
Network Working Group L. Howard
Internet-Draft PADL
Intended status: Experimental N. Williams
Expires: June 12, 2014 Cryptonector
 December 9, 2013

A SASL and GSS-API Mechanism for the BrowserID Authentication Protocol
draft-howard-gss-browserid-07.txt

Abstract

 This document defines protocols, procedures and conventions for a
 Generic Security Service Application Program Interface (GSS-API)
 security mechanism based on the BrowserID authentication mechanism.
 Through the GS2 family of mechanisms defined in RFC 5801, these
 protocols also define how Simple Authentication and Security Layer
 (SASL, RFC 4422) applications may use BrowserID.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 12, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Howard & Williams Expires June 12, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft BrowserID SASL & GSS-API December 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Discovery and Negotiation 5
1.2. Authentication . 5
1.3. Message protection services 6
2. Requirements notation 7
3. Naming . 8
3.1. GSS name types . 8
3.1.1. GSS_C_NT_BROWSERID_PRINCIPAL 8
3.1.2. GSS_C_NT_USER_NAME . 8
3.1.3. GSS_C_NT_HOSTBASED_SERVICE 8
3.1.4. GSS_C_NT_DOMAINBASED_SERVICE 9
3.1.5. GSS_C_NT_ANONYMOUS . 9
3.2. Name canonicalization 9
3.3. Exported name token format 9
3.4. Naming extensions . 9
4. Context tokens . 10
4.1. Base protocol . 10
4.1.1. Initial context token 10
4.1.2. Acceptor context token 11
4.1.3. Initiator context completion 12
4.2. Mutual authentication 12
4.2.1. Initiator mutual authentication context token 13
4.2.2. Acceptor mutual authentication context token 13
4.2.3. Initiator mutual authentication context completion 13
4.2.4. Acceptor certificate advertisement 14
4.3. Fast re-authentication 15
4.3.1. Ticket generation . 15
4.3.2. Initiator re-authentication context token 15
4.3.3. Acceptor re-authentication context token 16
4.3.4. Interaction with mutual authentication 17
4.3.5. Ticket renewal . 17
4.4. Extra round-trip (XRT) option 17
4.4.1. Initiator XRT advertisement 17
4.4.2. Acceptor XRT advertisement 18
4.4.3. Initiator XRT context token 18
4.4.4. Acceptor XRT context token validation 18
4.4.5. Interaction with message protection services 18
5. Validation . 19
5.1. Expiry times . 19
5.2. Audience . 19
5.3. Channel bindings . 19
5.4. Key agreement . 19

Howard & Williams Expires June 12, 2014 [Page 2]

Internet-Draft BrowserID SASL & GSS-API December 2013

5.5. Signatures . 20
5.6. Replay detection . 20
5.7. Return flags . 20
6. Assertion claims . 21
6.1. Request (initiator/UA) assertion 21
6.1.1. "aud" (Audience) . 21
6.1.2. "exp" (Expiry time) 22
6.1.3. "iat" (Issued at time) 22
6.1.4. "nbf" (Not before time) 22
6.1.5. "epk" (Ephemeral Public Key) 22
6.1.6. "cb" (Channel binding) 22
6.1.7. "nonce" (Mutual authentication nonce) 22
6.1.8. "tkt" (Ticket) . 23
6.1.9. "opts" (Options) . 23
6.2. Response (acceptor/RP) assertion 23
6.2.1. "iat" (Issued at time) 24
6.2.2. "epk" (Ephemeral Public Key) 24
6.2.3. "exp" (Expiry time) 24
6.2.4. "nonce" (Mutual authentication nonce) 25
6.2.5. "tkt" (Ticket) . 25
6.2.6. "jti" (JWT ID) . 25
6.3. Error (acceptor/RP) assertion 25
6.3.1. "gss-maj" (GSS major status code) 25
6.3.2. "gss-min" (GSS minor status code) 25
6.4. XRT assertion . 28
7. Key derivation . 29
7.1. Diffie-Hellman Key (DHK) 29
7.2. Context Master Key (CMK) 29
7.3. RP Response Key (RRK) 29
7.4. Context Root Key (CRK) 29
7.5. Authenticator Root Key (ARK) 30
7.6. Authenticator Session Key (ASK) 30
7.6.1. Extra Round Trip Key (XRTK) 30
7.7. GSS Pseudo-Random Function (PRF) 30
8. Example . 31
9. Security Considerations 39
9.1. Host certificates for mutual authentication 39
9.2. Error statuses . 39
10. IANA Considerations 40
10.1. OID Registry . 40
10.2. SASL Registry . 41
11. References . 42
11.1. Normative References 42
11.2. Informative References 44

 Authors' Addresses . 45

Howard & Williams Expires June 12, 2014 [Page 3]

Internet-Draft BrowserID SASL & GSS-API December 2013

1. Introduction

 [BrowserID] is a web-based three-party security protocol by which
 user agents can present to a Relying Party (RP) a signed assertion of
 e-mail address ownership. BrowserID was intended to be used for web
 authentication. We find BrowserID to be useful in general, therefore
 we define herein how to use it in many more applications.

 The Simple Authentication and Security Layer (SASL) [RFC4422] is a
 framework for providing authentication and message protection
 services via pluggable mechanisms. Protocols that support it include
 IMAP, SMTP, and XMPP.

