CONTENT-TYPE ::=
{ TAMPError IDENTIFIED BY id-ct-TAMP-error }

id-ct-TAMP-error OBJECT IDENTIFIER ::= { id-tamp 9 }
TAMPError ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
msgType OBJECT IDENTIFIER,
status StatusCode,
msgRef TAMPMsgRef OPTIONAL }

-- Status Codes

StatusCode ::= ENUMERATED {
success (0),
decodeFailure (1),
badContentInfo (2),
badSignedData (3),
badEncapContent (4),

badCertificate (5),

badSignerInfo (6),

badSignedAttrs (7),
badUnsignedAttrs (8),
missingContent (9),
noTrustAnchor (10),
notAuthorized (11),
badDigestAlgorithm (12),
badSignatureAlgorithm (13),
unsupportedKeySize (14),
unsupportedParameters (15),
signatureFailure (16),
insufficientMemory (17),
unsupportedTAMPMsgType (18),
apexTAMPAnchor (19),
improperTAAddition (20),
seqgNumFailure (21),
contingencyPublicKeyDecrypt (22),
incorrectTarget (23),
communityUpdateFailed (24),
trustAnchorNotFound (25),
unsupportedTAAlgorithm (26),
unsupportedTAKeySize (27),
unsupportedContinPubKeyDecryptAlg (28),
missingSignature (29),
resourcesBusy (30),
versionNumberMismatch (31),
missingPolicySet (32),
other (127) }

-- Object Identifier Arc for Attributes

id-attributes OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) country(16)
us(840) organization(1) gov(101) dod(2) infosec(1) 5 }

-- TAMP Unsigned Attributes

TAMPUnsignedAttributes ATTRIBUTE ::= {

contingency-public-key-decrypt-key,
-- Expect additional attributes --

-- contingency-public-key-decrypt-key unsigned attribute

1
-~

contingency-public-key-decrypt-key ATTRIBUTE
WITH SYNTAX PlaintextSymmetricKey
SINGLE VALUE TRUE
ID id-aa-TAMP-contingencyPublicKeyDecryptKey }

id-aa-TAMP-contingencyPublicKeyDecryptKey OBJECT IDENTIFIER ::= {
id-attributes 63 }

PlaintextSymmetricKey ::= OCTET STRING

END

T0C

A.2. ASN.1 Module Using 1988 Syntax

TrustAnchorManagementProtocolVersion2_88
{ joint-iso-ccitt(2) country(16) us(840) organization(1)
gov(101) dod(2) infosec(1) modules(0) 997 }
-- Placeholder for TBD

DEFINITIONS IMPLICIT TAGS
BEGIN

IMPORTS
ContentType
FROM CryptographicMessageSyntax2004 -- [RFC3852]

{ iso(1) member-body(2) us(840) rsadsi(113549)

pkcs(1) pkcs-9(9) smime(16) modules(®) cms-2004(24) }
AlgorithmIdentifier, Certificate, Name, Attribute
FROM PKIX1Explicit88 -- [RFC3280]

{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkixl-explicit(18) }

CertificatePolicies, KeyIdentifier, NameConstraints
FROM PKIX1Implicit88 -- [RFC3280]

{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-implicit(19) }

CMSContentConstraints
FROM CMSContentConstraintsCertExtn-88 -- [CCC]

{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
cmsContentConstr-88(41) }

CAClearanceConstraints
FROM Clearance-CAClearanceConstraints88 -- [ClearConstr]
{ joint-iso-ccitt(2) country(16) us(840) organization(1)
gov(101) dod(2) infosec(1l) modules(®) 9998 } ;
-- Placeholder for TBD

-- Trust Anchor Information

TrustAnchorInfo ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
pubKey PublicKeyInfo,
keyId KeyIdentifier,
taType TrustAnchorType,
taTitle TrustAnchorTitle OPTIONAL,
certPath CertPathControls OPTIONAL }
PublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,

publicKey BIT STRING }

TrustAnchorType ::= CHOICE {

apex [6] ApexTrustAnchorInfo,
mgmt [1] MgmtTrustAnchorInfo,
ident [2] NULL }
ApexTrustAnchorInfo ::= SEQUENCE {
continPubKey ApexContingencyKey,
segNum SegNumber OPTIONAL }
ApexContingencyKey ::= SEQUENCE {
wrapAlgorithm AlgorithmIdentifier,

