Network Working Group L. Howard

Internet-Draft PADL
Intended status: Experimental N. wWilliams
Expires: June 12, 2014 Cryptonector

December 9, 2013

A SASL and GSS-API Mechanism for the BrowserID Authentication Protocol
draft-howard-gss-browserid-07. txt

Abstract

This document defines protocols, procedures and conventions for a
Generic Security Service Application Program Interface (GSS-API)
security mechanism based on the BrowserID authentication mechanism.
Through the GS2 family of mechanisms defined in RFC 5801, these
protocols also define how Simple Authentication and Security Layer
(SASL, REC 4422) applications may use BrowserID.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on June 12, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

Howard & Williams Expires June 12, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft BrowserID SASL & GSS-API December 2013

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1 Discovery and Negotiation 5
1.2 Authentication .o 5
1.3 Message protection services 6
2. Requirements notation 7
3. Naming . 8
3.1 GSS name types 8
3.1.1 GSS_C_NT_BROWSERID_PRINCIPAL 8
3.1.2 GSS_C_NT_USER_NAME 8
3.1.3 GSS_C_NT_HOSTBASED_SERVICE 8
3.1.4 GSS_C_NT_DOMAINBASED_SERVICE 9
3.1.5 GSS_C_NT_ANONYMOUS 9
3.2. Name canonicalization 9
3.3. Exported name token format 9
3.4. Naming extensions 9
4, Context tokens 10
4.1 Base protocol 10
4.1.1 Initial context token 10
4.1.2. Acceptor context token 11
4.1.3 Initiator context completion 12
4.2 Mutual authentication . . 12
4.2.1 Initiator mutual authentlcatlon context token 13
4.2.2 Acceptor mutual authentication context token 13
4.2.3 Initiator mutual authentication context completion 13
4.2.4. Acceptor certificate advertisement 14
4.3 Fast re-authentication 15
4.3.1 Ticket generation e e e e e e 15
4.3.2 Initiator re-authentication context token 15
4.3.3. Acceptor re-authentication context token 16
4.3.4 Interaction with mutual authentication 17
4.3.5 Ticket renewal . 17
4.4 Extra round-trip (XRT) optlon 17
4.4.1 Initiator XRT advertisement 17
4.4.2. Acceptor XRT advertisement 18
4.4.3 Initiator XRT context token . 18
4.4.4. Acceptor XRT context token valldatlon 18
4.4.5 Interaction with message protection services 18
5. Validation 19
5.1. Expiry times 19
5.2. Audience 19
5.3 Channel blndlngs 19
5.4 Key agreement 19

Howard & Williams Expires June 12, 2014 [Page 2]

Internet-Draft BrowserID SASL & GSS-API

(6]
[6)]

‘CT)\CD‘U‘I‘U‘I‘
= ~N O

(9]
=
=

(o))
=
N

(o)
=
w

[e]
=
N

o
=
al

(o))
=
[))

o
[N
~l

o
[N
e}

o
=
©

[e]
N

(o)
N
[N

()]
N
N

(0]
N
w

[e2)
N
NN

[e]
N
[6)]

()]
N
(0]

(0]
w

o
w
=

[e]
w
N

(@]
N

N\N‘

~
N =

ok
a1 | W

~
(@]

\l
o
=

~
~

‘H “O ‘@ [© oo ‘
N =

[N H‘H [N
Rk kEe
N R N [

Signatures

Replay detection

Return flags

Assertion claims

Request (initiator/UA) assertlon
"aud" (Audience)

"exp" (Expiry time)

"iat" (Issued at time)

"nbf" (Not before time)

"epk" (Ephemeral Public Key)

"cb" (Channel binding)

"nonce" (Mutual authentication nonce)
"tkt" (Ticket)

"opts" (Options) .o
Response (acceptor/RP) assertion
"iat" (Issued at time)

"epk" (Ephemeral Public Key)
"exp" (Expiry time) e
"nonce" (Mutual authentication nonce)
"tkt" (Ticket)

"jti" (JWT ID) o
Error (acceptor/RP) assertion
"gss-maj" (GSS major status code)
"gss-min" (GSS minor status code)
XRT assertion

Key derivation

Diffie-Hellman Key (DHK)

Context Master Key (CMK)

RP Response Key (RRK)

Context Root Key (CRK)
Authenticator Root Key (ARK)
Authenticator Session Key (ASK)
Extra Round Trip Key (XRTK)

GSS Pseudo-Random Function (PRF)
Example .

Security Con51derat10ns

Host certificates for mutual authentlcatlon

Error statuses

IANA Considerations
OID Registry

SASL Registry
References .o
Normative References
Informative References
Authors' Addresses

December 2013

Db DB BBDBDWWW[WI[W[W[WI[WIN NN
GERREEEEEERIEBEEBREEBESEERFIERFEREREEBERRRERRRRREEE

Howard & Williams Expires June 12, 2014 [Page 3]

Internet-Draft BrowserID SASL & GSS-API December 2013

1.

Introduction

[BrowserID] is a web-based three-party security protocol by which
user agents can present to a Relying Party (RP) a signed assertion of
e-mail address ownership. BrowserID was intended to be used for web
authentication. We find BrowserID to be useful in general, therefore
we define herein how to use it in many more applications.

The Simple Authentication and Security Layer (SASL) [RFC4422] is a
framework for providing authentication and message protection
services via pluggable mechanisms. Protocols that support it include
IMAP, SMTP, and XMPP.

The Generic Security Service Application Program Interface (GSS-API)
[REC2743] provides a framework for authentication and message
protection services through a common programming interface. This
document conforms to the SASL and GSS-API bridge specified in
[REC5801], so it defines both a SASL and GSS-API mechanism.

The BrowserID mechanism described in this document reuses the
existing web-based BrowserID protocol, but profiles it for use in
applications that support SASL or GSS-API, adding features such as
key agreement, mutual authentication, and fast re-authentication.

The following diagram illustrates the interactions between the three
parties in the GSS BrowserID protocol. Note that the terms client,
initiator and user agent (UA) are used interchangeably in this
document, as are server, acceptor and relying party (RP).

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc5801

Howard & Williams Expires June 12, 2014 [Page 4]

Internet-Draft BrowserID SASL & GSS-API December 2013

Y

S SRS +
| BrowserID |
| identity |
| provider |
S SRS +
// \\
// \\
// \\
// \\
make signed // \\ fetch IdP public
certificate // \\ key over HTTPS
for user's // \\ (RP may cache)
public key // \\
// \\
// \\
// \\
|/ N
o m e e e oo + o mm e e - +
SASL or GSS	GSS BrowserID	SASL or GSS
client/UA RS >	server/RP	
(initiator)		(acceptor)
o m e e e e oo + o mm e e e - +

Figure 1: Interworking Architecture

.1. Discovery and Negotiation

The means of discovering GSS-API peers and their supported mechanisms
is out of this specification's scope. They may use SASL [REC4422] or
the Simple and Protected Negotiation mechanism (SPNEGO) [RFC4178].

Discovery of a BrowserID identity provider (IdP) for a user is
described in the BrowserID specification. A domain publishes a
document containing their public key and URIs for authenticating and
provisioning users, or pointer to an authority containing such a
document.

.2. Authentication

The GSS-API protocol involves a client, known as the initiator,
sending an initial security context token of a chosen GSS-API
security mechanism to a peer, known as the acceptor. The two peers
subsequently exchange, synchronously, as many security context tokens
as necessary to complete the authentication or fail. The specific
number of context tokens exchanged varies by security mechanism: in
the case of the BrowserID mechanism, it is typically two (i.e. a
single round trip), however it can be more in some cases. Once

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4178

Howard & Williams Expires June 12, 2014 [Page 5]

Internet-Draft BrowserID SASL & GSS-API December 2013

authentication is complete, the initiator and acceptor share a
security context which identifies the peers and can optionally be
used for integrity or confidentiality protecting subsequent
application messages.

The original BrowserID protocol, as defined outside this document,
specifies a bearer token authentication protocol for web
applications. The user agent generates a short-term key pair, the
public key of which is signed by the user's IdP. (The user must have
already authenticated to the IdP; how this is done is not specified
by BrowserID, but forms-based authentication is common.) The IdP
returns a certificate for the user which may be cached by the user's
browser. When authenticating to a Relying Party (RP), the browser
generates an identity assertion containing the RP domain and an
expiration time. The user agent signs this and presents both the
assertion and certificate to the RP. (The combination of an
assertion and zero or more certificates is termed a "backed
assertion".) The RP fetches the public key for the IdP, validates
the user's certificate (and those of any intermediate certifying
parties) and then verifies the assertion.

The GSS BrowserID protocol extends this by having the RP always send
back a response to the user agent, which at a minimum provides key
confirmation (this is needed for some key agreement methods) and
indicates the lifetime of the established security context. The key
confirmation token is also required for mutual authentication, when
the initiator application requests that feature.

1.3. Message protection services
GSS-API provides a number of a message protection services:
GSS_Wrap() dintegrity and optional confidentiality for a message
GSS_GetMIC() integrity for a message sent separately

GSS_Pseudo_random() shared key derivation (e.g., for keying external
confidentiality+integrity layers)

These services may be used with security contexts that have a shared
session key, to protect application-layer messages.

Howard & Williams Expires June 12, 2014 [Page 6]

Internet-Draft BrowserID SASL & GSS-API December 2013

2. Requirements notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

The reader is assumed to be familiar with the terms used in the
BrowserID specification.

Howard & Williams Expires June 12, 2014 [Page 7]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft BrowserID SASL & GSS-API December 2013

3.

3.1.

3.1.

3.1.

3.1.

Naming

The GSS-API provides a rich security principal naming model. At its
most basic the query forms of names consist of a user-entered/
displayable string and a "name-type". Name-types are constants with
names prefixed with "GSS_C_NT_" in the GSS-API. Names may also have
attributes [RFC6680].

GSS name types
1. GSS_C_NT_BROWSERID_PRINCIPAL

This name may contain an e-mail address, or a service principal name
identifying an acceptor. The encoding of service principal names 1is
intended to be somewhat compatible with the Kerberos [RFC4120]
security protocol (without the realm name).

The following ABNF defines the 'name' rule that names of this type
must match.

[[anchorl: Should we reference RFC2822 here? The Mozilla BrowserID
docs sure don't.]]

char-normal = %Xx00-2E/%x30-3F/%x41-5B/%x5D-FF

char-escaped = "\" %x2F / "\" %x40 / "\" %x5C

name-char = char-normal / char-escaped

name-string = 1*name-char

user = name-string

domain = name-string

email = user "@" domain

service-name = name-string

service-host = name-string

service-specific = name-string

service-specifics = service-specific 0*("/" service-specifics)
spn = service-name ["/" service-host ["/" service-specifics]]
name = email / spn

2. GSS_C_NT_USER_NAME

This name is implicitly converted to a GSS_C_NT_BROWSERID_PRINCIPAL.
A default domain may be appended when importing names of this type.

3. GSS_C_NT_HOSTBASED_SERVICE

This name is transformed by replacing the "@" symbol with a "/", and
then implicitly converted to a GSS_C_NT_BROWSERID_PRINCIPAL.

https://datatracker.ietf.org/doc/html/rfc6680
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc2822

Howard & Williams Expires June 12, 2014 [Page 8]

Internet-Draft BrowserID SASL & GSS-API December 2013

3.1.4. GSS_C_NT_DOMAINBASED_SERVICE

[RFC5178] domain-based service names are transformed into a
GSS_C_NT_BROWSERID_PRINCIPAL as follows:

o the <service> name becomes the first component of the BrowserID
principal name (service-name in ABNF)

o the <hostname> becomes the second component (service-host)
o the <domain> name becomes the third component (service-specific)
3.1.5. GSS_C_NT_ANONYMOUS

If the initiator principal's leaf certificate does not contain a
"principal" claim, then the initiator name has this name type.