 The Generic Security Service Application Program Interface (GSS-API)
 [RFC2743] provides a framework for authentication and message
 protection services through a common programming interface. This
 document conforms to the SASL and GSS-API bridge specified in
 [RFC5801], so it defines both a SASL and GSS-API mechanism.

 The BrowserID mechanism described in this document reuses the
 existing web-based BrowserID protocol, but profiles it for use in
 applications that support SASL or GSS-API, adding features such as
 key agreement, mutual authentication, and fast re-authentication.

 The following diagram illustrates the interactions between the three
 parties in the GSS BrowserID protocol. Note that the terms client,
 initiator and user agent (UA) are used interchangeably in this
 document, as are server, acceptor and relying party (RP).

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc5801

Howard & Williams Expires June 12, 2014 [Page 4]

Internet-Draft BrowserID SASL & GSS-API December 2013

 +------------+
 | BrowserID |
 | identity |
 | provider |
 +------------+
 // \\
 // \\
 // \\
 // \\
 make signed // \\ fetch IdP public
 certificate // \\ key over HTTPS
 for user's // \\ (RP may cache)
 public key // \\
 // \\
 // \\
 // \\
 |/ \|
 +-------------+ +-------------+
 | SASL or GSS | GSS BrowserID | SASL or GSS |
 | client/UA |<------------------->| server/RP |
 | (initiator) | | (acceptor) |
 +-------------+ +-------------+

 Figure 1: Interworking Architecture

1.1. Discovery and Negotiation

 The means of discovering GSS-API peers and their supported mechanisms
 is out of this specification's scope. They may use SASL [RFC4422] or
 the Simple and Protected Negotiation mechanism (SPNEGO) [RFC4178].

 Discovery of a BrowserID identity provider (IdP) for a user is
 described in the BrowserID specification. A domain publishes a
 document containing their public key and URIs for authenticating and
 provisioning users, or pointer to an authority containing such a
 document.

1.2. Authentication

 The GSS-API protocol involves a client, known as the initiator,
 sending an initial security context token of a chosen GSS-API
 security mechanism to a peer, known as the acceptor. The two peers
 subsequently exchange, synchronously, as many security context tokens
 as necessary to complete the authentication or fail. The specific
 number of context tokens exchanged varies by security mechanism: in
 the case of the BrowserID mechanism, it is typically two (i.e. a
 single round trip), however it can be more in some cases. Once

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4178

Howard & Williams Expires June 12, 2014 [Page 5]

Internet-Draft BrowserID SASL & GSS-API December 2013

 authentication is complete, the initiator and acceptor share a
 security context which identifies the peers and can optionally be
 used for integrity or confidentiality protecting subsequent
 application messages.

 The original BrowserID protocol, as defined outside this document,
 specifies a bearer token authentication protocol for web
 applications. The user agent generates a short-term key pair, the
 public key of which is signed by the user's IdP. (The user must have
 already authenticated to the IdP; how this is done is not specified
 by BrowserID, but forms-based authentication is common.) The IdP
 returns a certificate for the user which may be cached by the user's
 browser. When authenticating to a Relying Party (RP), the browser
 generates an identity assertion containing the RP domain and an
 expiration time. The user agent signs this and presents both the
 assertion and certificate to the RP. (The combination of an
 assertion and zero or more certificates is termed a "backed
 assertion".) The RP fetches the public key for the IdP, validates
 the user's certificate (and those of any intermediate certifying
 parties) and then verifies the assertion.

 The GSS BrowserID protocol extends this by having the RP always send
 back a response to the user agent, which at a minimum provides key
 confirmation (this is needed for some key agreement methods) and
 indicates the lifetime of the established security context. The key
 confirmation token is also required for mutual authentication, when
 the initiator application requests that feature.

1.3. Message protection services

 GSS-API provides a number of a message protection services:

 GSS_Wrap() integrity and optional confidentiality for a message

 GSS_GetMIC() integrity for a message sent separately

 GSS_Pseudo_random() shared key derivation (e.g., for keying external
 confidentiality+integrity layers)

 These services may be used with security contexts that have a shared
 session key, to protect application-layer messages.

Howard & Williams Expires June 12, 2014 [Page 6]

Internet-Draft BrowserID SASL & GSS-API December 2013

2. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The reader is assumed to be familiar with the terms used in the
 BrowserID specification.

Howard & Williams Expires June 12, 2014 [Page 7]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft BrowserID SASL & GSS-API December 2013

3. Naming

 The GSS-API provides a rich security principal naming model. At its
 most basic the query forms of names consist of a user-entered/
 displayable string and a "name-type". Name-types are constants with
 names prefixed with "GSS_C_NT_" in the GSS-API. Names may also have
 attributes [RFC6680].

3.1. GSS name types

3.1.1. GSS_C_NT_BROWSERID_PRINCIPAL

 This name may contain an e-mail address, or a service principal name
 identifying an acceptor. The encoding of service principal names is
 intended to be somewhat compatible with the Kerberos [RFC4120]
 security protocol (without the realm name).

 The following ABNF defines the 'name' rule that names of this type
 must match.