wrappedContinPubKey OCTET STRING }

SegNumber ::= INTEGER (0.. 9223372036854775807)
MgmtTrustAnchorInfo ::= SEQUENCE {

taUsage TrustAnchorUsage,

segNum SeqNumber OPTIONAL }
TrustAnchorUsage = CMSContentConstraints
TrustAnchorTitle = UTF8String (SIZE (1..64))
CertPathControls ::= SEQUENCE {

taName Name,

selfSigned [0] Certificate OPTIONAL,

policySet [1] CertificatePolicies OPTIONAL,

policyFlags [2] CertPolicyFlags OPTIONAL,

clearanceConstr [3] CAClearanceConstraints OPTIONAL,

nameConstr [4] NameConstraints OPTIONAL }
CertPolicyFlags ::= BIT STRING {

inhibitPolicyMapping (0),
requireeExplicitPolicy (1),
inhibitAnyPolicy (2) }
-- Object Identifier Arc for TAMP Message Content Types
id-tamp OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) country(16) us(840)
organization(1) gov(101) dod(2) infosec(1) formats(2) 77 }
-- CMS Content Types
-- TAMP Status Query Message
id-ct-TAMP-statusQuery OBJECT IDENTIFIER ::= { id-tamp 1 }

TAMPStatusQuery ::= SEQUENCE {

version [06] TAMPVersion DEFAULT v2,

terse [1] TerseOrVerbose DEFAULT verbose,
query TAMPMsgRef }
TAMPVersion ::= INTEGER { vi(1), v2(2) }
TerseOrVerbose ::= ENUMERATED { terse(1), verbose(2) }
TAMPMsgRef ::= SEQUENCE {
target TargetIdentifier,
seqgNum SegNumber }
TargetIdentifier ::= CHOICE {
hwModules [1] HardwareModuleIdentifierList,
communities [2] CommunityIdentifierlList,
allModules [3] NULL }
HardwareModuleIdentifierList ::= SEQUENCE SIZE (1..MAX) OF
HardwareModules
HardwareModules ::= SEQUENCE {
hwType OBJECT IDENTIFIER,

hwSerialEntries SEQUENCE SIZE (1..MAX) OF HardwareSerialEntry }

HardwareSerialEntry ::= CHOICE {
all NULL,
single OCTET STRING,
block SEQUENCE {
low OCTET STRING,
high OCTET STRING } }
CommunityIdentifierList ::= SEQUENCE SIZE (1..MAX) OF Community
Community ::= OBJECT IDENTIFIER

-- TAMP Status Response Message

id-ct-TAMP-statusResponse OBJECT IDENTIFIER ::= { id-tamp 2 }
TAMPStatusResponse ::= SEQUENCE {
version [06] TAMPVersion DEFAULT v2,
query TAMPMsgRef,
response StatusResponse }
StatusResponse ::= CHOICE {
terseResponse [@] TerseStatusResponse,
verboseResponse [1] VerboseStatusResponse }

TerseStatusResponse ::= SEQUENCE {

taKeyIds KeyIdentifiers,

communities CommunityIdentifierList OPTIONAL }
KeyIdentifiers ::= SEQUENCE SIZE (1..MAX) OF KeyIdentifier
VerboseStatusResponse ::= SEQUENCE {

taInfo TrustAnchorInfolist,

continPubKeyDecryptAlg AlgorithmIdentifier,

communities CommunityIdentifierList OPTIONAL }
TrustAnchorInfolList ::= SEQUENCE SIZE (1..MAX) OF TrustAnchorInfo

-- Trust Anchor Update Message

id-ct-TAMP-update OBJECT IDENTIFIER ::= { id-tamp 3 }
TAMPUpdate ::= SEQUENCE {

version [6] TAMPVersion DEFAULT v2,

terse [1] TerseOrVerbose DEFAULT verbose,

msgRef TAMPMsgRef,

updates SEQUENCE SIZE (1..MAX) OF TrustAnchorUpdate }
TrustAnchorUpdate ::= CHOICE {

