
Secure TELNET Working Group Russell Housley (SPYRUS)
 Todd Horting (SPYRUS)
Internet-Draft Peter Yee (SPYRUS)
 April 2000

TELNET Authentication Using KEA and SKIPJACK

 <draft-housley-telnet-auth-keasj-05.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Distribution of this memo is unlimited. Please send comments to the
 <telnet-ietf@bsdi.com> mailing list.

Abstract

 This document defines a method to authenticate TELNET [1,5] using the
 Key Exchange Algorithm (KEA)[4], and encryption of the TELNET stream
 using SKIPJACK[4]. Two encryption modes are specified; one provides
 data integrity and the other does not. It relies on the TELNET
 Authentication Option [2].

Housley, Horting, Yee Expires September 2000 [Page 1]

https://datatracker.ietf.org/doc/html/draft-housley-telnet-auth-keasj-05.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET DRAFT April 2000

1. Command Names and Codes

 AUTHENTICATION 37

 Authentication Commands:

 IS 0
 SEND 1
 REPLY 2
 NAME 3

 Authentication Types:

 KEA_SJ 12
 KEA_SJ_INTEG 13

 Modifiers:

 AUTH_WHO_MASK 1
 AUTH_CLIENT_TO_SERVER 0
 AUTH_SERVER_TO CLIENT 1

 AUTH_HOW_MASK 2
 AUTH_HOW_ONE_WAY 0
 AUTH_HOW_MUTUAL 2

 ENCRYPT_MASK 20
 ENCRYPT_OFF 0
 ENCRYPT_USING_TELOPT 4
 ENCRYPT_AFTER_EXCHANGE 16
 ENCRYPT_RESERVED 20

 INI_CRED_FWD_MASK 8
 INI_CRED_FWD_OFF 0
 INI_CRED_FWD_ON 8

 Sub-option Commands:

 KEA_CERTA_RA 1
 KEA_CERTB_RB_IVB_NONCEB 2
 KEA_IVA_RESPONSEB_NONCEA 3
 KEA_RESPONSEA 4

2. TELNET Security Extensions

 TELNET, as a protocol, has no concept of security. Without
 negotiated options, it merely passes characters back and forth

Housley, Horting, Yee Expires September 2000 [Page 2]

INTERNET DRAFT April 2000

 between the NVTs represented by the two TELNET processes. In its
 most common usage as a protocol for remote terminal access (TCP port
 23), TELNET normally connects to a server that requires user-level
 authentication through a user name and password in the clear. The
 server does not authenticate itself to the user.

 The TELNET Authentication Option provides for:

 * User authentication -- replacing or augmenting the normal host
 password mechanism;
 * Server authentication -- normally done in conjunction with user
 authentication;
 * Session parameter negotiation -- in particular, encryption key
 and attributes;
 * Session protection -- primarily encryption of the data and
 embedded command stream, but the encryption algorithm may also
 provide data integrity.

 In order to support these security services, the two TELNET entities
 must first negotiate their willingness to support the TELNET
 Authentication Option. Upon agreeing to support this option, sub-
 options determine the authentication protocol to be used, and
 possibly the remote user name to be used for authorization checking.
 Encryption is negotiated along with the type of the authentication.

 Authentication and parameter negotiation occur within an unbounded
 series of exchanges. The server proposes a preference-ordered list
 of authentication types (mechanisms) that it supports. In addition
 to listing the mechanisms it supports, the server qualifies each
 mechanism with a modifier that specifies whether the authentication
 is to be unilateral or mutual, and in which direction the
 authentication is to be performed, and if encryption of data is
 desired. The client selects one mechanism from the list and responds
 to the server indicating its choice and the first set of
 authentication data needed for the selected authentication type. The
 client may ignore a request to encrypt data and so indicate, but the
 server may also terminate the connection if the client refuses
 encryption. The server and the client then proceed through whatever
 number of iterations is required to arrive at the requested
 authentication.

 Encryption is started immediately after the Authentication options
 are completed.

3. Use of Key Exchange Algorithm (KEA)

 This paper specifies the method in which KEA is used to achieve
 TELNET Authentication. KEA (in conjunction with SKIPJACK) [4]

Housley, Horting, Yee Expires September 2000 [Page 3]

INTERNET DRAFT April 2000

 provides authentication and confidentiality. Integrity may also be
 provided.