 [[anchor1: Should we reference RFC2822 here? The Mozilla BrowserID
 docs sure don't.]]

 char-normal = %x00-2E/%x30-3F/%x41-5B/%x5D-FF
 char-escaped = "\" %x2F / "\" %x40 / "\" %x5C
 name-char = char-normal / char-escaped
 name-string = 1*name-char
 user = name-string
 domain = name-string
 email = user "@" domain
 service-name = name-string
 service-host = name-string
 service-specific = name-string
 service-specifics = service-specific 0*("/" service-specifics)
 spn = service-name ["/" service-host ["/" service-specifics]]
 name = email / spn

3.1.2. GSS_C_NT_USER_NAME

 This name is implicitly converted to a GSS_C_NT_BROWSERID_PRINCIPAL.
 A default domain may be appended when importing names of this type.

3.1.3. GSS_C_NT_HOSTBASED_SERVICE

 This name is transformed by replacing the "@" symbol with a "/", and
 then implicitly converted to a GSS_C_NT_BROWSERID_PRINCIPAL.

https://datatracker.ietf.org/doc/html/rfc6680
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc2822

Howard & Williams Expires June 12, 2014 [Page 8]

Internet-Draft BrowserID SASL & GSS-API December 2013

3.1.4. GSS_C_NT_DOMAINBASED_SERVICE

 [RFC5178] domain-based service names are transformed into a
 GSS_C_NT_BROWSERID_PRINCIPAL as follows:

 o the <service> name becomes the first component of the BrowserID
 principal name (service-name in ABNF)

 o the <hostname> becomes the second component (service-host)

 o the <domain> name becomes the third component (service-specific)

3.1.5. GSS_C_NT_ANONYMOUS

 If the initiator principal's leaf certificate does not contain a
 "principal" claim, then the initiator name has this name type.

3.2. Name canonicalization

 The BrowserID GSS-API mechanism performs no name canonicalization.
 The mechanism's GSS_Canonicalize_name() returns an MN whose display
 form is the same as the query form. Of course, the principal named
 obtained from a CREDENTIAL HANDLE may be canonical in that the IdP
 might only issue credentials for canonical names, but credential
 acquisition is out of scope here.

3.3. Exported name token format

 The exported name token format for the BrowserID GSS-API mechanism is
 the same as the query form, plus the standard exported name token
 format header mandated by the GSS-API [RFC2743].

 [[anchor2: Do we wish to say anything about the exported composite
 name token format? It should be an encoding of the initiator's leaf
 certificate.]]

3.4. Naming extensions

 The acceptor MAY surface attributes from the assertion and any
 certificates using GSS_Get_name_attribute() (see [RFC6680]). The URN
 prefix is "urn:<TBD>:params:gss:jwt". If a SAML assertion is present
 in the "saml" parameter of the leaf certificate, it may be surfaced
 using the URN prefix "urn:<TBD>:params:gss:federated-saml-attribute".

 Attributes from the assertion MUST be marked as unauthenticated
 unless otherwise validated by the acceptor (e.g. the audience).

 Attributes from certificates SHOULD be marked as authenticated.

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc6680

Howard & Williams Expires June 12, 2014 [Page 9]

Internet-Draft BrowserID SASL & GSS-API December 2013

4. Context tokens

 All context tokens include a two-byte token identifier followed by a
 backed BrowserID assertion. This document defines the following
 token IDs:

 +---------+----------+-------+--------------------------+
 | Section | Token ID | ASCII | Description |
 +---------+----------+-------+--------------------------+
 | 4.1.1 | 0x632C | c, | Initiator context token |
 | | | | |
 | 4.1.2 | 0x432C | C, | Acceptor context token |
 | | | | |
 | | 0x442C | D, | Context deletion token |
 | | | | |
 | 4.2.4 | 0x6D2C | m, | Initiator metadata token |
 | | | | |
 | 4.2.4 | 0x4D2C | M, | Acceptor metadata token |
 +---------+----------+-------+--------------------------+

 The token ID has a human-readable ASCII encoding for the benefit of
 pure SASL implementations of this mechanism.

4.1. Base protocol

4.1.1. Initial context token

 The initial context token is framed per Section 1 of [RFC2743]:

 GSS-API DEFINITIONS ::=
 BEGIN

 MechType ::= OBJECT IDENTIFIER
 -- representing BrowserID mechanism
 GSSAPI-Token ::=
 [APPLICATION 0] IMPLICIT SEQUENCE {
 thisMech MechType,
 innerToken ANY DEFINED BY thisMech
 -- token ID and backed assertion
 }
 END

 Unlike many other GSS-API mechanisms such as Kerberos, this token
 framing is not used by subsequent context or by [I-D.zhu-negoex]
 metadata tokens. As such, pure SASL implementations of this
 mechanism do not need to deal with DER encoding the mechanism object
 identifier.

https://datatracker.ietf.org/doc/html/rfc2743#section-1

Howard & Williams Expires June 12, 2014 [Page 10]

Internet-Draft BrowserID SASL & GSS-API December 2013

 GSS BrowserID is a family of mechanisms, where the last element in
 the OID arc indicates the [RFC4121] encryption type supported for
 message protection services. The OID prefix is
 1.3.6.1.4.1.5322.24.1. The NULL encryption type is valid, in which
 case services that require a key are not available.