3.2. Name canonicalization

The BrowserID GSS-API mechanism performs no name canonicalization.
The mechanism's GSS_Canonicalize_name() returns an MN whose display
form is the same as the query form. Of course, the principal named
obtained from a CREDENTIAL HANDLE may be canonical in that the IdP
might only issue credentials for canonical names, but credential
acquisition is out of scope here.

3.3. Exported name token format

The exported name token format for the BrowserID GSS-API mechanism is
the same as the query form, plus the standard exported name token
format header mandated by the GSS-API [RFC2743].

[[anchor2: Do we wish to say anything about the exported composite
name token format? It should be an encoding of the initiator's leaf
certificate.]]

3.4. Naming extensions

The acceptor MAY surface attributes from the assertion and any
certificates using GSS_Get_name_attribute() (see [REC6680]). The URN
prefix is "urn:<TBD>:params:gss:jwt". If a SAML assertion is present
in the "saml" parameter of the leaf certificate, it may be surfaced
using the URN prefix "urn:<TBD>:params:gss:federated-saml-attribute".

Attributes from the assertion MUST be marked as unauthenticated
unless otherwise validated by the acceptor (e.g. the audience).

Attributes from certificates SHOULD be marked as authenticated.

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc6680

Howard & Williams Expires June 12, 2014 [Page 9]

Internet-Draft BrowserID SASL & GSS-API December 2013

4. Context tokens

All context tokens include a two-byte token identifier followed by a
backed BrowserID assertion. This document defines the following
token IDs:

Y Fommm e - . e e e e e e e e oo +
| Section | Token ID | ASCII | Description |
S AU [e, to-mmm o o e e e +
| 4.1.1 | 0Ox632C | c, | Initiator context token |
I I I I I
| 4.1.2 | 0x432C | C, | Acceptor context token |
I I I I I
| | ©0x442C | D, | Context deletion token |
I I I I I
| 4.2.4 | 0x6D2C | m, | Initiator metadata token |
I I I I I
| 4.2.4 | 0x4D2C | M, | Acceptor metadata token |
Y Fommm e o= e e e e e e e —oo - +

The token ID has a human-readable ASCII encoding for the benefit of
pure SASL implementations of this mechanism.

4.1. Base protocol
4.1.1. 1Initial context token

The initial context token is framed per Section 1 of [RFC2743]7:

GSS-API DEFINITIONS ::=
BEGIN

MechType ::= OBJECT IDENTIFIER
-- representing BrowserID mechanism
GSSAPI-Token ::=
[APPLICATION O] IMPLICIT SEQUENCE {
thisMech MechType,
innerToken ANY DEFINED BY thisMech
-- token ID and backed assertion

}
END

Unlike many other GSS-API mechanisms such as Kerberos, this token
framing is not used by subsequent context or by [I-D.zhu-negoex]
metadata tokens. As such, pure SASL implementations of this
mechanism do not need to deal with DER encoding the mechanism object
identifier.

https://datatracker.ietf.org/doc/html/rfc2743#section-1

Howard & Williams Expires June 12, 2014 [Page 10]

Internet-Draft BrowserID SASL & GSS-API December 2013

GSS BrowserID is a family of mechanisms, where the last element in
the OID arc indicates the [RFC4121] encryption type supported for
message protection services. The O0ID prefix is
1.3.6.1.4.1.5322.24.1. The NULL encryption type is valid, in which
case services that require a key are not available.

The innerToken consists of the initiator context token ID
concatenated with a backed assertion for the audience corresponding
to the target name passed into GSS_Init_sec_context(). In addition,
the assertion MAY contain the additional claims, which are described
later in this document:

0 ECDH key agreement parameters (see Section 6.1.5)

o Channel binding information (see Section 6.1.6)

o A nonce for binding the request to a response signed with a
private key for mutual authentication (see Section 6.1.7)

0 A ticket identifier for fast re-authentication using an
established session key rather than a BrowserID certificate (see
Section 6.1.8)

The call to GSS_Init_sec_context() returns GSS_C_CONTINUE_NEEDED to
indicate that a subsequent context token from the acceptor is
expected.

4.1.2. Acceptor context token

Upon receiving a context token from the initiator, the acceptor
validates that the token is well formed and contains a valid
BrowserID mechanism OID and the initiator context token 1ID.

The acceptor then verifies the backed identity assertion per the
BrowserID specification. This includes validating the expiry times,
audience, certificate chain, and assertion signature. The acceptor
then verifies the channel binding token, if present, and any other
GSS-specific claims in the assertion. 1In case of failure, a response
assertion containing GSS major and minor status codes SHOULD be
returned.

If the [RFC3961] encryption type for the selected mechanism is not
ENCTYPE_NULL, the acceptor generates a ECDH public key using the
parameters received from the client (see Section 6.2.2), and from it
derives the RP Response Key (RRK) (see Section 7.3). The acceptor
then generates a response assertion containing its ECDH public key
and context expiration time (note that the context expiration time is
a purely informational quantity). The response assertion will be:

https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc3961

Howard & Williams Expires June 12, 2014 [Page 11]

Internet-Draft BrowserID SASL & GSS-API December 2013

o signed in the acceptor's private key, if mutual authentication was
requested, and the acceptor has a key (see Section 4.2);

o signed in the RRK, if the encryption type for the selected
mechanism is not ENCTYPE_NULL;

o not signed in all other cases.

The response assertion is encoded as a backed assertion, prefixed
with the acceptor context token ID. It SHALL have a certificate
count of zero.

Finally, the Context Root Key (CRK) (see Section 7.4) is derived from
the ECDH shared secret (if present) and GSS_S_COMPLETE is returned,
along with the initiator name from the verified assertion. If the
CRK is available, the replay_det_state (GSS_C_REPLAY_FLAG),
sequence_state (GSS_C_SEQUENCE_FLAG), conf_avail (GSS_C_CONF_FLAG)
and integ_avail (GSS_C_INTEG_FLAG) security context flags are set to
TRUE.

Other assertion/certificate claims MAY be made available via
GSS_Get_name_attribute().

4.1.3. Initiator context completion

Upon receiving the acceptor context token, the initiator unpacks the
response assertion and, if applicable, computes the ECDH shared
secret and RRK. The RRK is used to verify the response assertion
unless mutual authentication is available, in which case the
acceptor's public key will be used.

The initiator sets the context expiry time with that received in the
response assertion, if present; otherwise, the context expires when
the initiator principal's certificate expires.

The CRK is derived from the ECDH shared secret and GSS_S_COMPLETE 1is
returned to indicate the initiator is authenticated and the context
is ready for use. No output token is emitted. Security context
flags are set as for the acceptor context.

4.2. Mutual authentication

Mutual authentication allows the acceptor to be authenticated to the

initiator. The mechanism SHALL set the mutual_state security context
flag (GSS_C_MUTUAL_FLAG) to TRUE if mutual authentication succeeded.

Support for mutual authentication is OPTIONAL.

The base protocol is extended as follows to support this:

Howard & Williams Expires June 12, 2014 [Page 12]

Internet-Draft BrowserID SASL & GSS-API December 2013

4.2.1. Initiator mutual authentication context token

If the initiator requested the mutual state flag, it sends in its
request assertion an "opts" claim (see Section 6.1.9) containing the
"ma" value. It also includes a nonce (see Section 6.1.7) in order to
bind the initiator and acceptor assertions.

4.2.2. Acceptor mutual authentication context token

If the acceptor has a private key and certificate available and the
initiator indicated it desired mutual authentication by including the
"ma" protocol option, the acceptor signs the response using a private
key rather than the RP Response Key (RRK). The response includes the
nonce from the initiator's assertion. The acceptor MUST reject
requests for mutual authentication lacking a nonce.

While the response is a backed assertion, in order to take advantage
of existing keying infrastructures BrowserID certificates MUST NOT be
included in the backed assertion. Rather, an X.509 certificate SHALL
be included as a value for the "x5c" header parameter in the
assertion (see [I-D.ietf-jose-json-web-signature] 4.1.6). The
certificate MUST be valid for signing.

[[anchor3: We don't want to burden the initiator with having to
implement both methods of authenticating acceptors, and given that
initiators and acceptors both will generally need a PKIX
implementation, and given that acceptors will need a PKIX credential
for TLS, and that there is as yet no standard protocol for automatic
provisioning of BrowserID credentials for servers, using PKIX to
authenticate the server seems to be the easiest way to go.]]

4.2.3. Initiator mutual authentication context completion

The initiator verifies the assertion signature and that the nonce
matches, and validates the certificate chain according to [RFC5280].

Initiators MUST authenticate the service name using the matching
rules below:

0 A service-name EKU from the registry defined by [I-D.zhu-pku2u];
id-kpServerAuth maps to the "http" service

0 A spn expressed as a KRB5PrincipalName in the id-pkinit-san
otherName SAN (see [RFC4556] Section 3.2.2; the realm is ignored)

0 A service-name expressed as a SRVName SAN (see [RFC4985])

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc4985

Howard & Williams Expires June 12, 2014 [Page 13]

Internet-Draft BrowserID SASL & GSS-API December 2013

0 Optionally, an out-of-band binding to the certificate

If there are no EKUs, or a single EKU containing id-kp-
anyExtendedKeyUsage, and no SAN containing the service name is
present, then all service names match. If a SAN containing the
service name is present, then any EKUs are ignored.

If the the host component of the service name (service-host) is not
expressed in a SAN as specified above, it MUST be present as a value
for the dNSName SAN or as the least significant Common Name RDN.

Note only the id-pkinit-san or SRVName SANs provide the ability to
authenticate the a service name containing a service-specific
component.

4.2.4. Acceptor certificate advertisement
[I-D.zhu-negoex] may be used to advertise acceptor certificates.

If the acceptor supports mutual authentication, it MAY include its
certificate and any additional certificates inside a backed assertion
with an empty payload as output for GSS_Query_meta_data(). The
"assertion" is prefixed with the two byte token identifier "M, ".

Upon receiving this, the initiator MAY validate the certificate or
fingerprint, or present either to the initiator before committing to
authenticate.

The NegoEx signing key is the output of GSS_Pseudo_random() (see
Section 7.7) with an input of GSS_C_PRF_KEY_FULL and "gss-browserid-
negoex-initiator" or '"gss-browserid-negoex-acceptor" (without
gquotes), depending on the party generating the signature.

The NegoEx authentication scheme is the binary encoding of the
following hexadecimal string:

535538008647F5BC624BD8076949F0

where the third byte (zero above) is set to the [RFC3961] encryption
type for the selected mechanism. The authentication scheme for
encryption types greater than 255 is not specified here.

There is currently no initiator-sent metadata defined and acceptors
should ignore any sent. The metadata is advisory and the initiator
is free to ignore it.

[[anchor4: Delete this section as NegoEx will likely not be
progressed.]]

https://datatracker.ietf.org/doc/html/rfc3961

Howard & Williams Expires June 12, 2014 [Page 14]

Internet-Draft BrowserID SASL & GSS-API December 2013

4.3. Fast re-authentication

Fast re-authentication allows a security context to be established
using a secret key derived from the initial certificate-signed ECDH
key agreement.

The re-authentication assertion is signed with a HMAC using the
Authenticator Root Key (ARK) (see Section 7.5), rather than a
initiator principal's BrowserID certificate.

Support for fast re-authentication is OPTIONAL and is indicated by
the acceptor returning a ticket in the response assertion.

4.3.1. Ticket generation

If the acceptor supports re-authentication, the following steps are
added to Section 4.1.2:

1. A unique, opaque ticket identifier is generated.

2. The acceptor creates a JSON object containing the ticket
identifier and expiry time and returns it in the response to the
initiator (see Section 6.2.5).