 TELNET entities may use KEA to provide mutual authentication and
 support for the setup of data encryption keys. A simple token format
 and set of exchanges delivers these services.

 NonceA and NonceB used in this exchange are 64-bit bit strings. The
 client generates NonceA, and the server generates NonceB. The nonce
 value is selected randomly. The nonce is sent in a big endian form.
 The encryption of the nonce will be done with the same mechanism that
 the session will use, detailed in the next section.

 Ra and Rb used in this exchange are 1024 bit strings and are defined
 by the KEA Algorithm[4].

 The IVa and IVb are 24 byte Initialization Vectors. They are
 composed of "THIS IS NOT LEAF" followed by 8 random bytes.

 CertA is the clients certificate. CertB is the server's certificate.
 Both certificates are X.509 certificates [6] that contain KEA public
 keys [7]. The client must validate the server's certificate before
 using the KEA public key it contains. Likewise, the server must
 validate the client's certificate before using the KEA public key it
 contains.

 On completing these exchanges, the parties have a common SKIPJACK
 key. Mutual authentication is provided by verification of the
 certificates used to establish the SKIPJACK encryption key and
 successful use of the derived SKIPJACK session key. To protect
 against active attacks, encryption will take place after successful
 authentication. There will be no way to turn off encryption and
 safely turn it back on; repeating the entire authentication is the
 only safe way to restart it. If the user does not want to use
 encryption, he may disable encryption after the session is
 established.

3.1. SKIPJACK Modes

 There are two distinct modes for encrypting TELNET streams; one
 provides integrity and the other does not. Because TELNET is
 normally operated in a character-by-character mode, the SKIPJACK with
 stream integrity mechanism requires the transmission of 4 bytes for
 every TELNET data byte. However, a simplified mode SKIPJACK without
 integrity mechanism will only require the transmission of one byte
 for every TELNET data byte.

 The cryptographic mode for SKIPJACK with stream integrity is Cipher

Housley, Horting, Yee Expires September 2000 [Page 4]

INTERNET DRAFT April 2000

 Feedback on 32 bits of data (CFB-32) and the mode of SKIPJACK is
 Cipher Feedback on 8 bits of data (CFB-8).

3.1.1. SKIPJACK without stream integrity

 The first and least complicated mode uses SKIPJACK CFB-8. This mode
 provides no stream integrity.

 For SKIPJACK without stream integrity, the two-octet authentication
 type pair is KEA_SJ CLIENT_TO_SERVER | AUTH_HOW_MUTUAL |
 ENCRYPT_AFTER_EXCHANGE | INI_CRED_FWD_OFF. This indicates that the
 SKIPJACK without integrity mechanism will be used for mutual
 authentication and TELNET stream encryption. Figure 1 illustrates
 the authentication mechanism of KEA followed by SKIPJACK without
 stream integrity.

 Client (Party A) Server (Party B)

 <-- IAC DO AUTHENTICATION

 IAC WILL AUTHENTICATION -->

 <-- IAC SB AUTHENTICATION SEND
 <list of authentication options>
 IAC SE

 IAC SB AUTHENTICATION
 NAME <user name> -->

 IAC SB AUTHENTICATION IS
 KEA_SJ
 CLIENT_TO_SERVER |
 AUTH_HOW_MUTUAL |
 ENCRYPT_AFTER_EXCHANGE |
 INI_CRED_FWD_OFF
 KEA_CERTA_RA
 CertA||Ra IAC SE -->

 Figure 1 (continued)

Housley, Horting, Yee Expires September 2000 [Page 5]

INTERNET DRAFT April 2000

 Figure 1 (continued)

 Client (Party A) Server (Party B)

 <-- IAC SB AUTHENTICATION REPLY
 KEA_SJ
 CLIENT_TO_SERVER |
 AUTH_HOW_MUTUAL |
 ENCRYPT_AFTER_EXCHANGE |
 INI_CRED_FWD_OFF
 IVA_RESPONSEB_NONCEA
 KEA_CERTB_RB_IVB_NONCEB
 CertB||Rb||IVb||
 Encrypt(NonceB)
 IAC SE

 IAC SB AUTHENTICATION IS
 KEA_SJ
 CLIENT_TO_SERVER |
 AUTH_HOW_MUTUAL |
 ENCRYPT_AFTER_EXCHANGE |
 INI_CRED_FWD_OFF
 KEA_IVA_RESPONSEB_NONCEA
 IVa||Encrypt((NonceB XOR 0x0C12)||NonceA)
 IAC SE -->

 <client begins encryption>
 <-- IAC SB AUTHENTICATION REPLY
 KEA_SJ
 CLIENT_TO_SERVER |
 AUTH_HOW_MUTUAL |
 ENCRYPT_AFTER_EXCHANGE |
 INI_CRED_FWD_OFF
 KEA_RESPONSEA
 Encrypt(NonceA XOR 0x0C12)
 IAC SE

 <server begins encryption>

 Figure 1.