 The innerToken consists of the initiator context token ID
 concatenated with a backed assertion for the audience corresponding
 to the target name passed into GSS_Init_sec_context(). In addition,
 the assertion MAY contain the additional claims, which are described
 later in this document:

 o ECDH key agreement parameters (see Section 6.1.5)

 o Channel binding information (see Section 6.1.6)

 o A nonce for binding the request to a response signed with a
 private key for mutual authentication (see Section 6.1.7)

 o A ticket identifier for fast re-authentication using an
 established session key rather than a BrowserID certificate (see

Section 6.1.8)

 The call to GSS_Init_sec_context() returns GSS_C_CONTINUE_NEEDED to
 indicate that a subsequent context token from the acceptor is
 expected.

4.1.2. Acceptor context token

 Upon receiving a context token from the initiator, the acceptor
 validates that the token is well formed and contains a valid
 BrowserID mechanism OID and the initiator context token ID.

 The acceptor then verifies the backed identity assertion per the
 BrowserID specification. This includes validating the expiry times,
 audience, certificate chain, and assertion signature. The acceptor
 then verifies the channel binding token, if present, and any other
 GSS-specific claims in the assertion. In case of failure, a response
 assertion containing GSS major and minor status codes SHOULD be
 returned.

 If the [RFC3961] encryption type for the selected mechanism is not
 ENCTYPE_NULL, the acceptor generates a ECDH public key using the
 parameters received from the client (see Section 6.2.2), and from it
 derives the RP Response Key (RRK) (see Section 7.3). The acceptor
 then generates a response assertion containing its ECDH public key
 and context expiration time (note that the context expiration time is
 a purely informational quantity). The response assertion will be:

https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc3961

Howard & Williams Expires June 12, 2014 [Page 11]

Internet-Draft BrowserID SASL & GSS-API December 2013

 o signed in the acceptor's private key, if mutual authentication was
 requested, and the acceptor has a key (see Section 4.2);

 o signed in the RRK, if the encryption type for the selected
 mechanism is not ENCTYPE_NULL;

 o not signed in all other cases.

 The response assertion is encoded as a backed assertion, prefixed
 with the acceptor context token ID. It SHALL have a certificate
 count of zero.

 Finally, the Context Root Key (CRK) (see Section 7.4) is derived from
 the ECDH shared secret (if present) and GSS_S_COMPLETE is returned,
 along with the initiator name from the verified assertion. If the
 CRK is available, the replay_det_state (GSS_C_REPLAY_FLAG),
 sequence_state (GSS_C_SEQUENCE_FLAG), conf_avail (GSS_C_CONF_FLAG)
 and integ_avail (GSS_C_INTEG_FLAG) security context flags are set to
 TRUE.

 Other assertion/certificate claims MAY be made available via
 GSS_Get_name_attribute().

4.1.3. Initiator context completion

 Upon receiving the acceptor context token, the initiator unpacks the
 response assertion and, if applicable, computes the ECDH shared
 secret and RRK. The RRK is used to verify the response assertion
 unless mutual authentication is available, in which case the
 acceptor's public key will be used.

 The initiator sets the context expiry time with that received in the
 response assertion, if present; otherwise, the context expires when
 the initiator principal's certificate expires.

 The CRK is derived from the ECDH shared secret and GSS_S_COMPLETE is
 returned to indicate the initiator is authenticated and the context
 is ready for use. No output token is emitted. Security context
 flags are set as for the acceptor context.

4.2. Mutual authentication

 Mutual authentication allows the acceptor to be authenticated to the
 initiator. The mechanism SHALL set the mutual_state security context
 flag (GSS_C_MUTUAL_FLAG) to TRUE if mutual authentication succeeded.
 Support for mutual authentication is OPTIONAL.

 The base protocol is extended as follows to support this:

Howard & Williams Expires June 12, 2014 [Page 12]

Internet-Draft BrowserID SASL & GSS-API December 2013

4.2.1. Initiator mutual authentication context token

 If the initiator requested the mutual_state flag, it sends in its
 request assertion an "opts" claim (see Section 6.1.9) containing the
 "ma" value. It also includes a nonce (see Section 6.1.7) in order to
 bind the initiator and acceptor assertions.

4.2.2. Acceptor mutual authentication context token

 If the acceptor has a private key and certificate available and the
 initiator indicated it desired mutual authentication by including the
 "ma" protocol option, the acceptor signs the response using a private
 key rather than the RP Response Key (RRK). The response includes the
 nonce from the initiator's assertion. The acceptor MUST reject
 requests for mutual authentication lacking a nonce.

 While the response is a backed assertion, in order to take advantage
 of existing keying infrastructures BrowserID certificates MUST NOT be
 included in the backed assertion. Rather, an X.509 certificate SHALL
 be included as a value for the "x5c" header parameter in the
 assertion (see [I-D.ietf-jose-json-web-signature] 4.1.6). The
 certificate MUST be valid for signing.

 [[anchor3: We don't want to burden the initiator with having to
 implement both methods of authenticating acceptors, and given that
 initiators and acceptors both will generally need a PKIX
 implementation, and given that acceptors will need a PKIX credential
 for TLS, and that there is as yet no standard protocol for automatic
 provisioning of BrowserID credentials for servers, using PKIX to
 authenticate the server seems to be the easiest way to go.]]

4.2.3. Initiator mutual authentication context completion

 The initiator verifies the assertion signature and that the nonce
 matches, and validates the certificate chain according to [RFC5280].