The acceptor must be able to use the ticket identifier to securely
retrieve the subject, issuer, audience, expiry time, ARK and any
other relevant properties of the original security context. One
implementation choice may be to use the ticket identifier as a key
into a dictionary containing this information. Another would be to
encrypt this information in a long-term secret only known to the
acceptor and encode the resulting cipher-text in the opaque ticket
identifier.

The ticket expiry time by default SHOULD match the initiator's
certificate expiry, however it MAY be configurable so the ticket
expires before or after the certificate.

The initiator MAY cache tickets, along with the ARK, received from
the acceptor in order to re-authenticate to it at a future time.

4.3.2. Initiator re-authentication context token

The initiator looks in its ticket cache for an unexpired ticket for
the desired acceptor. If none is found, the normal certificate-based
authentication flow is performed, otherwise:

Howard & Williams Expires June 12, 2014 [Page 15]

Internet-Draft BrowserID SASL & GSS-API December 2013

The initiator generates a re-authentication assertion containing:
the name of the acceptor (see Section 6.1.1), an expiry time (see
Section 6.1.2) and/or the current time (see Section 6.1.3),
optional channel binding information (see Section 6.1.6), a
random nonce (see Section 6.1.7), and the ticket identifier (see
Section 6.1.8).

The initiator signs the re-authentication assertion with the ARK,
using the hash algorithm associated with the original context key
(see Section 10.1; HS256 is specified for the encryption types
referenced in this document).

The re-authentication assertion is packed into a backed
assertion. The certificate count is zero as the assertion is
signed with an established symmetric key.

The initiator generates an Authenticator Session Key (ASK) (see
Section 7.6) which is used to verify the response and derive the
CRK.

[[anchor5: Question: do we want an option to do an ECDH session key
exchange in the fast re-auth case? If we had a GSS req_flag for
requesting perfect forward security (PFS) then we would want to have
this option.]]

4.3.3.

Acceptor re-authentication context token

The acceptor unpacks the re-authentication assertion and
retrieves the ARK, ticket expiry time, mutual authentication
state and any other properties (such as the initiator name)
associated with the ticket identifier.

The acceptor validates that the ticket and re-authentication
assertion have not expired.

The acceptor verifies the assertion using the ARK.
The acceptor generates the ASK (see Section 7.6) and derives the

RRK and CRK from this (see Section 7.3 and Section 7.4,
respectively).

The acceptor generates a response and signs and returns it. Note
that, unlike the certificate-based mutual authentication case,
the nonce need not be echoed back as the ASK (and thus the RRK)
is cryptographically bound to the nonce.

If the ticket cannot be found, or the authentication fails, the
acceptor SHOULD return a REAUTH_FAILED error, permitting the

Howard & Williams Expires June 12, 2014 [Page 16]

Internet-Draft BrowserID SASL & GSS-API December 2013

initiator to recover and fallback to generating a BrowserID
assertion. It MAY also include its local timestamp (see
Section 6.2.1) so that the initiator can perform clock skew
compensation.

4.3.4. Interaction with mutual authentication

The mutual authentication state of a re-authenticated context is
transitive. The initiator and acceptor MUST NOT set the mutual_state
flag for a re-authenticated context unless the original context was
mutually authenticated.

As such, the mutual authentication state of the original context must
be associated with the ticket.

4.3.5. Ticket renewal

Normally, re-authentication tickets are only issued when the
initiator authenticated with a certificate-signed assertion.
Acceptors MAY issue a new ticket with an expiry beyond the ticket
lifetime when the initiator used a re-authentication assertion. The
issuing of new tickets MUST be subject to a policy that prevents them
from being renewed indefinitely.

4.4. Extra round-trip (XRT) option

The extra round-trip (XRT) option adds an additional round trip to
the context token exchange. It allows the initiator to prove
knowledge of the Context Master Key (CMK) (see Section 7.2) by
sending an additional token signed in a key derived from the CMK and
an acceptor-issued challenge. Support for the XRT option is OPTIONAL
in the acceptor and REQUIRED in the initiator. The initiator is
allowed to not request it, but MUST perform XRT if the acceptor
requires it.

(Note that the term "extra round trip" is something of a misnomer; it
only adds an additional token to the context token exchange. It is
anticipated however that this mechanism will most commonly be used
with pseudo-mechanisms or application protocols that require an even
number of tokens.)

4.4.1. Initiator XRT advertisement

The initiator may advertise to the acceptor that it desires the XRT
option by sending in its request assertion an "opts" claim (see
Section 6.1.9) containing the "xrt" value. This option MUST be set
if the caller requested GSS_C_DCE_STYLE (see [RFC4757]). Otherwise,
the setting of this option is implementation dependent.

https://datatracker.ietf.org/doc/html/rfc4757

Howard & Williams Expires June 12, 2014 [Page 17]

Internet-Draft BrowserID SASL & GSS-API December 2013

4.4.2. Acceptor XRT advertisement

If the initiator requested the XRT option and the acceptor supports
it, or the acceptor requires it, the acceptor sends a "jti" claim
(see Section 6.2.6) in the response assertion containing a random
base 64 URL encoded value. This value MUST be at least 64 bits in
length. The acceptor then returns GSS_C_CONTINUE_NEEDED to indicate
that an additional context token is expected from the initiator.

4.4.3. Initiator XRT context token

If the acceptor indicated support for the XRT option by including a
"jti" claim in its response, then the initiator sends an additional
context token to the acceptor. This token contains the initiator
context token ID concatenated with a backed assertion with zero
certificates and an empty payload, signed using the XRTK (see
Section 7.6.1).

4.4.4. Acceptor XRT context token validation

The acceptor MUST validate the XRT context token by first validating
the context token ID, and then verifying the assertion signature with
the XRTK. The acceptor SHOULD reject XRT context tokens with a
certificate count greater than zero. Unknown claims in the assertion
payload MUST be ignored. The acceptor then returns GSS_C_COMPLETE to
the caller.

The acceptor MAY avoid using a replay cache when this option is in
effect.

4.4.5. Interaction with message protection services

When the XRT option is in effect, the XRTK is used instead of the CMK
to derive the Context Root Key (CRK) (see Section 7.4). Per-message
tokens MUST have the AcceptorSubkey flag set (see [RFEC4121] Section
4.2.2).

https://datatracker.ietf.org/doc/html/rfc4121

Howard & Williams Expires June 12, 2014 [Page 18]

Internet-Draft BrowserID SASL & GSS-API December 2013

5. Validation
5.1. Expiry times

The expiry and, if present, issued-at and not-before times of all
elements in a backed assertion, MUST be validated. This applies
equally to re-authentication assertions, public key assertions, and
the entire certificate chain. If the expiry time is absent, the
issued-at time MUST be present, and the JWT implicitly expires a
short, implementation-defined interval after the issued-at time. (A
suggested interval is five minutes.)

The GSS context lifetime SHOULD NOT exceed the lifetime of the
initiator principal's certificate.

The lifetime of a re-authentication ticket SHOULD NOT exceed the
lifetime of the initiator principal's certificate. The acceptor MUST
validate the ticket expiry time when performing re-authentication.

Message protections services such as GSS_Wrap() SHOULD be available
beyond the GSS context lifetime for maximum application
compatibility.

5.2. Audience

If the credential passed to GSS_Accept_sec_context() is not for
GSS_C_NO_NAME, then its string representation as a BrowserID
principal (see Section 3.1.1) MUST match the audience claim in the
assertion.

5.3. Channel bindings

GSS-API channel binding is a protected facility for naming an
enclosing channel between the initiator and acceptor. If the
acceptor passed in channel bindings to GSS_Accept_sec_context(), the
assertion MUST contain a matching channel binding claim. (Only the
application_data component is validated.)

The acceptor SHOULD accept any channel binding provided by the
initiator if NULL channel bindings are passed to
GSS_Accept_sec_context().

5.4. Key agreement
The initiator MUST choose an ECDH curve with an equivalent strength

to the negotiated [RFC4121] encryption type. Appropriate curves are
given in Section 10.1.

https://datatracker.ietf.org/doc/html/rfc4121

Howard & Williams Expires June 12, 2014 [Page 19]

Internet-Draft BrowserID SASL & GSS-API December 2013
The curve strength MUST be verified by the acceptor. A stronger than
required curve MAY be selected by the initiator.

5.5. Signatures
Signature validation on assertions is the same as for the web usage
of BrowserID, with the addition that response assertions may and re-
authentication assertions must be signed with a symmetric key. 1In
this case the HMAC algorithm associated with the mechanism 0ID is
used, and there are no certificates in the backed assertion.

5.6. Replay detection
If the XRT option is not in effect, the acceptor MUST maintain a
cache of received assertions in order to guard against replay
attacks.

5.7. Return flags
The initiator and acceptor should set the returned flags as follows:

deleg_state never set

mutual_state set if the initiator requested mutual authentication
and mutual authentication succeeded

replay_det_state set if message protection services are available
sequence_state set if message protection services are available

anon_state set if the initiator principal's leaf certificate lacks a
"principal" claim

trans_state set if the implementation supports importing and
exporting of security contexts

prot_ready_state may be set when or after the RP Response Token is
produced or consumed

conf_avail set if message protection services are available

integ_avail set if message protection services are available

Howard & Williams Expires June 12, 2014 [Page 20]

Internet-Draft BrowserID SASL & GSS-API December 2013

6. Assertion claims
6.1. Request (initiator/UA) assertion

These claims are included in the assertion sent to the acceptor and
are authenticated by the initiator's private key and certificate
chain (directly, or in the case of re-authentication assertions,
transitively). Claims not specified here MUST be ignored by the
acceptor.

Here is an example assertion containing Elliptic Curve Diffie-Hellman
parameters, along with options and nonce claims indicating that
mutual authentication is desired:

{
"opts": [
llmall
1,
"exp": 1360158396188,
Hepkll : {
llkty" . n ECII
' ’
"CrV": IIP_256II,
"x": "JR5UPDgMLFPZwOGaKKSF24658tB1DccM1_oHPbCHezg",
"y": "S45Esx_6DfE5-xdB3X7sIIJ16MwOOY_RiDc-i5ZTLQ8"
H
"nonce": "bbqT10Gyx3s",
"aud": "imap/mail.example.com"
}

The following claims are permitted in the request assertion:
6.1.1. "aud" (Audience)

The audience is a StringOrURI (see [I-D.ietf-oauth-json-web-token]
Section 2) containing the target service's principal name, formatted
according to Section 3.1.1. This claim is REQUIRED. If the
initiator specified a target name of GSS_C_NO_NAME, then the audience
is the empty string.

[[anchor6: If the initiator wanted mutual authentication then we
could find out the acceptor's name and provide it via
GSS_Inquire_context(). This is only really useful and secure with
mechanisms like this one where the initiator credential is based on a
public/private key pair and either we use key agreement and per-
message tokens or channel binding to a secure channel. This really
should [have] be[en] explained in RFC2743.]]

https://datatracker.ietf.org/doc/html/rfc2743

Howard & Williams Expires June 12, 2014 [Page 21]

Internet-Draft BrowserID SASL & GSS-API December 2013

6.1.2. "exp" (Expiry time)

This contains the time when the assertion expires, in milliseconds
since January 1, 1970. At least one of "exp" or "iat" MUST be
present.

6.1.3. "iat" (Issued at time)

This contains the time the assertion was issued (in milliseconds
since January 1, 1970). If present, the acceptor MUST validate that
the assertion was recently issued. At least one of "exp" or "iat"
MUST be present.

6.1.4. "nbf" (Not before time)

This contains the time, in milliseconds since January 1, 1970, from
which the assertion begins to be valid. This claim is OPTIONAL.