3.1.2. SKIPJACK with stream integrity

 SKIPJACK with stream integrity is more complicated. It uses the
 SHA-1 [3] one-way hash function to provide integrity of the
 encryption stream as follows:

 Set H0 to be the SHA-1 hash of a zero-length string.

Housley, Horting, Yee Expires September 2000 [Page 6]

INTERNET DRAFT April 2000

 Cn is the nth character in the TELNET stream.
 Hn = SHA-1(Hn-1||Cn), where Hn is the hash value
 associated with the nth character in the stream.
 ICVn is set to the three most significant bytes of Hn.
 Transmit Encrypt(Cn||ICVn).

 The ciphertext that is transmitted is the SKIPJACK CFB-32 encryption
 of (Cn||ICVn). The receiving end of the TELNET link reverses the
 process, first decrypting the ciphertext, separating Cn and ICVn,
 recalculating Hn, recalculating ICVn, and then comparing the received
 ICVn with the recalculated ICVn. Integrity is indicated if the
 comparison succeeds, and Cn can then be processed normally as part of
 the TELNET stream. Failure of the comparison indicates some loss of
 integrity, whether due to active manipulation or loss of
 cryptographic synchronization. In either case, the only recourse is
 to drop the TELNET connection and start over.

 For SKIPJACK with stream integrity, the two-octet authentication type
 pair is KEA_SJ_INTEG CLIENT_TO_SERVER | AUTH_HOW_MUTUAL |
 ENCRYPT_AFTER_EXCHANGE | INI_CRED_FWD_OFF. This indicates that the
 KEA SKIPJACK with integrity mechanism will be used for mutual
 authentication and TELNET stream encryption. Figure 2 illustrates
 the authentication mechanism of KEA SKIPJACK with stream integrity.

 Client (Party A) Server (Party B)

 <-- IAC DO AUTHENTICATION

 IAC WILL AUTHENTICATION -->

 <-- IAC SB AUTHENTICATION SEND
 <list of authentication options>
 IAC SE

 IAC SB AUTHENTICATION
 NAME <user name> -->

 IAC SB AUTHENTICATION IS
 KEA_SJ_INTEG
 CLIENT_TO_SERVER |
 AUTH_HOW_MUTUAL |
 ENCRYPT_AFTER_EXCHANGE |
 INI_CRED_FWD_OFF
 KEA_CERTA_RA
 CertA||Ra IAC SE -->

 Figure 2 (continued)

Housley, Horting, Yee Expires September 2000 [Page 7]

INTERNET DRAFT April 2000

 Figure 2 (continued)

 Client (Party A) Server (Party B)

 <-- IAC SB AUTHENTICATION REPLY
 KEA_SJ_INTEG
 CLIENT_TO_SERVER |
 AUTH_HOW_MUTUAL |
 ENCRYPT_AFTER_EXCHANGE |
 INI_CRED_FWD_OFF
 IVA_RESPONSEB_NONCEA
 KEA_CERTB_RB_IVB_NONCEB
 CertB||Rb||IVb||
 Encrypt(NonceB)
 IAC SE

 IAC SB AUTHENTICATION IS
 KEA_SJ_INTEG
 CLIENT_TO_SERVER |
 AUTH_HOW_MUTUAL |
 ENCRYPT_AFTER_EXCHANGE |
 INI_CRED_FWD_OFF
 KEA_IVA_RESPONSEB_NONCEA
 IVa||Encrypt((NonceB XOR 0x0D12)||NonceA)
 IAC SE -->

 <client begins encryption>
 <-- IAC SB AUTHENTICATION REPLY
 KEA_SJ_INTEG
 CLIENT_TO_SERVER |
 AUTH_HOW_MUTUAL |
 ENCRYPT_AFTER_EXCHANGE |
 INI_CRED_FWD_OFF
 KEA_RESPONSEA
 Encrypt(NonceA XOR 0x0D12)
 IAC SE

 <server begins encryption>

 Figure 2

4.0. Security Considerations

 This entire memo is about security mechanisms. For KEA to provide
 the authentication discussed, the implementation must protect the
 private key from disclosure. Likewise, the SKIPJACK keys must be
 protected from disclosure.