 Initiators MUST authenticate the service name using the matching
 rules below:

 o A service-name EKU from the registry defined by [I-D.zhu-pku2u];
 id-kpServerAuth maps to the "http" service

 o A spn expressed as a KRB5PrincipalName in the id-pkinit-san
 otherName SAN (see [RFC4556] Section 3.2.2; the realm is ignored)

 o A service-name expressed as a SRVName SAN (see [RFC4985])

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4556#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc4985

Howard & Williams Expires June 12, 2014 [Page 13]

Internet-Draft BrowserID SASL & GSS-API December 2013

 o Optionally, an out-of-band binding to the certificate

 If there are no EKUs, or a single EKU containing id-kp-
 anyExtendedKeyUsage, and no SAN containing the service name is
 present, then all service names match. If a SAN containing the
 service name is present, then any EKUs are ignored.

 If the the host component of the service name (service-host) is not
 expressed in a SAN as specified above, it MUST be present as a value
 for the dNSName SAN or as the least significant Common Name RDN.

 Note only the id-pkinit-san or SRVName SANs provide the ability to
 authenticate the a service name containing a service-specific
 component.

4.2.4. Acceptor certificate advertisement

 [I-D.zhu-negoex] may be used to advertise acceptor certificates.

 If the acceptor supports mutual authentication, it MAY include its
 certificate and any additional certificates inside a backed assertion
 with an empty payload as output for GSS_Query_meta_data(). The
 "assertion" is prefixed with the two byte token identifier "M,".

 Upon receiving this, the initiator MAY validate the certificate or
 fingerprint, or present either to the initiator before committing to
 authenticate.

 The NegoEx signing key is the output of GSS_Pseudo_random() (see
Section 7.7) with an input of GSS_C_PRF_KEY_FULL and "gss-browserid-

 negoex-initiator" or "gss-browserid-negoex-acceptor" (without
 quotes), depending on the party generating the signature.

 The NegoEx authentication scheme is the binary encoding of the
 following hexadecimal string:

 535538008647F5BC624BD8076949F0

 where the third byte (zero above) is set to the [RFC3961] encryption
 type for the selected mechanism. The authentication scheme for
 encryption types greater than 255 is not specified here.

 There is currently no initiator-sent metadata defined and acceptors
 should ignore any sent. The metadata is advisory and the initiator
 is free to ignore it.

 [[anchor4: Delete this section as NegoEx will likely not be
 progressed.]]

https://datatracker.ietf.org/doc/html/rfc3961

Howard & Williams Expires June 12, 2014 [Page 14]

Internet-Draft BrowserID SASL & GSS-API December 2013

4.3. Fast re-authentication

 Fast re-authentication allows a security context to be established
 using a secret key derived from the initial certificate-signed ECDH
 key agreement.

 The re-authentication assertion is signed with a HMAC using the
 Authenticator Root Key (ARK) (see Section 7.5), rather than a
 initiator principal's BrowserID certificate.

 Support for fast re-authentication is OPTIONAL and is indicated by
 the acceptor returning a ticket in the response assertion.

4.3.1. Ticket generation

 If the acceptor supports re-authentication, the following steps are
 added to Section 4.1.2:

 1. A unique, opaque ticket identifier is generated.

 2. The acceptor creates a JSON object containing the ticket
 identifier and expiry time and returns it in the response to the
 initiator (see Section 6.2.5).

 The acceptor must be able to use the ticket identifier to securely
 retrieve the subject, issuer, audience, expiry time, ARK and any
 other relevant properties of the original security context. One
 implementation choice may be to use the ticket identifier as a key
 into a dictionary containing this information. Another would be to
 encrypt this information in a long-term secret only known to the
 acceptor and encode the resulting cipher-text in the opaque ticket
 identifier.

 The ticket expiry time by default SHOULD match the initiator's
 certificate expiry, however it MAY be configurable so the ticket
 expires before or after the certificate.

 The initiator MAY cache tickets, along with the ARK, received from
 the acceptor in order to re-authenticate to it at a future time.

4.3.2. Initiator re-authentication context token

 The initiator looks in its ticket cache for an unexpired ticket for
 the desired acceptor. If none is found, the normal certificate-based
 authentication flow is performed, otherwise:

Howard & Williams Expires June 12, 2014 [Page 15]

Internet-Draft BrowserID SASL & GSS-API December 2013

 1. The initiator generates a re-authentication assertion containing:
 the name of the acceptor (see Section 6.1.1), an expiry time (see

Section 6.1.2) and/or the current time (see Section 6.1.3),
 optional channel binding information (see Section 6.1.6), a
 random nonce (see Section 6.1.7), and the ticket identifier (see

Section 6.1.8).

 2. The initiator signs the re-authentication assertion with the ARK,
 using the hash algorithm associated with the original context key
 (see Section 10.1; HS256 is specified for the encryption types
 referenced in this document).

 3. The re-authentication assertion is packed into a backed
 assertion. The certificate count is zero as the assertion is
 signed with an established symmetric key.

 4. The initiator generates an Authenticator Session Key (ASK) (see
Section 7.6) which is used to verify the response and derive the

 CRK.