6.1.5. "epk" (Ephemeral Public Key)

These contain key parameters for deriving a shared session key with
the relying party, represented as a JSON Web Key
[I-D.ietf-jose-json-web-key] public key value. The key type MUST be
EC and the parameters for Elliptic Curve Public Keys specified in
[I-D.ietf-jose-json-web-algorithms] Section 6.2.1 MUST be present.

The "epk" claim is REQUIRED unless the associated encryption type is
ENCTYPE_NULL, or there is already a prior session key (as is the case
for re-authentication assertions).

6.1.6. "cb" (Channel binding)

This contains channel binding information for binding the GSS context
to an outer channel (e.g. see [RFC5929]). 1Its value is the base64
URL encoding of the application-specific data component of the
channel bindings passed to GSS_Init_sec_context() or
GSS_Accept_sec_context(). This claim is OPTIONAL.

6.1.7. "nonce" (Mutual authentication nonce)

This is a random quantity of at least 64 bits, base 64 URL encoded,
which is used to bind the request and response assertions in the case
a freshly agreed key is not used to sign the response assertion.

This claim is REQUIRED if mutual authentication is desired and the
assertion is signed using a certificate, or if re-authentication is
being performed.

https://datatracker.ietf.org/doc/html/rfc5929

Howard & Williams Expires June 12, 2014 [Page 22]

Internet-Draft BrowserID SASL & GSS-API December 2013

6.1.8. "tkt" (Ticket)

When the assertion is being used for fast re-authentication, this
contains a JSON object with a single parameter, "tid". The "tid"
parameter matches the "tid" parameter from the initial response
assertion ticket (see Section 6.2.5). This claim is REQUIRED for re-
authentication assertions, otherwise it the assertion MUST be
rejected. Other parameters SHOULD NOT be present in the "tkt"
object.

6.1.9. "opts" (Options)

This contains a JSON array of string values indicating various
protocol options that are supported by the initiator. Unknown
options MUST be ignored by the acceptor. This document defines the
following extensions:

+ommm o N +
| Name | Description |
[ep—— o e m e meem oo +
| ma | The initiator requested GSS_C_MUTUAL_FLAG |
I I I
| xrt | The initiator supports the extra round trip option (see |
| | Section 4.4) [
I I I
| dce | The initiator requested GSS_C_DCE_STYLE (see RFC4757 |
| | Section 7.1) [
I I I
| ify | The initiator requested GSS_C_IDENTIFY_FLAG (see RFC4757 |
| | Section 7.1) |
[ep—— o e mmmmm o oo +

6.2. Response (acceptor/RP) assertion

The response assertion is sent from the acceptor to the initiator to
provide key agreement, and either key confirmation or mutual
authentication. It is formatted as a backed assertion, however in
the current specification it consists of a single assertion with zero
certificates; that is, it is "unbacked". (It is encoded as a backed
assertion in order to provide future support for mutual
authentication using native BrowserID certificates. Such support is
not specified here.)

In the case of a key successfully being negotiated, the response
assertion is signed with the RP Response Key (RRK) (see Section 7.3).
Alternatively, it may be signed with the acceptor's private RSA or
DSA key. In this case, the acceptor's X.509 certificate is included
in the "x5c" claim of the JWT header.

https://datatracker.ietf.org/doc/html/rfc4757
https://datatracker.ietf.org/doc/html/rfc4757

Howard & Williams Expires June 12, 2014 [Page 23]

Internet-Draft BrowserID SASL & GSS-API December 2013

6.2.

6.2.

6.2.

The HMAC-SHA256 (HS256) algorithm MUST be supported by implementors
of this specification.

If the [REC3961] encryption type for the mechanism is ENCTYPE_NULL,
then the signature is absent and the value of the "alg" header
parameter is "none". No signature verification is required in this
case.

Claims not specified here MUST be ignored by the initiator.

Here is an example response assertion:

{
"exp": 1362960258000,
"nonce": "bbqT10Gyx3s",
"epk": {
"x": "bvNF6V1rpMeQyGOKCjOkBaOasSh3tlhUcbffaji4uCEI",
"y": "Iugs650FXzXFUD9KHKNETfbqiB8XBbCH1JIX0oysx3rvw"
+
"tkt": {
"tid": "Jgg7vKX2sEK1CWBfmLTg_n4qz3NVZx0U-a2B4qYMkXI",
"exp": 1362992660000
}
}

The following claims are permitted in the response assertion:
1. "iat" (Issued at time)

The current acceptor time, in milliseconds since January 1, 1970.
This allows the initiator to compensate for clock differences when
generating assertions. This claim is OPTIONAL.

2. "epk" (Ephemeral Public Key)

This contains a JSON object containing the x and y coordinates of the
acceptor's ECDH public key (see [I-D.ietf-jose-json-web-algorithms]
Section 6.2.1). This claim is REQUIRED unless the associated
encryption type is ENCTYPE_NULL, or there is already an established
session key, as is the case for re-authentication assertions.

The "crv" and "kty" properties SHOULD NOT be present; they are
determined by the initiator.

3. "exp" (Expiry time)

This contains the time when the context expires, in milliseconds
since January 1, 1970. This claim is OPTIONAL; the initiator should

https://datatracker.ietf.org/doc/html/rfc3961

Howard & Williams Expires June 12, 2014 [Page 24]

Internet-Draft BrowserID SASL & GSS-API December 2013

use the certificate or ticket expiry time if absent.

6.2.4. "nonce" (Mutual authentication nonce)
The nonce as received from the initiator. This MUST NOT be present
unless a nonce was received from the initiator, and the acceptor is
signing the assertion with a private key.

6.2.5. "tkt" (Ticket)
This contains a JSON object that may be used for re-authenticating to
the acceptor without acquiring an assertion. It has two parameters:
"tid", an opaque identifier to be presented in a re-authentication
assertion (this need not be a string); and "exp", the expiry time of
the ticket. This claim is OPTIONAL.

6.2.6. "jti" (JIWT ID)
This contains a base64 URL encoded random value of at least 64 bits
that is used to uniquely identify the acceptor response, in the case
that the extra round trip option is used. It SHOULD not be present
unless the initiator requested the extra round trip option.

6.3. Error (acceptor/RP) assertion
Error assertions are backed assertions containing any or all of the
following claims. 1In addition, they MUST have the "iat" claim, for
initiator clock skew correction. All other response assertion claims
are OPTIONAL or not applicable in error assertions. Conversely, the
claims listed below MUST NOT be present in a non-error response
assertion.
The error assertion MAY be signed if a key is available, otherwise
the signature is absent and the value of the "alg" header parameter
is "none".

6.3.1. '"gss-maj" (GSS major status code)
This contains a GSS major status code represented as a number.

6.3.2. '"gss-min" (GSS minor status code)

This contains a GSS minor status code represented as a number.

If REAUTH_FAILED is received, the initiator SHOULD attempt to send
another initial context token containing a fresh assertion.

The following protocol minor status codes are defined. Note that the

Howard & Williams Expires June 12, 2014 [Page 25]

Internet-Draft BrowserID SASL & GSS-API December 2013

API representation of these status codes is implementation dependent.
Status codes with the high bit set are GSS BrowserID protocol errors;
the remainder are BrowserID protocol errors.

e e e e e e e oooo- S SRS o e e e e +
| Error | Protocol | Description |
Fom e e e e e e e e o m e o e e e e e e aa oo +
| INVALID_JSON | 8 | Invalid JSON encoding |
I I I I
| INVALID_BASE64 | 9 | Invalid Base64 encoding |
I I I I
| INVALID_ASSERTION | 10 | Invalid assertion |
I I I I
| TOO_MANY_CERTS | 13 | Too many certificates |
I I I I
| UNTRUSTED_ISSUER | 14 | Untrusted issuer |
I I I I
| INVALID_ISSUER | 15 | Invalid issuer |
I I I I
| MISSING_ISSUER | 16 | Missing issuer |
I I I I
| MISSING_AUDIENCE | 17 | Missing audience |
I I I I
| BAD_AUDIENCE | 18 | Bad audience |
I | I |
| EXPIRED_ASSERTION | 19 | Assertion expired |
I I I I
| ASSERTION_NOT_YET_VALID | 20 | Assertion not yet valid |
I | I |
| EXPIRED_CERT | 21 | Certificate expired |
I I I I
| CERT_NOT_YET_VALID | 22 | Certificate not yet |
| | | valid |
I I I I
| INVALID_SIGNATURE | 23 | Invalid signature |
I I I I
| MISSING_ALGORITHM | 24 | Missing JWS algorithm |
I I I I
| UNKNOWN_ALGORITHM | 25 | Unknown JWS algorithm |
I | I |
| MISSING_PRINCIPAL | 34 | Missing principal |
| | | attribute |
I I I I
| UNKNOWN_PRINCIPAL_TYPE | 35 | Unknown principal type |
I I I I
| MISSING_CERT | 36 | Missing certificate |
I I I I
| MISSING_CHANNEL_BINDINGS | 38 | Missing channel bindings |

Howard & Williams Expires June 12, 2014 [Page 26]

Internet-Draft

CHANNEL_BINDINGS_MISMATCH

NOT_REAUTH_ASSERTION

BAD_SUBJECT

MISMATCHED_RP_RESPONSE

REFLECTED_RP_RESPOSNE

UNKNOWN_EC_CURVE

INVALID_EC_CURVE

MISSING_NONCE

WRONG_SIZE

WRONG_MECH

BAD_TOK_HEADER

TOK_TRUNC

BAD_DIRECTION

WRONG_TOK_ID

KEY_UNAVAILABLE

KEY_TOO_SHORT

CONTEXT_ESTABLISHED

CONTEXT_INCOMPLETE

BAD_CONTEXT_TOKEN

39

70

71

72

73

77

78

79

Ox80000001

Ox80000002

OX80000003

Ox80000004

Ox80000005

Ox80000006

OX80000007

Ox80000008

OX800000069

OX800OBOBA

Ox8000000B

BrowserID SASL & GSS-API

Channel bindings do not
match

Not a re-authentication
assertion

Bad subject name

Mismatched RP response
token

Reflected RP response
token

Unknown ECC curve
Invalid ECC curve

Missing nonce

Buffer is incorrect size

Mechanism OID is
incorrect

Token header is
malformed or corrupt

Token is missing data

Packet was replayed in
wrong direction

Received token ID does
not match expected

Key unavailable
Key too weak

Context already
established

Context incomplete

Context token malformed
or corrupt

December 2013

Howard & Williams Expires June 12, 2014 [Page 27]

Internet-Draft BrowserID SASL & GSS-API December 2013

| BAD_ERROR_TOKEN | Ox8000000C | Error token malformed or |
| | | corrupt |
I I I I
| BAD_CONTEXT_OPTION | Ox80000060D | Bad context option |
I I I I
| REAUTH_FAILED | OX80GOOGOE | Re-authentication |
| | | failure |
o e e e e e aaoo - SRS o e e e +

6.4. XRT assertion

No claims are presently defined for the extra round trip assertion.
Unknown claims MUST be ignored by the acceptor.

Howard & Williams Expires June 12, 2014 [Page 28]

Internet-Draft BrowserID SASL & GSS-API December 2013

7. Key derivation

The following function is used as the base algorithm for deriving
keys:

browserid-derive-key(K, usage) = HMAC(K, "BrowserID" || K || usage ||
0x01)

The HMAC hash algorithm for all currently specified key lengths is
SHA-256. Note that the inclusion of K in the HMAC input is for
interoperability with some crypto implementations.

7.1. Diffie-Hellman Key (DHK)

This key is the shared secret resulting from the ECDH exchange. 1Its
length corresponds to the selected EC curve. It is never used
without derivation and thus may be used with implementations that do
not expose the ECDH value directly.