add [1] EXPLICIT TrustAnchorInfo,

remove [2] PublicKeyInfo,

change [3] TrustAnchorChangeInfo }
TrustAnchorChangeInfo ::= SEQUENCE {

pubKey PublicKeyInfo,

keyId KeyIdentifier OPTIONAL,

mgmtTAType [0] MgmtTrustAnchorInfo OPTIONAL,

taTitle [1] TrustAnchorTitle OPTIONAL,

certPath [2] CertPathControls OPTIONAL }

-- Trust Anchor Update Confirm Message

id-ct-TAMP-updateConfirm OBJECT IDENTIFIER ::= { id-tamp 4 }
TAMPUpdateConfirm ::= SEQUENCE {
version [06] TAMPVersion DEFAULT v2,
update TAMPMsgRef,
confirm UpdateConfirm }
UpdateConfirm ::= CHOICE {
terseConfirm [0] TerseUpdateConfirm,
verboseConfirm [1] VerboseUpdateConfirm }

TerseUpdateConfirm ::= StatusCodelList

StatusCodelList ::= SEQUENCE SIZE (1..MAX) OF StatusCode

VerboseUpdateConfirm ::= SEQUENCE {
status StatusCodelist,
taInfo TrustAnchorInfolList }

-- Apex Trust Anchor Update Message

id-ct-TAMP-apexUpdate OBJECT IDENTIFIER ::= { id-tamp 5 }
TAMPApexUpdate ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
terse [1] TerseOrVerbose DEFAULT verbose,
msgRef TAMPMsgRef,
clearTrustAnchors BOOLEAN,
apexTA TrustAnchorInfo }

-- Apex Trust Anchor Update Confirm Message

id-ct-TAMP-apexUpdateConfirm OBJECT IDENTIFIER ::= { id-tamp 6 }
TAMPApexUpdateConfirm ::= SEQUENCE {

version [6] TAMPVersion DEFAULT v2,

apexReplace TAMPMsgRef,

apexconfirm ApexUpdateConfirm }
ApexUpdateConfirm ::= CHOICE {

terseApexConfirm [0] TerseApexUpdateConfirm,

verboseApexConfirm [1] VerboseApexUpdateConfirm }
TerseApexUpdateConfirm ::= StatusCode
VerboseApexUpdateConfirm ::= SEQUENCE {

status StatusCode,

taInfo TrustAnchorInfolist,

communities CommunityIdentifierList OPTIONAL }

-- Community Update Message

id-ct-TAMP-communityUpdate OBJECT IDENTIFIER ::= { id-tamp 7 }
TAMPCommunityUpdate ::= SEQUENCE {

version [0] TAMPVersion DEFAULT v2,

terse [1] TerseOrVerbose DEFAULT verbose,

msgRef TAMPMsgRef,

updates CommunityUpdates }

CommunityUpdates ::= SEQUENCE {
remove [1] CommunityIdentifierList OPTIONAL,
add [2] CommunityIdentifierList OPTIONAL }
-- At least one must be present

-- Community Update Confirm Message
id-ct-TAMP-communityUpdateConfirm OBJECT IDENTIFIER ::= { id-tamp 8 }

TAMPCommunityUpdateConfirm ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
update TAMPMsgRef,
commConfirm CommunityConfirm }

CommunityConfirm ::= CHOICE {
terseCommConfirm [0] TerseCommunityConfirm,
verboseCommConfirm [1] VerboseCommunityConfirm }

TerseCommunityConfirm ::= StatusCode

VerboseCommunityConfirm ::= SEQUENCE {
status StatusCode,
communities CommunityIdentifierList OPTIONAL }

-- Sequence Number Adjust Message

id-ct-TAMP-seqNumAdjust OBJECT IDENTIFIER ::= { id-tamp 10 }
-- Placeholder for TBD

SequenceNumberAdjust ::= SEQUENCE {
version [06] TAMPVersion DEFAULT v2,
msgRef TAMPMsgRef }

-- Sequence Number Adjust Message

id-ct-TAMP-seqNumAdjustConfirm OBJECT IDENTIFIER ::= { id-tamp 11 }
-- Placeholder for TBD

SequenceNumberAdjustConfirm ::= SEQUENCE {
version [6] TAMPVersion DEFAULT v2,
adjust TAMPMsgRef,
status StatusCode }