 [[anchor5: Question: do we want an option to do an ECDH session key
 exchange in the fast re-auth case? If we had a GSS req_flag for
 requesting perfect forward security (PFS) then we would want to have
 this option.]]

4.3.3. Acceptor re-authentication context token

 1. The acceptor unpacks the re-authentication assertion and
 retrieves the ARK, ticket expiry time, mutual authentication
 state and any other properties (such as the initiator name)
 associated with the ticket identifier.

 2. The acceptor validates that the ticket and re-authentication
 assertion have not expired.

 3. The acceptor verifies the assertion using the ARK.

 4. The acceptor generates the ASK (see Section 7.6) and derives the
 RRK and CRK from this (see Section 7.3 and Section 7.4,
 respectively).

 5. The acceptor generates a response and signs and returns it. Note
 that, unlike the certificate-based mutual authentication case,
 the nonce need not be echoed back as the ASK (and thus the RRK)
 is cryptographically bound to the nonce.

 If the ticket cannot be found, or the authentication fails, the
 acceptor SHOULD return a REAUTH_FAILED error, permitting the

Howard & Williams Expires June 12, 2014 [Page 16]

Internet-Draft BrowserID SASL & GSS-API December 2013

 initiator to recover and fallback to generating a BrowserID
 assertion. It MAY also include its local timestamp (see

Section 6.2.1) so that the initiator can perform clock skew
 compensation.

4.3.4. Interaction with mutual authentication

 The mutual authentication state of a re-authenticated context is
 transitive. The initiator and acceptor MUST NOT set the mutual_state
 flag for a re-authenticated context unless the original context was
 mutually authenticated.

 As such, the mutual authentication state of the original context must
 be associated with the ticket.

4.3.5. Ticket renewal

 Normally, re-authentication tickets are only issued when the
 initiator authenticated with a certificate-signed assertion.
 Acceptors MAY issue a new ticket with an expiry beyond the ticket
 lifetime when the initiator used a re-authentication assertion. The
 issuing of new tickets MUST be subject to a policy that prevents them
 from being renewed indefinitely.

4.4. Extra round-trip (XRT) option

 The extra round-trip (XRT) option adds an additional round trip to
 the context token exchange. It allows the initiator to prove
 knowledge of the Context Master Key (CMK) (see Section 7.2) by
 sending an additional token signed in a key derived from the CMK and
 an acceptor-issued challenge. Support for the XRT option is OPTIONAL
 in the acceptor and REQUIRED in the initiator. The initiator is
 allowed to not request it, but MUST perform XRT if the acceptor
 requires it.

 (Note that the term "extra round trip" is something of a misnomer; it
 only adds an additional token to the context token exchange. It is
 anticipated however that this mechanism will most commonly be used
 with pseudo-mechanisms or application protocols that require an even
 number of tokens.)

4.4.1. Initiator XRT advertisement

 The initiator may advertise to the acceptor that it desires the XRT
 option by sending in its request assertion an "opts" claim (see

Section 6.1.9) containing the "xrt" value. This option MUST be set
 if the caller requested GSS_C_DCE_STYLE (see [RFC4757]). Otherwise,
 the setting of this option is implementation dependent.

https://datatracker.ietf.org/doc/html/rfc4757

Howard & Williams Expires June 12, 2014 [Page 17]

Internet-Draft BrowserID SASL & GSS-API December 2013

4.4.2. Acceptor XRT advertisement

 If the initiator requested the XRT option and the acceptor supports
 it, or the acceptor requires it, the acceptor sends a "jti" claim
 (see Section 6.2.6) in the response assertion containing a random
 base 64 URL encoded value. This value MUST be at least 64 bits in
 length. The acceptor then returns GSS_C_CONTINUE_NEEDED to indicate
 that an additional context token is expected from the initiator.

4.4.3. Initiator XRT context token

 If the acceptor indicated support for the XRT option by including a
 "jti" claim in its response, then the initiator sends an additional
 context token to the acceptor. This token contains the initiator
 context token ID concatenated with a backed assertion with zero
 certificates and an empty payload, signed using the XRTK (see

Section 7.6.1).

4.4.4. Acceptor XRT context token validation

 The acceptor MUST validate the XRT context token by first validating
 the context token ID, and then verifying the assertion signature with
 the XRTK. The acceptor SHOULD reject XRT context tokens with a
 certificate count greater than zero. Unknown claims in the assertion
 payload MUST be ignored. The acceptor then returns GSS_C_COMPLETE to
 the caller.

 The acceptor MAY avoid using a replay cache when this option is in
 effect.

4.4.5. Interaction with message protection services

 When the XRT option is in effect, the XRTK is used instead of the CMK
 to derive the Context Root Key (CRK) (see Section 7.4). Per-message
 tokens MUST have the AcceptorSubkey flag set (see [RFC4121] Section

4.2.2).

https://datatracker.ietf.org/doc/html/rfc4121

Howard & Williams Expires June 12, 2014 [Page 18]

Internet-Draft BrowserID SASL & GSS-API December 2013

5. Validation

5.1. Expiry times

 The expiry and, if present, issued-at and not-before times of all
 elements in a backed assertion, MUST be validated. This applies
 equally to re-authentication assertions, public key assertions, and
 the entire certificate chain. If the expiry time is absent, the
 issued-at time MUST be present, and the JWT implicitly expires a
 short, implementation-defined interval after the issued-at time. (A
 suggested interval is five minutes.)