7.2. Context Master Key (CMK)
This is the Diffie-Hellman Key (DHK) for all initially authenticated
contexts and the Authenticator Session Key (ASK) for re-authenticated
contexts.

7.3. RP Response Key (RRK)
If mutual authentication without a fast re-authentication ticket is
performed then the response assertion will be signed with a public
key signature using the private key for the acceptor's certificate.
Otherwise a symmetric RP Response Key (RRK) is derived as follows:
RRK = browserid-derive-key(CMK, "RRK")

7.4. Context Root Key (CRK)
The Context Root Key (CRK) is used for [RFC4121] message protection
services, e.g. GSS_Wrap() and GSS_Get_MIC(). If the extra round-
trip option is in effect, it is derived as follows:
CRK = random-to-key(browserid-derive-key(XRTK, "CRK"))
Otherwise, the CMK is used:

CRK = random-to-key(browserid-derive-key(CMK, "CRK"))

The random-to-key function is defined in [RFC3961].

https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc3961

Howard & Williams Expires June 12, 2014 [Page 29]

Internet-Draft BrowserID SASL & GSS-API December 2013

7.5. Authenticator Root Key (ARK)

The Authenticator Root Key (ARK) is used to sign assertions used for
fast re-authentication. (The term "authenticator" is equivalent to
"re-authentication assertion" and exists for historical reasons.) It
is derived as follows:

ARK = browserid-derive-key(CMK, "ARK")
7.6. Authenticator Session Key (ASK)

The Authenticator Session Key (ASK) is used instead of the DHK for
re-authenticated contexts. It is derived as follows:

ASK = browserid-derive-key(ARK, nonce-binary)

The usage (nonce-binary) is the base64 URL decoding of the initiator
"nonce" claim.

7.6.1. Extra Round Trip Key (XRTK)

The Extra Round Trip Key (XRTK) is used to sign the extra round trip
token, and also as the master key for the CRK when the extra round
trip option is used.

XRTK = browserid-derive-key(CMK, acceptor-jti-binary)

The usage (acceptor-jti-binary) is the base64 URL decoding of the
acceptor "jti" claim.

7.7. GSS Pseudo-Random Function (PRF)

The BrowserID mechanism shares the same Pseudo-Random Function (PRF)
as the Kerberos GSS mechanism, defined in [RFC4402].
GSS_C_PRF_KEY_FULL and GSS_C_PRF_KEY_PARTIAL are equivalent. The
protocol key to be used for GSS_Pseudo_random() SHALL by the Context
Root Key (CRK).

[[anchor7: Can we replace this with a function that imports less of
RFC39627? We arguably should, because otherwise the only things we
import from RFC3962 (and 3961) are random-to-key (the identity
function in RFC3962) and the crypto bits needed for RFC4121 per-
message tokens.]]

https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc3962
https://datatracker.ietf.org/doc/html/rfc3962
https://datatracker.ietf.org/doc/html/rfc3962
https://datatracker.ietf.org/doc/html/rfc4121

Howard & Williams Expires June 12, 2014 [Page 30]

Internet-Draft BrowserID SASL & GSS-API December 2013

8. Example

Suppose a mail user agent for the principal lukeh@lukktone.com wishes
to authenticate to an IMAP server rand.mit.de.padl.com. They do not
have a re-authentication ticket. The mail user agent would display a
dialog box in which the principal would sign in to their IdP and
request a fresh assertion be generated.

<connects to IMAP port>

* 0K

Cl1l CAPABILITY

* CAPABILITY IMAP4revl SASL-IR SORT [...] AUTH=BROWSERID-AES128
C1l OK Capability Completed

C2 AUTHENTICATE BROWSERID-AES128
biwsYyxleUpoYkdjaU9pS1NVekkxTmlKOS51eUp3ZFdKc2FXTXRhMLY
1SWpwNO1tRNNaMjl5YVhSb2JTSTZJa1JUSW13awVvTSTZJak01TVRObE
9EZ31aRGhqTXpwWa®1gSm10bVEWTURZNVKYVTINREJrww10allqTTVOR
0ZgwWVdGaF16WTBPV1prTjJZNVptTmtObUOWTVRIMEStWTFOakk1TUdW
bU1HTmpNemMwTnpaaE1EUMhOREUOWXpPGbE9ETXhPVOkxTkdJeFpXTml
ObVKyWTJIWaE56VTBOR1KkYW1RFMU5qTmXxaRO5sWkdNNULIEWmtOamcwTT
JRAO1XSmpaVFJItTjIFMVpqY3dOMk5tWVRZd11XTTVNVEOYWm1GbU5QS
m1aROZtTkRoa®9HRTVPRGXOWVAGHESEUXdOM1Zr TmpjeU56ZGhNVGMO
TWiWallXRXhOVFppwWkdOaFpXRXhOamRtTWpZek56STFaR1UyTTIWa09
HWX1PROUYTUROaU5tWm10VEV3WmpRNEL1ESmt0elJrTjIWaFpUZGhzZbU
15WldJauxDSndJam9pwWm1ZMk1EQTBPRESrWwWpaaFltWmpOVOkwTldwa
F1qYzROVGsSwWWpNMU16 TmtOVFV3WkRsbU1XSm1NbUU1T1RKaE4yRTRa
ROZoTm1Sak16Um1PREEWT1dGa®5HVTJIaVEIJQTKRINVPETXpOR1ZsW1d
GaFpXWmtOM1V5TTIRME9ERXAZbVV3TUAVMFkyTXhORGt5WTJKaAE16ST
FZbUUBTVdabU1tUTFZVFZpTXpBMV1UaGtNVGRsWWpOaVpgqUmhNRFpoT
XpRNVPETTVNbVV3TUdRek1qazNORFJOT1RFMOOUTTRNREOWTKdAVNELt
RXhPROOWTNprek16UXpPR1kOT1RGbE1gSmhaV1Zt TORFeVPEWTVZemh
tTnpWbE16STJIZMkkzTUdWaE1EQXdZek5tTnpjM1lpHWmtZbVEYTURRMK
16aGpNbVZtTnpFM1ptTX10bVF3TW1VeES55SXNIbkVpT21KbE1gRMXNR
FJtT1RFeFpERMXaRGM1T1RFdO1EaGxZMkZowWwp0aVpqYzNOVGSOTKRN
dO9XTXpJaXdpWnlINK1t TTFNbUUWWVRCbVpqTmlOM1lUyTVdaalpgRTR
OamRqW1RNME1UTTRNelk1WVRZeE5UUM10ROZtWVRreUQUWT JavVE5SQTO
RIM1pUSTFZM1poTm10bUSUQTRZamt3W1RWalpUUXhPV1V4TXpNM1pUQ
TNZVEpsT1dVeV1UTmpaRFZrWldFMO1EUMtNVGMXWmpobF1tWTJZV116
T1Rka®5gbGXNVEV3WWprM11XWmINVGRQTjIFdO16STFPVE15T1dVMEY
ESTVZakJrTUROaV1tTTNPRGSYyWWpFMV1qUmhaR1UXTTJIVeE16QTROVG
hgWXpNMFpEaz INalk1WVAFNEQUQTBNV1kwTURreE16WmpOekkwTwWlFe
k9EZzVOVEO1WkRWaVkyTmhaRFJtTXpnNV1XWXhaRGROTKkdKa®@1UTTVP
ROprTURjeVpHWM1ZVGc1TmpJlek16TTVOMkVpZ1IN3aWNISnBibU5wYOd
GcolqcbdJbvzowvdsc0lgb21iSFZyWldoQWJIIVnJIhM1J2Ym1VdVky0X
RJbjBzSW1saGRDSTZNVEQYTWprMk1UQTVOakVvs5TwWl3aVpYaHdJam94T
XpZeU9UWTBOamsyTVRJIeUXDSnBjMO1pT21Kc2IyZHBiaTV3WlhKemIy
NWhMbT15Wn1K0OS5mT3V5Z21ZKkNWFZZ285ck JncmdHVDJIHY jkzUUoxVnp
LSE9rNjdFUXBEeU9pUENPdXFweUw5a2tVVDAXcGNZaWZsbONTW]1Pej

c
S
C:
S:
S
c

Howard & Williams Expires June 12, 2014 [Page 31]

Internet-Draft BrowserID SASL & GSS-API December 2013

UtVWRrcld1lcTZXUkRLcUdOeXgOOFdyVGduVkoyRIM3MU1Mb19DeWhGM
G01Y1ZsQOESWWh3YV1IWTHhsbWOYUO1uWTdyRzFWa®VSdjRtaWtCM3FD
CFB2NXJtSEswbkNiR1piN1dXR3JkVEdkcmNHTKkRkZH1DQkQ5aldpuud
VbkktenN3wXdizXJUTmQ3Nmc1Z2N1c1MtbwWxjVk5jbzNMTG4zM1INhbG
X0eDBCUHAtVTAYMXpVROOWWEhibm1Sa2VRAGVtb1VXZGloYzRVbVpNR
EJJZO5nSFFCSMAXMGhBCT1HWVFmMYzVObFNzZW5RXOp5MGR4anE1bHAE
W113SExsUX1ImYnVYbGFtRTNDZ3ZkZUF+ZX1KaGJHY21PaUpFVXpFeU9
DSjkuzZX1KdWIyNwpau@k2SWinMVVEUkxja2MOZVclbklpd2lavesryu
NJINmV5SjRJIam9pwWmiwYVRUQnpRbXBIYmwS5WVFVTnRaMkpPZDBGemRuS
TRPR2MwUmxKNmRHOW1 jWEEXVkUxaVgXxbEdNQOL1zSW10eWRpSTZJIbEFO
TWpVMk1lpd211UOk2SWXKTFJYWktlalU1WTNOaGRqaExXZM2RsV1hzMvd
IRkdaM1EQUVZKRFFXdH1Ta®o2TTFCUWNVeEtkSE1pZIN3aVvkySjBJam
9pWW1sSM2N5SXNIbVYOYONINKIUTT INamsyTVRIeESQRTBPU3dpWVhwa
01gb21kWEp1T25ndFozTnpPbWxOWVhBdmNtRnVaQzVeYVhRAVpHVXVj
ROZrYkM1amIyMG1mUS51ZHRVSTNVNUMtM3BWNHhJIS1loxbWstQ300Ymh
sQkx1SzAyN1VhbWRhMjhwTFk4c013TKk50YOE=
S: + Qyx