Housley, Horting, Yee Expires September 2000 [Page 8]

INTERNET DRAFT April 2000

 Implementations must randomly generate KEA private keys,
 initialization vectors (IVs), and nonces. The use of inadequate
 pseudo-random number generators (PRNGs) to generate cryptographic
 keys can result in little or no security. An attacker may find it
 much easier to reproduce the PRNG environment that produced the keys,
 searching the resulting small set of possibilities, rather than brute
 force searching the whole key space. The generation of quality
 random numbers is difficult. RFC 1750 [8] offers important guidance
 in this area, and Appendix 3 of FIPS Pub 186 [9] provides one quality
 PRNG technique.

 By linking the enabling of encryption as a side effect of successful
 authentication, protection is provided against an active attacker.
 If encryption were enabled as a separate negotiation, it would
 provide a window of vulnerability from when the authentication
 completes, up to and including the negotiation to turn on encryption.
 The only safe way to restart encryption, if it is turned off, is to
 repeat the entire authentication process.

5. IANA Considerations

 The authentication types KEA_SJ and KEA_SJ_INTEG and their associated
 suboption valuesare registered with IANA. Any suboption values used
 to extend the protocol as described in this document must be registered
 with IANA before use. IANA is instructed not to issue new suboption
 values without submission of documentation of their use.

6.0. Acknowledgements

 We would like to thank William Nace for support during implementation
 of this specification.

7.0. References

 [1] - Postel, J., Reynolds, J., "TELNET Protocol Specification".
RFC 854. May 1983.

 [2] - T. Ts'o, "TELNET Authentication Option".
 <draft-tso-telnet-auth-enc-02.txt>, July 1999.

 [3] - Secure Hash Standard. FIPS Pub 180-1. April 17, 1995.

 [4] - "SKIPJACK and KEA Algorithm Specification", Version 2.0,
 May 29, 1998. Available from

http://csrc.nist.gov/encryption/skipjack-kea.htm

 [5] - Postel, J., Reynolds, J., "TELNET Option Specifications".
RFC 855. May 1983.

https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/draft-tso-telnet-auth-enc-02.txt
http://csrc.nist.gov/encryption/skipjack-kea.htm
https://datatracker.ietf.org/doc/html/rfc855

Housley, Horting, Yee Expires September 2000 [Page 9]

INTERNET DRAFT April 2000

 [6] - Housley, R., Ford, W., Polk, W. and D. Solo, "Internet
 X.509 Public Key Infrastructure: X.509 Certificate and CRL
 Profile", RFC 2459, January 1999.

 [7] - Housley, R., Polk, W., "Internet X.509 Public Key
 Infrastructure - Representation of Key Exchange Algorithm (KEA)
 Keys in Internet X.509 Public Key Infrastructure Cerificates",

RFC 2528, March 1999.

 [8] - Eastlake, D., Crocker, S. and J. Schiller, "Randomness
 Recommendations for Security", RFC 1750, December 1994.

 [9) - National Institute of Standards and Technology.
 FIPS Pub 186: Digital Signature Standard. 19 May 1994.

8.0. Authors' Addresses

 Russell Housley
 SPYRUS
 381 Elden Street, Suite 1120
 Herndon, VA 20170
 USA
 Email: housley@spyrus.com

 Todd Horting
 SPYRUS
 381 Elden Street, Suite 1120
 Herndon, VA 20170
 USA
 Email: thorting@spyrus.com

 Peter Yee
 SPYRUS
 5303 Betsy Ross Drive
 Santa Clara, CA 95054
 USA
 Email: yee@spyrus.com

https://datatracker.ietf.org/doc/html/rfc2459
https://datatracker.ietf.org/doc/html/rfc2528
https://datatracker.ietf.org/doc/html/rfc1750

Housley, Horting, Yee Expires September 2000 [Page 10]

 Jeffrey Altman * Sr.Software Designer * Kermit-95 for Win32 and OS/2
 The Kermit Project * Columbia University
 612 West 115th St #716 * New York, NY * 10025
http://www.kermit-project.org/k95.html * kermit-support@kermit-project.org

http://www.kermit-project.org/k95.html