 The GSS context lifetime SHOULD NOT exceed the lifetime of the
 initiator principal's certificate.

 The lifetime of a re-authentication ticket SHOULD NOT exceed the
 lifetime of the initiator principal's certificate. The acceptor MUST
 validate the ticket expiry time when performing re-authentication.

 Message protections services such as GSS_Wrap() SHOULD be available
 beyond the GSS context lifetime for maximum application
 compatibility.

5.2. Audience

 If the credential passed to GSS_Accept_sec_context() is not for
 GSS_C_NO_NAME, then its string representation as a BrowserID
 principal (see Section 3.1.1) MUST match the audience claim in the
 assertion.

5.3. Channel bindings

 GSS-API channel binding is a protected facility for naming an
 enclosing channel between the initiator and acceptor. If the
 acceptor passed in channel bindings to GSS_Accept_sec_context(), the
 assertion MUST contain a matching channel binding claim. (Only the
 application_data component is validated.)

 The acceptor SHOULD accept any channel binding provided by the
 initiator if NULL channel bindings are passed to
 GSS_Accept_sec_context().

5.4. Key agreement

 The initiator MUST choose an ECDH curve with an equivalent strength
 to the negotiated [RFC4121] encryption type. Appropriate curves are
 given in Section 10.1.

https://datatracker.ietf.org/doc/html/rfc4121

Howard & Williams Expires June 12, 2014 [Page 19]

Internet-Draft BrowserID SASL & GSS-API December 2013

 The curve strength MUST be verified by the acceptor. A stronger than
 required curve MAY be selected by the initiator.

5.5. Signatures

 Signature validation on assertions is the same as for the web usage
 of BrowserID, with the addition that response assertions may and re-
 authentication assertions must be signed with a symmetric key. In
 this case the HMAC algorithm associated with the mechanism OID is
 used, and there are no certificates in the backed assertion.

5.6. Replay detection

 If the XRT option is not in effect, the acceptor MUST maintain a
 cache of received assertions in order to guard against replay
 attacks.

5.7. Return flags

 The initiator and acceptor should set the returned flags as follows:

 deleg_state never set

 mutual_state set if the initiator requested mutual authentication
 and mutual authentication succeeded

 replay_det_state set if message protection services are available

 sequence_state set if message protection services are available

 anon_state set if the initiator principal's leaf certificate lacks a
 "principal" claim

 trans_state set if the implementation supports importing and
 exporting of security contexts

 prot_ready_state may be set when or after the RP Response Token is
 produced or consumed

 conf_avail set if message protection services are available

 integ_avail set if message protection services are available

Howard & Williams Expires June 12, 2014 [Page 20]

Internet-Draft BrowserID SASL & GSS-API December 2013

6. Assertion claims

6.1. Request (initiator/UA) assertion

 These claims are included in the assertion sent to the acceptor and
 are authenticated by the initiator's private key and certificate
 chain (directly, or in the case of re-authentication assertions,
 transitively). Claims not specified here MUST be ignored by the
 acceptor.

 Here is an example assertion containing Elliptic Curve Diffie-Hellman
 parameters, along with options and nonce claims indicating that
 mutual authentication is desired:

 {
 "opts": [
 "ma"
],
 "exp": 1360158396188,
 "epk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "JR5UPDgMLFPZwOGaKKSF24658tB1DccM1_oHPbCHeZg",
 "y": "S45Esx_6DfE5-xdB3X7sIIJ16MwO0Y_RiDc-i5ZTLQ8"
 },
 "nonce": "bbqT10Gyx3s",
 "aud": "imap/mail.example.com"
 }

 The following claims are permitted in the request assertion:

6.1.1. "aud" (Audience)

 The audience is a StringOrURI (see [I-D.ietf-oauth-json-web-token]
Section 2) containing the target service's principal name, formatted

 according to Section 3.1.1. This claim is REQUIRED. If the
 initiator specified a target name of GSS_C_NO_NAME, then the audience
 is the empty string.

 [[anchor6: If the initiator wanted mutual authentication then we
 could find out the acceptor's name and provide it via
 GSS_Inquire_context(). This is only really useful and secure with
 mechanisms like this one where the initiator credential is based on a
 public/private key pair and either we use key agreement and per-
 message tokens or channel binding to a secure channel. This really
 should [have] be[en] explained in RFC2743.]]

https://datatracker.ietf.org/doc/html/rfc2743

Howard & Williams Expires June 12, 2014 [Page 21]

Internet-Draft BrowserID SASL & GSS-API December 2013

6.1.2. "exp" (Expiry time)

 This contains the time when the assertion expires, in milliseconds
 since January 1, 1970. At least one of "exp" or "iat" MUST be
 present.

6.1.3. "iat" (Issued at time)

 This contains the time the assertion was issued (in milliseconds
 since January 1, 1970). If present, the acceptor MUST validate that
 the assertion was recently issued. At least one of "exp" or "iat"
 MUST be present.

6.1.4. "nbf" (Not before time)

 This contains the time, in milliseconds since January 1, 1970, from
 which the assertion begins to be valid. This claim is OPTIONAL.