+ZX1KaGJHY21PaUpTVXpJIMUSpSXNIbmcxWXLIN1d5SKk5TVWXFZW1wWRF
EwWRN1ZV2RCZDBsQ1FXZEpRa®o2UVU1Q1loydHhhR3RWUNpSMO1FSkJIVV
1ZHUVVSQ1pFMVJIjM2REVVZSRVZSR1JSMFYzU2tKV1ZFVmxUVUozUjBF
eFZVVkRaM2RXV1VWR1IWUKRRbFJIpTWxvd1pESkd1VnBUUWXGalNHAG5
WRWhTYTAXVE5IZE1RVMXFVmxGU1JFUKRWbEZSV1ZKTINVWKOKbHB1VW
pOWL1dFCcHNTVVZPYkdOdVVuQmFiV3hxV1ZoU2NHSX10R2RSV0OZZd11VY
zV1VOZZVWpWT1FqU11SR1JIGZWsXRVJIYaE5WRUV4VFhwUmVVMUdiMWhF
VkVVeVRVUKZ1RTFVUVRGTmMVSR]jVUVVp2ZDFSRVJIVeE5RV3RIUVRGV1]
VSmMOUVUS5SVMXWNFNHCE JZMEpuVGXxaQ1lFX0OU5ShFpDUWXKRmMQyZFZNam
XOWKkVoa2FHTNRWV2RWUGZIMVNVVJRNRNBFULAST1FUTKkhRVEZWU1VGM
2QxVmpiVVoxV2tNMWRHR11VWFZhUjFWMVkwZEdhMKkpET1ldwaUlgQjNa
MMRGYVUXQK1FZERVMOZIVTBsaUOwU1lJISVUpCVVZWQlFUUKkpRalIzUVh
kblowVkxRVz1KUWtGU1JFSm9lalp3wWmt3MmRraDRjM2d5UkhaR1dsQX
JSMU13V1c5dFJIQXZRMFZsSzA5SVRQMFNROOYT1RGW1p6bG5WMWhOV
1ROdVVIR1AWROpCULhGWVNEaAEJWWFIyWmpkTmVtS1lpNamh2vVmi4dids
UXdOWHBOTWINdmRFVXpaMnRvVkhodFdFOVNaMUZ5WTNWMVozVnFUMWh
OUm10oSk5ITjJISVmOyUTIKSVVHeGFhVm92VkhwcldFeE1VREK1UlhvM2
QWNWFi1iakZJT1RkQIRIRNRVMEZ2T1ZRMGNYaE5SbWRDV1hWa2R50WF1R
kJTZWtSMFZX0UpWakJ6 TWpOW1p6UjRWRGXx0ZDBwdWNgRKkhaMDFWVW1s
avVzVvSnFSamQ1Ww10dE1FczRjMHBVSzFWSFpVSTNjbTFNYKZCMOsyWkJ
hMD1tTjFwcVdgbDBjR1JyULUXCEQIVK1SVTF4WTNoaFIXTkJTeThyYT
FjMO5YR1B1R1JICUMt rNGVsSbGFXRFV6WjNCbk5HMXBLMUZYWmt kWk1Wc
E9VVXBOZFVOSFVWaG5MM1ZtZUUxN11YaEQUalJvTVdGUGIHMWFXbGXxy
UWtod05USKJIPWGXKVFZWaVFXZE5Ra0ZCUjJwb1l1XdDNaMkZzazbBOUld
VUldVakJVUWtGSmQWRKVRWES5DW]j J4bmFHAG5RbWgyYUVOQ1VUQKZTSG
haWkZRelFteGliRTVVVkVOQ1NGcFhOV3hqYlVzdildsZFJaMUV5Vm5sa
1IyeHRZVmMRPYUdSSFZYZE1VVmxFVmxJd1QwSKNXVVZHUZFOemRXSkZS
SFZpVWtsSFNFTKNkSFJICYkZSMKk1rW1lhSM11yVFVINFIwRXhWV1JKZDF
GW1RVSMhRVVpNYVhwYWJFMVhia3RMTVZCW11XZGtThXByVm5WU2FFV1
JTbXBOUVdOSFFUR1ZaRVZSVVVOT1FVRjNRM2RaUkZaUO1GQkNRVKkZFU
VdkWVowMUNUVWRCTVZWa1NSR1JUVTFCY jBKRFEzTKhRVKZWUMtKM1RV

Howard & Williams Expires June 12, 2014 [Page 32]

Internet-Draft BrowserID SASL & GSS-API December 2013

UK5RVEJIUTFOeFIXTkpZak5FVVVWQ1FsSR1ZRVUUwWU1VKQ1VVSkVNVUO
2VVZBcmNrNHhWV1Y2TjBFMmVpdEXSRkJOY1Roek1tbENSek JHZWXWNG
MxZ31VV1ZQZFhCQ1JVbG1lkVnB3TUVOS11lYVnFWazFuTURGbVpHCHpkV
WRITUhWWV1rMwlaVkpIZVvUlc1ZYTk5UaXRhUkhrNEwwMUpUMmd4wvzw
SGRQQ1RWWGRMZEVOMFRIUlhja3AyTmpWMWQwaEhSM1EXZFVaTGVFMUZ
0akZXVKRRcmNYQkpNa®zZIY1hoNE5XUN1jM2hGVEVKUFpIbFFibVYXUV
dsTVVIaEdkVOpTUMOXNmRXaFdVMGszUVZCTmJIEYzVUMNN6 TUCSWGRXU
kJORGxzV1ZnNwWQzb3paemx4T1lhaa2 JEbDVhR2RsW1ZWVFZYQk5hR3hh
TWpSV116bFFkVXg2Y2pFMWFqW]j J0ak5ZZW5KVFpGZDBUbNAYTUVZeEL
HVKViRFI1VKZWT1YXTkthRGR4UW1obmNURKkpiMWc1UVZCUFQzVk1Zaz
FPY25BM11tVkZaVzkzYURNMGNGWlhabFJoVTNoSk4yNUXOVGRYyU3pKN
GFGS1ZORE5sZDFscU1ta3ZVMO02TOVKe IRWTTVNWFZ5TWpWSmMRDSmMRm
US51eUowYTNRaU9uc21lhblJwSWpvaV1XVmhlVEJIU21sN1JIZzNPVUZ
UTFMXWFRDMTJkelpaT1VKWWVGSjFRekZZYzFwWNGNuazFNVK5WUINJICO
1tVjRjQOKk2TVRNMk1gazV0OekE1TORBAO1IMHNIbVZgWkdnau9uc211Q
Ok2SWtveFNWZG1TREpPCT1VNelkyaFBWVWx4Y1ldaWwNGQmZVbEZGU1U5
dFpESkZ1Rmh2UzNKeFVWR11URTBpTENKNU1qb21YekpGZEhoaWVsOTJ
ThvzZsv1lzwawvuSnlabVJIsYTFSVVVGVINjROpIU2tnM2EzbEpWMOZOYT
BsR1p5SjIMQOplYjI1alpTSTZIbWCcXVURSTGNrYzR1VzVuSwl3aVpYa
HdJam94TXpZeUQUWTBOamsyTURBd2ZRLnFaaFVxdXBWUHgzRTANSTBH
dnNIZjZER3pzc3ByMkJIsdUVUMFNWMERXdkpFS1F4S3Bi0G9faVZswWHZ
Qa2p2SXpOQm5JajNNbO84U1ZMUWIWAESQZDFrN3FOTUVWRKhOVGI1WF
pPKYWVJIT1BpQUNSSzA5dUZpVESudlcxanMxQ3pPY2FMakxsSTN4bFdkL
Ul1em8z0DhyTUxsSXVkbmkxak5uRSOyOXZfc1INUTNRXLUMwQmMNONUMw
T3drbDcxQk54eHgzaFVxeEcXxTOWOUHQYZO JKWUFQX3NOVKk12aDFwwD1
hRzdOVms0S2sxS2NjaXRqUFdGNOdXc3JGeld4ekRSMHU2REZORmFjaE
NPYmVmcmZnZKkUXOXF1WnJLcnpIMFVKQ3JEUHpZazlYb1dKR2twR1NPd
1dhY192QON1dXY1VjNHZFOMTINIM3JCaS1GYWVOWUhBRjFJUQ==

Unpacking the mail user agent's AUTHENTICATE message reveals the
following:

Howard & Williams Expires June 12, 2014 [Page 33]

Internet-Draft BrowserID SASL & GSS-API December 2013

n,,c,eyJhbGci0iJSUzI1INiJ9.eyJIwdWIsaWMta2V5Ijp7ImFsZ29yaXRob
SI6IKRTIiwieSI6IjM5MTN10DgyZDhjMzVkMjImNmQOMDY5Y2U2MDBKYmN j
YJM5NGFjYWFhYzYOOWZKN2Y5ZmMNKNmMOMTIONmMY1NjI5SMGVMMGNjMzcONzZ
hMDRhNDE4YZzF10DMXOWIINGIXZWNiINmMY2Y2VhNzUONGY2ZTEINjN1ZGN1ZG
M5MDZKNjgOM2QwMWJIJZTRMN2E1ZjcwN2NmYTYWYWMSMTM2ZmFmN j ImZGFmN
DhkOGE50D1hYWFINDQWN2VKNjcyNzdhMTc4MmVjYWEXNTZiZGNhZWEXNjdm
MjYzNzI1ZGU2M2VKOGYYOGE2MDNiINMZMNTEWZjQ4MDJIKNzZRKN2VhZTdhYmM
yZWIilLCJIwIjoiZmY2MDAGODNKYjZhYmZjNWIONWVhY jc4ANTKOYjMIMzNKNT
UwZD1mMWIMMmMES0TJIhN2E4ZGFhNmRjMzRmODAGNWFKNGU2ZTBjNDI5ZDMzN
GV1ZWFhZWZKN2UyM2QOODEWYmUwMGUOY2MXNDkyY2JhMzI1YmE4MWZmMmQ1
YTViMzA1YThkMTd1lYjNiZjRhMDZhMzQ5ZDM5MmMUWMGQzMjk3NDRhNTE30TM
4AMDMONGU4MmMEXOGMONZzkzMzQz0GY40TF1M]jIhZWVmODEYZDY5YzhmNzV1Mz
I2Y2I3MGVhMDAWYzNmNzc2ZGZkYmQ2MDQ2MzhjMmVmNzE3ZmMyNmQwMmUXN
yIsINEiOiJIMjF1IMDRMOTEXZDF1ZDc50TEWMDh1Y2FhYjNiZjc3NTKk4NDMw
OWMzIiwiZyI6ImMIMmMEOYTBMZjNiIN2U2MWZKZFJEANJdjZTgOMTMAMZY5YTY
XNTRMNGFmMYTKYOTY2ZTNJODI3ZTI1Y2ZhNmNMNTA4Y jkwZTVKZTQXOWUXMz
M3ZTA3YTJ1O0WUYYTNjZDVKZWE3MDRKMTC1ZjhlYmY2YWYzOTdkNj11IMTEWY
jk2YWZiMTdjN2EWMzI10TMyOWUOODI5YjBKkMDNiYmM30Dk2YJjE1YjRhZGU1
M2UxMzA4NThjYzMOZDk2MjYS5YWE4OTAOMWYOMDkXMzZjNzIOMmMEZODg5NWM
5ZDViY2NhZDRmMzg5YWYxZDdhNGJIKMTM50GJIKkMDCcyZGZmYTg5NjIzMzM5N2
EifSwicHJIpbmNpcGFSIjp7ImVtYW1lsIjoibHVrZWhAbHVra3RvbmUuY29tI
nOsImlhdCIBMTM2M]jk2MTASNGEyMiwizZzXhwIjoxMzYyOTYONjk2MTIyLCJIp
c3Mi0iJsb2dpbiswzXJzb25hLm9yZyJ9. fOouyfvd5aYgo9rBgrgGT2Gh93Q
J1VzKHOKk67EQpDYO0iPCOuqpyL9kkUT7qpcYifloCSZ90z5-UdkrWeq6WRDK
gGNyx48WrTgnVJ2FS71MLn_CyhF0j5cV1CA9YhwaYVLX1moXSMnY7rG1lVKE
Rv4mikB3qCpPVv5rmHKONCbFZb7WWGrdTGdrcGNDAdyCBD9kWiQGUNI - zswY
wberTNd76g5gcusS-mlcVNco3LLn32Salltx0BPp-U021z0GMOXHbnmRkeQ
temnUWdihc4UmzZMDBIgNgHQBJgWOhAQ9GYQfc5N1SsenQ_Jy0dxjq51wDZY
wHL1QyfbuXlamE3CgvdeA~eyJhbGci0iJEUZzEY0CJ9.eyJub25jZSI6Imgl
UDRLckc4ewWsnIiwiZWNkaCI6eyJ4IjoizZmpaTnBzQmpHb19YQUNtZ2J0dOF
zdnI40GcOR1d6dGOiCcXAIVEL1iX11GMCISIMNYdiI6I1AtMjU2IiwieSI6I1
JLRXZKeju5Y3NhdjhLY3d1VXY1WHFGZ3Q4QVdDQWtySkJI6M1BQCcUXKAHMif
SwiY2J0IjoiYml3cyIsImV4cCI6GMTM2MjKk2MTIXNJEOOSWiYXVKIjoidXJu
OngtZ3NzOmltYXAvcmFuzZC5taXQuZGUucGFkbC5jb20ifQ.udtoI3U5C-3p
p4xIJZimk-Cz4bhlBLeK@26Uamda28pLY8SMwNNtCA