-- TAMP Error Message

id-ct-TAMP-error OBJECT IDENTIFIER ::= { id-tamp 9 }

TAMPError ::= SEQUENCE {

version [6] TAMPVersion DEFAULT v2,
msgType OBJECT IDENTIFIER,

status StatusCode,

msgRef TAMPMsgRef OPTIONAL }

-- Status Codes

StatusCode ::= ENUMERATED {
success (0),
decodeFailure (1),
badContentInfo (2),
badSignedData (3),
badEncapContent (4),
badCertificate (5),
badSignerInfo (6),
badSignedAttrs (7),
badUnsignedAttrs (8),
missingContent (9),
noTrustAnchor (10),
notAuthorized (11),
badDigestAlgorithm (12),
badSignatureAlgorithm (13),
unsupportedKeySize (14),
unsupportedParameters (15),
signatureFailure (16),
insufficientMemory (17),
unsupportedTAMPMsgType (18),
apexTAMPAnchor (19),
improperTAAddition (20),
seqgNumFailure (21),
contingencyPublicKeyDecrypt (22),
incorrectTarget (23),
communityUpdateFailed (24),
trustAnchorNotFound (25),
unsupportedTAAlgorithm (26),
unsupportedTAKeySize (27),
unsupportedContinPubKeyDecryptAlg (28),
missingSignature (29),
resourcesBusy (30),
versionNumberMismatch (31),
missingPolicySet (32),
other (127) }

-- Object Identifier Arc for Attributes

id-attributes OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) country(16)
us(840) organization(1) gov(101) dod(2) infosec(1) 5 }

-- id-aa-TAMP-contingencyPublicKeyDecryptKey uses

-- PlaintextSymmetricKey syntax

id-aa-TAMP-contingencyPublicKeyDecryptKey OBJECT IDENTIFIER ::= {
id-attributes 63 }

PlaintextSymmetricKey ::= OCTET STRING

END

Authors' Addresses
TOC

Russ Housley

Vigil Security, LLC

918 Spring Knoll Drive

Herndon, VA 20170
Email: housley@vigilsec.com

Raksha Reddy

National Security Agency

Suite 6751

9800 Savage Road

Fort Meade, MD 20755
Email: r.reddy@radium.ncsc.mil

Carl wallace
Cygnacom Solutions
Suite 5200
7925 Jones Branch Drive
McLean, VA 22102

Email: cwallace@cygnacom.com

Full Copyright Statement

TOC
Copyright © The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND

mailto:housley@vigilsec.com
mailto:r.reddy@radium.ncsc.mil
mailto:cwallace@cygnacom.com

THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

http://www.ietf.org/ipr
http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	Trust Anchor Management Protocol (TAMP)draft-housley-tamp-00
	Status of this Memo
	Abstract
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Trust Anchors
	1.2.1. Apex Trust Anchors
	1.2.2. Management Trust Anchors
	1.2.3. Identity Trust Anchors
	1.3. Architectural Elements
	1.3.1. Cryptographic Module
	1.3.2. TAMP Protocol Processing Dependencies
	1.3.3. Application-Specific Protocol Processing
	1.4. ASN.1 Encoding
	2. Cryptographic Message Syntax Profile
	2.1. Content Info
	2.2. SignedData Info
	2.2.1. SignerInfo
	2.2.2. EncapsulatedContentInfo
	2.2.3. Signed Attributes
	2.2.3.1. Content-Type Attribute
	2.2.3.2. Message-Digest Attribute
	2.2.3.3. Content-Hints Attribute
	2.2.3.4. Binary-Signing-Time Attribute
	2.2.4. Unsigned Attributes
	2.2.4.1. Contingency Public Key Decrypt Key Attribute
	3. Trust Anchor Information Syntax
	4. Trust Anchor Management Protocol Messages
	4.1. TAMP Status Query
	4.2. TAMP Status Query Response
	4.3. Trust Anchor Update
	4.4. Trust Anchor Update Confirm
	4.5. Apex Trust Anchor Update
	4.6. Apex Trust Anchor Update Confirm
	4.7. Community Update
	4.8. Community Update Confirm
	4.9. Sequence Number Adjust
	4.10. Sequence Number Adjust Confirm
	4.11. TAMP Error
	5. Status Codes
	6. Sequence Number Processing
	7. Subordination Processing
	8. Implementation Considerations
	9. Security Considerations
	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References
	Appendix A. ASN.1 Modules
	A.1. ASN.1 Module Using 1993 Syntax
	A.2. ASN.1 Module Using 1988 Syntax
	Authors' Addresses
	Full Copyright Statement
	Intellectual Property