The initial "n,," is the GS2 header (indicating that there are no
channel bindings). The "c," denotes the token as being a BrowserID
initial context token. The remaining base64 URL encoded data is a
BrowserID backed assertion, containing the following certificate (for
clarity, the payload has been reformatted and JWT header and
signature omitted):

Howard & Williams Expires June 12, 2014 [Page 34]

Internet-Draft BrowserID SASL & GSS-API December 2013

"public-key": {

"algorithm": "DS",

"y'": "3913e882d8c35d22f6d4069ce600dbcch394acaaac649
fd7f9fcd6c41246f56290ef0Occ37476a04a418c1e8319
b54blecb6f6cea7544f6e1563edcedc906d6843d01bce
4f7a5f707cfa60ac9136faf62fdaf48d8a989aaae4407
ed67277a1782ecaal56bdcaeal67f263725de63ed8128
a603b6ff510f4802d74d7eae7abc2eb",

"p": "ff600483db6abfc5b45eab78594b3533d550d9f1bf2a9
92a7a8daa6dc34f8045ad4e6e0c429d334eeecaaefd7e2
3d4810beB0e4ccl1492cba325ba81ff2ds5a5b305a8d17e
b3bf4a06a349d392e00d329744a5179380344e82a18c4
7933438f891e22aeef812d69c8f75e326ch70eab@0c3f
776dfdbd604638c2ef717fc26d02el17",

"q": "e21e04f911d1ed7991008ecaab3bf775984309c3",

"g": "cb52a4a0ff3b7e61fdf1867ce84138369a6154f4afa929
66e3c827e25cfa6cf508b90e5de419e1337e0@7a2e9e2a
3cd5dea704d175f8ebf6af397d69e110b96afb17¢c7a03
259329e4829b0d03bbc7896b15b4ade53e130858cc34d
96269aa89041f409136¢c7242a38895c9d5bccad4f389a
f1d7a4bd1398bd072dffa896233397a"

}I
"principal": {
"email": "lukeh@lukktone.com"
}I
"iat": 1362961096122,
"exp": 1362964696122,
"iss": "login.persona.org"

}

and assertion:

"nonce": "h5P4KrG8yng",
"epk": {
"x": "fjZNpsBjGn_XACmgbNwAsvr88g4FwWztobqp5TMb_YFO",
"crv": "P-256",
"kty": "EC",
"y": "RKEvJz59csav8KcweUv5XqFgt8AWCAKrJIBz3PPgLJtS"
3
"cb": "biws",
"exp": 1362961216149,
"aud": "imap/rand.mit.de.padl.com"

}

Note the channel binding token that protects the GS2 header.

Howard & Williams Expires June 12, 2014 [Page 35]

Internet-Draft BrowserID SASL & GSS-API December 2013

[[anchor8: The encoded example needs to be regenerated to reflect
that "cb" is now used for channel bindings.]]

Turning to the response backed assertion sent from the IMAP server to
the mail user agent, we have the following after base64 decoding:

eyJhbGci0iJSUzIINiIsInglYyI6WyJINSULEempDQOFYYWdBdO1CQWdJIQkJ
6QU5CZ2txaGtpRz13MEJBUVVGQURCZE1Rc3dDUVIEV1FRROV3SKJIWVEVITU
J3ROEXVUVDZ3dWVUVGRVRDQ1RiM1owZDJGeVpTQLlFkSGtnVEhSa®1TNHAMQ
V1EV1FRRERDV1FRVVJNSUZOd1puUjNZWEpsSUVObGNuUnBabwWxqwVhScGIy
NGARWFYwYUc5eWFYUjVNQJjRYRFRFek1ERXhNVEEXTXpReU1Gb1hEVEUYTUR
FeE1UQTFNelF5TUZVd1RERUXNQWtHQTFVRUJOTUNRV1V4SGpBYOJINT1ZCQW
9NR1ZCQ1lJFd2dVMjltZEhkaGNtVWAVSFI1SUVAMFpERWRNQNNHQTFVRUF3d
1VjbUZ1WkM1dGFYUXVaR1V1Y0dGa2JIDNWpiMjB3Z2dFaU1BMEdDU3FHUG11
MORRRUJBUVVBQTRJQKR3QXdnZOVLQW9JQkFRREJoekZwZkw2dkh4c3gyRHZ
GW1ArR1IWVW9tRHAVQOV1KO9IT]jBaMGM20TFZZz1nV1htVTNUUHFWVGJIBSX
FYSDhBVXR2ZjdNemJZMjhvVmxwW1QwNXptMmMvdEUZzZ2toVHhtWE9SZ1FyY
3Vv1z3VgT1hNRmhJINHN2RVorQ2JIUGxaaVovVHprWEXIUDI5RX03d05abjFI
NTdBTHFtUOFVNVQOcXhNRmdCWXVkdy9aeFBSekROVWIJIVjBzMjNZZzR4VD1
hdOpucjFHZO1VUM1iVUJIqRjd5YmNtMES4cOpUK1VHZUI3cm1MbFB3K2ZBao
9MN1pgWjlOcFRrRU1pOHVMRU1XY3hhR1NBSy8ralc3NXFPeGRBRkk4ellaw
DUzZ3BnNG1pK1FXZkdZMVpOUUpNdUhHUVhNL3VmeE16YXhOTjRoOMWFPbGla
W11lrQkhwNTJBOX1JITVViQWANQkFBR2pNnYWt3Z2FZdONRWURWUjBUQkFJdOF
EQXNCZ2xnaGtnQmh2aENBUTBFSHhZZFQzQmxibE5UVENCSFpXNWXjbUYwW1
dRZ1EyVn1kR2xtYVd0aGRHVXdIUV1EV1IwWTOJCWUVGSINzdWJIFRHViUk1HS
ENCAHRBbFR2MKZXR2YrTUI4ROEXVWRJIA1FZTUJhQUZMaXpabE1XbktLMVBZ
YWdkSmprvnVSaEVRSmpNQWtHQTFVZEVRUUNNQUF3Q3dZRFZSMFBCQVFEQWd
YZO1CTUdBMVVKS1FRTU1BbOdDQ3NHQVFVRKJI3TURNQTBHQINXRINJIYJjNEUU
VCQ1FVQUEGSUJBUUJEMUJEUVArck4xVVVENOE2eit LRFBhcThzMm1CRzBGe
1p4c1gyUVVPAXBCRU1idVpwMEtKYXVqVKk1nMDFmZGpzdUdHMHVYYk1mZVJH
eU5sVXNNTitaRHk4L01JT2gXYVVHAjBTVXdLAENOTHRXckp2NjV1dOhHR3Q
1dUZLeE1FNjFWVDQrcXBIMkFHcXh4NWRyc3hFTEJPZH1QbmV1QW1MUHhGdAW
JSRm16dWhWUOK3QVBNbDc5T2szMGIXAWRBND1sVVg5d30zZz1x0XZkbD15a
Gd1ZVVTVXBNaGxaMjRVYz1lQdUx6cjE1ajZ2NjNYenJTZFdOTnp2MEYXMGVE
bDR5VFVOV1NKabDdxQmhncTFJIb1g5QVBPT3VMYK10CcnA2YmMVFZW93aDMOCFZ
XZ1RhU3hJN25LNTdrSzJ4aFJVNDN1d11gMmkvU3J60EdzTVM5MXVyMjVJdC
JdfQ.eyJ0a3QiOnsianRpIjoiYWVheTBHSm16RHg30UFNLS1XTC12dzZZ0U
JYeFJ1QzFYc1p4cnk1MVNVSSISImV4cCI6GMTM2Mjk5NzA50DAWMHOSIMV)Z
GgiOnsieCI6IkoxSVdiSDJIBNUMzY2hPVU1xbwzYcFBfULFFRU9tZDJFeFhv
S3JIXUVFYTEOiLCJ5Ijo0iXzJFdHhiel92SmV1VVVieTJyZmR1alRUUFVScGJ
HSkg3a31JV3Fta®lFZyJ9LCJub25jZSI6ImglUDRLckc4eWs5nIiwizZXhwI j
0XMzYyOTYONJjk2MDAWTQ .qZhUqupVPX3E7MIOGVSHT6DGzsspr2BlUETOSp
0DqVJEKQXKpb80_iVIXVvPkjvIztBnIj3Mo08RVLQbptOPd1k7ghMEPFHNTD
5XZJaeINPiACRKOOUFiTNnwW1js1Cz0calLjL1I3x1Wd-Iuzo388rML1TIudn
11jNnE-29v_sSTNtq-COBch5CO0wk171BNxxx3hUqxG10L4Pt2gBJYAP_sN
VMvh1pX9aG7tVk4Kk1Kccit jPWF7GWsrFzWxzDROu6DFtFachCObefrfgfE
19geZrKrzIQUdCrDPzYk9XoWJGkpFSOwWac_vCCuuv5V3Gd_LNSI3rBi-Fa
ehYHAF1IQ

Howard & Williams Expires June 12, 2014 [Page 36]

Internet-Draft BrowserID SASL & GSS-API December 2013

Here we show the JWT header for the response assertion, as it
includes an ASN.1 encoded X.509 certificate, which is used to
mutually authenticate the IMAP server to the UA:

{
"alg": "RS256",

"x5¢c": [

"MIIDzjCCAragAwIBAgIBBzANBgkqhkiG9wOBAQUFADBAMQswCQ
YDVQQGEwJBVTEeMBWGA1UECgWVUEFETCBTb2Z0d2FyZSBQdHkg
THRKMS4wLAYDVQQDDCVQQURMIFNVZNR3YXJ1IENIlcnRpZmljYX
Rpb24gQXV0aG9yaXR5MB4XDTEZMDEXMTA1MzQyMFOXDTE2MDEX
MTA1MzQyMFowTDELMAKGA1UEBhMCQVUxHJjAcBgNVBAOMFVBBRE
wgu29mdHdhcmUgUHR5IEXQZDEJMBSGALUEAwwUCMFUZC5taxQu
ZGUucGFkbC53jb20wggEiMAOGCSqGSIb3DQEBAQUAA4IBDWAWGY
EKA0IBAQDBhzFpfL6VHXsSXx2DVFZP+GROUomDp/CEe+0HNOZOC6
91Yg9gWXmU3nPqVTbAIgXH8AUtVT7MzbY280V1pZTO5zm2c/tE
3gkhTxmXO0RgQrcuugujOXMFhI4svEZ+CbHP1ZiZ/TzkXLHP29E
Z7wWNZNn1H57ALqmSA05T4qXxMFgBYudw/ZXxPRzDtUoIVOs23Yg4x
T9awJInr1GgMURibUBjF7ybcmOK8sJIT+UGeB7rmL1Pw+fAKOf7Z
jZ9tpTKEMi8uLEMgcxaGSAK/+kW75q0xdAFI8zYZX53gpg4mi+
QWFfGY1ZNQJIMUHGQXg/ufxMzaxNN4h1a01lmzZZYkBHp52A9yIMUb
AgMBAAGjgakwgaYwCQYDVROTBAIWADAsBglghkgBhvhCAQOEHX
YdT3BlbINTTCBHZW51cmFOZWQgQ2VydGlmawWNhdGUwWHQYDVROO
BBYEFKSSUbDEDUbRIGHCBttAl1TVv2FWGT+MB8GA1UdIwQYMBaAFL
izZIMWnKK1PYagdJjkVuRhEQJjMAKGA1UdEQQCMAAWCWYDVROP
BAQDAgXgMBMGA1Ud JQQMMAOGCCsGAQUFBWMDMABGCSGSIb3DQ
EBBQUAA4IBAQBD1BzQP+rN1UUz7A6z+KDPaq8s2iBGOFzZXxsX2
QUOUpPBEIbuzZpOKJaujVvMge1fdjsuGGOuXbMfeRGYyN1USMN+ZDy
8/MIOh1aUGVOSUWKECtLtWrJv65uwHGGt5uFKXMEBL1VT4+qpI2
AGgxx5drsxELBOdyPneuAiLPxFubRFmzuhVSI7APM1790k300oW
udA491UX9wz3g9q9vdl9yhgeeUSUpMh1Z24Uc9PulLzr15j6v63
XzrSdwtNzvOF10eD14yTUNWSJIh7gBhgqlIoX9APOOULbMNrp6b
eEeowh34pVWfTaSxI7nK57kK2xhRU43ewYj21i/Srz8GsMS91ur
25It"]

}

The assertion payload is below (again, for clarity the actual JWT
signature has been omitted):

Howard & Williams Expires June 12, 2014 [Page 37]

Internet-Draft BrowserID SASL & GSS-API December 2013

{
"tkt": {
"tid": "aeay0GJizDx79Ag- -WL-vw6YIBXXRUCIXSZXry51SUI",
"exp": 1362997098000
}I
"epk": {
"x": "J1IWbH2A5C3chOUIqmfXpP_RQEEOMd2EXX0oKrqQQXLM",
"y": "_2Etxbz_vJeeUUby2rfdekTTPURpbGJH7kyIwWgmkIEg"
}I
"nonce": "h5P4KrG8yng",
"exp": 1362964696000
}

Note the fast re-authentication ticket and the nonce echoed back from
the initiator.

Howard & Williams Expires June 12, 2014 [Page 38]

Internet-Draft BrowserID SASL & GSS-API December 2013

9. Security Considerations

This document defines a GSS-API security mechanism, and therefore
deals in security and has security considerations text embedded
throughout. This section only addresses security considerations
associated with the BrowserID GSS mechanism described in this
document. It does not address security considerations associated
with the BrowserID protocol or the GSS-API themselves.

This mechanism provides for authentication of initiator principals
using private keys to public key crypto-systems, using the BrowserID
specification for user certificates (which are NOT PKIX [RFC5280]
certificates). Authentication of the acceptor principal is optional.
Fast re-authentication is supported via acceptor-issued fast re-
authentication tickets.

All cryptography for per-message tokens is imported from the Kerberos
GSS-API mechanism [RFC4121].

This mechanism actually has several mechanism 0IDs, composed of a
prefix identifying this family of mechanisms followed by an arc
identifying the [RFC3961] encryption type for use with per-message
tokens and the GSS_Pseudo_random() function. The NULL encryption
type is supported, and when it is used then the GSS-API per-message
tokens and GSS_Pseudo_random() function are not available, but
channel binding and mutual authentication may be available. Also,
when using the NULL encryption type the fast re-authentication
feature is not available because key exchange is only performed the
initiator application uses the variant of this mechanism that
supports per-message tokens and the GSS_Pseudo_random() function.

Acceptor credentials are PKIX [REC5280] certificates and their
private keys.

9.1. Host certificates for mutual authentication

Allowing a match on only the DNS subjectAltName in an acceptor's
X.509 certificate permits different services on the same host to
impersonate each other. This should be subject to local policy.

9.2. Error statuses

Returning rich error information in the clear (see Section 6.3.2) may
leak information. Implementations may squash status codes and/or
avoid returning minor statuses entirely. 1Indeed, applications may
even not send back error tokens at all, instead closing the
connection or whatever might be appropriate for the application.
(This is a generic GSS-API security consideration.)

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc5280

Howard & Williams Expires June 12, 2014 [Page 39]

Internet-Draft BrowserID SASL & GSS-API December 2013

10. IANA Considerations
This specification creates a number of IANA registries.
10.1. OID Registry

Prefix: iso.org.dod.internet.private.enterprise.padl.gssBrowserID
(1.3.6.1.4.1.5322.24)

oo oo - S ot oo o o o e e e oo +
| Decimal | Name | Description |
[oo e e e o m e e e e e e e e e e e e e +
| 0] | Reserved | Reserved |
I I I I
| 1 | mechanisms | A sub-arc containing BrowserID mechanisms |
I I I I
| 2 | nametypes | A sub-arc containing BrowserID name types |
e S SR - I +
Prefix:

iso.org.dod.internet.private.enterprise.padl.gssBrowserID.mechanisms
(1.3.6.1.4.1.5322.24.1)

Fommmm - B oo oo Feommmm o Feommmm oo +
| Decim | Name | Description | ECDH | Symmetri |
| al | | | curve | c¢ hash |
Fomme o - o e e e e e oo o o e e e e e . Fomm e oo oo +
| 0] | gss-browserid-nu | The NULL security | N/A | N/A |
| | 11 | mechanism | | |
I I I I I I
17	gss-browserid-ae	The	P-256	HS256
	5128	aes128-cts-hmac-sha		
		1-96 mechanism		
I I I I I I				
18	gss-browserid-ae	The	P-521	HS256
	s$256	aes256-cts-hmac-sha		
		1-96 mechanism		
Fommm o - Fom e e e e e oo o o e e e e e Fommm o= Fomm e o e oo +
Prefix:

iso.org.dod.internet.private.enterprise.padl.gssBrowserID.nametypes
(1.3.6.1.4.1.5322.24.2)

Howard & Williams Expires June 12, 2014 [Page 40]

Internet-Draft BrowserID SASL & GSS-API December 2013

10.

S AU e e e e e e e e ooooo oo RS —— +
| Decimal | Name | Description |
Y Fom e e e e e e e e o m e e e oo +
| 0 | Reserved | Reserved |
I I | |
| 1 | GSS_C_NT_BROWSERID_PRINCIPAL | 3.1.1 |
g o e e e e e e Fom e e e e oo o +

2. SASL Registry

Subject: Registration of SASL mechanisms BROWSERID-AES128 and
BROWSERID-AES128-PLUS

SASL mechanism names: BROWSERID-AES128 and BROWSERID-AES128-PLUS

Security considerations: See RFC 5801 and draft-howard-gss-browserid

Published specification (recommended): draft-howard-gss-browserid

Person & email address to contact for further information:
Luke Howard lukeh@padl.com

Intended usage: common

Owner/Change controller: iesg@ietf.org

Note: This mechanism describes the GSS BrowserID mechanism used with
the aes128-cts-hmac-shal-96 encryption type. The GSS-API 0ID for
this mechanism is 1.3.6.1.4.1.5322.24.1.17. As described in RFC 5801
a PLUS variant of this mechanism is also required.

[[anchor9: We could use the NULL encryption type variant for SASL, as
the GS2 bridge does not use message protection services. However,
because that mechanisms is unkeyed, re-authentication would not be
available. Defining a single AES128 mechanism is consistent with GSS
EAP.]1]

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/draft-howard-gss-browserid
https://datatracker.ietf.org/doc/html/draft-howard-gss-browserid
https://datatracker.ietf.org/doc/html/rfc5801

Howard & Williams Expires June 12, 2014 [Page 41]

Internet-Draft BrowserID SASL & GSS-API December 2013

11. References
11.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2743] Linn, J., "Generic Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.

[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
Kerberos 5", REC 3961, February 2005.

[RFC4402] Williams, N., "A Pseudo-Random Function (PRF) for the
Kerberos V Generic Security Service Application Program
Interface (GSS-API) Mechanism", RFC 4402, February 2006.

[RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
Version 5 Generic Security Service Application Program
Interface (GSS-API) Mechanism: Version 2", RFC 4121,
July 2005.

[RFC4178] Zzhu, L., Leach, P., Jaganathan, K., and W. Ingersoll, "The
Simple and Protected Generic Security Service Application
Program Interface (GSS-API) Negotiation Mechanism",
RFC 4178, October 2005.

[RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
Security Layer (SASL)", REC 4422, June 2006.

[RFC4556] Zzhu, L. and B. Tung, "Public Key Cryptography for Initial
Authentication in Kerberos (PKINIT)", RFC 4556, June 2006.

[RFC4757] Jaganathan, K., Zhu, L., and J. Brezak, "The RC4-HMAC
Kerberos Encryption Types Used by Microsoft Windows",
RFC 4757, December 2006.

[RFC4985] Santesson, S., "Internet X.509 Public Key Infrastructure
Subject Alternative Name for Expression of Service Name",
REC 4985, August 2007.

[RFC5178] Williams, N. and A. Melnikov, "Generic Security Service
Application Program Interface (GSS-API)
Internationalization and Domain-Based Service Names and
Name Type", RFC 5178, May 2008.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4178
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4757
https://datatracker.ietf.org/doc/html/rfc4985
https://datatracker.ietf.org/doc/html/rfc5178

Howard & Williams Expires June 12, 2014 [Page 42]

Internet-Draft BrowserID SASL & GSS-API December 2013

Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.

[RFC5801] Josefsson, S. and N. Williams, "Using Generic Security

Service Application Program Interface (GSS-API) Mechanisms
in Simple Authentication and Security Layer (SASL): The
GS2 Mechanism Family", REC 5801, July 2010.

[RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings

for TLS", REC 5929, July 2010.

[RFC6680] Williams, N., Johansson, L., Hartman, S., and S.

Josefsson, "Generic Security Service Application
Programming Interface (GSS-API) Naming Extensions",
RFC 6680, August 2012,

[I-D.ietf-jose-json-web-algorithms]
Jones, M., "JSON Web Algorithms (JWA)",
draft-ietf-jose-json-web-algorithms-18 (work in progress),
November 2013.
[I-D.ietf-jose-json-web-key]
Jones, M., "JSON Web Key (JwK)",
draft-ietf-jose-json-web-key-18 (work in progress),
November 2013.
[I-D.ietf-jose-json-web-signature]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web
Signature (JwWS)", draft-ietf-jose-json-web-signature-18
(work in progress), November 2013.
[I-D.ietf-oauth-json-web-token]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
(IWT)", draft-ietf-oauth-json-web-token-13 (work in
progress), November 2013.
[I-D.zhu-negoex]
Short, M., zZhu, L., Damour, K., and D. McPherson, "SPNEGO
Extended Negotiation (NEGOEX) Security Mechanism",
draft-zhu-negoex-04 (work in progress), January 2011.
[I-D.zhu-pku2u]
Zhu, L., Altman, J., and N. wWilliams, "Public Key
Cryptography Based User-to-User Authentication - (PKuU2U)",
draft-zhu-pku2u-09 (work in progress), November 2008.
[BrowserID]

Adida, B., "BrowserID Specification", February 2013.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc6680
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-18
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-18
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-18
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token-13
https://datatracker.ietf.org/doc/html/draft-zhu-negoex-04
https://datatracker.ietf.org/doc/html/draft-zhu-pku2u-09

Howard & Williams Expires June 12, 2014 [Page 43]

Internet-Draft BrowserID SASL & GSS-API December 2013

11.2. Informative References

[RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
Kerberos Network Authentication Service (V5)", REC 4120,
July 2005.

Howard & Williams Expires June 12, 2014 [Page 44]

https://datatracker.ietf.org/doc/html/rfc4120

Internet-Draft BrowserID SASL & GSS-API December 2013

Authors' Addresses

Luke Howard

PADL Software

PO Box 59

Central Park, VIC 3145
Australia

Email: lukeh@padl.com
Nicolas williams
Cryptonector, LLC

Email: nico@cryptonector.com

Howard & Williams Expires June 12, 2014 [Page 45]