6.1.5. "epk" (Ephemeral Public Key)

 These contain key parameters for deriving a shared session key with
 the relying party, represented as a JSON Web Key
 [I-D.ietf-jose-json-web-key] public key value. The key type MUST be
 EC and the parameters for Elliptic Curve Public Keys specified in
 [I-D.ietf-jose-json-web-algorithms] Section 6.2.1 MUST be present.

 The "epk" claim is REQUIRED unless the associated encryption type is
 ENCTYPE_NULL, or there is already a prior session key (as is the case
 for re-authentication assertions).

6.1.6. "cb" (Channel binding)

 This contains channel binding information for binding the GSS context
 to an outer channel (e.g. see [RFC5929]). Its value is the base64
 URL encoding of the application-specific data component of the
 channel bindings passed to GSS_Init_sec_context() or
 GSS_Accept_sec_context(). This claim is OPTIONAL.

6.1.7. "nonce" (Mutual authentication nonce)

 This is a random quantity of at least 64 bits, base 64 URL encoded,
 which is used to bind the request and response assertions in the case
 a freshly agreed key is not used to sign the response assertion.
 This claim is REQUIRED if mutual authentication is desired and the
 assertion is signed using a certificate, or if re-authentication is
 being performed.

https://datatracker.ietf.org/doc/html/rfc5929

Howard & Williams Expires June 12, 2014 [Page 22]

Internet-Draft BrowserID SASL & GSS-API December 2013

6.1.8. "tkt" (Ticket)

 When the assertion is being used for fast re-authentication, this
 contains a JSON object with a single parameter, "tid". The "tid"
 parameter matches the "tid" parameter from the initial response
 assertion ticket (see Section 6.2.5). This claim is REQUIRED for re-
 authentication assertions, otherwise it the assertion MUST be
 rejected. Other parameters SHOULD NOT be present in the "tkt"
 object.

6.1.9. "opts" (Options)

 This contains a JSON array of string values indicating various
 protocol options that are supported by the initiator. Unknown
 options MUST be ignored by the acceptor. This document defines the
 following extensions:

 +------+--+
 | Name | Description |
 +------+--+
ma	The initiator requested GSS_C_MUTUAL_FLAG
xrt	The initiator supports the extra round trip option (see
	Section 4.4)
dce	The initiator requested GSS_C_DCE_STYLE (see RFC4757
	Section 7.1)
ify	The initiator requested GSS_C_IDENTIFY_FLAG (see RFC4757
	Section 7.1)
 +------+--+

6.2. Response (acceptor/RP) assertion

 The response assertion is sent from the acceptor to the initiator to
 provide key agreement, and either key confirmation or mutual
 authentication. It is formatted as a backed assertion, however in
 the current specification it consists of a single assertion with zero
 certificates; that is, it is "unbacked". (It is encoded as a backed
 assertion in order to provide future support for mutual
 authentication using native BrowserID certificates. Such support is
 not specified here.)

 In the case of a key successfully being negotiated, the response
 assertion is signed with the RP Response Key (RRK) (see Section 7.3).
 Alternatively, it may be signed with the acceptor's private RSA or
 DSA key. In this case, the acceptor's X.509 certificate is included
 in the "x5c" claim of the JWT header.

https://datatracker.ietf.org/doc/html/rfc4757
https://datatracker.ietf.org/doc/html/rfc4757

Howard & Williams Expires June 12, 2014 [Page 23]

Internet-Draft BrowserID SASL & GSS-API December 2013

 The HMAC-SHA256 (HS256) algorithm MUST be supported by implementors
 of this specification.

 If the [RFC3961] encryption type for the mechanism is ENCTYPE_NULL,
 then the signature is absent and the value of the "alg" header
 parameter is "none". No signature verification is required in this
 case.

 Claims not specified here MUST be ignored by the initiator.

 Here is an example response assertion:

 {
 "exp": 1362960258000,
 "nonce": "bbqT10Gyx3s",
 "epk": {
 "x": "bvNF6V1rpMeQyGOKCj0kBaOaSh3tlhUcbffaji4uCEI",
 "y": "Iuqs650FXzXFUD9kHknETfbqiB8XBbCHlJXoysx3rvw"
 },
 "tkt": {
 "tid": "Jgg7vKX2sEKlCWBfmLTg_n4qz3NVZxOU-a2B4qYMkXI",
 "exp": 1362992660000
 }
 }

 The following claims are permitted in the response assertion:

6.2.1. "iat" (Issued at time)

 The current acceptor time, in milliseconds since January 1, 1970.
 This allows the initiator to compensate for clock differences when
 generating assertions. This claim is OPTIONAL.

6.2.2. "epk" (Ephemeral Public Key)

 This contains a JSON object containing the x and y coordinates of the
 acceptor's ECDH public key (see [I-D.ietf-jose-json-web-algorithms]

Section 6.2.1). This claim is REQUIRED unless the associated
 encryption type is ENCTYPE_NULL, or there is already an established
 session key, as is the case for re-authentication assertions.

 The "crv" and "kty" properties SHOULD NOT be present; they are
 determined by the initiator.

6.2.3. "exp" (Expiry time)

 This contains the time when the context expires, in milliseconds
 since January 1, 1970. This claim is OPTIONAL; the initiator should

https://datatracker.ietf.org/doc/html/rfc3961

Howard & Williams Expires June 12, 2014 [Page 24]

Internet-Draft BrowserID SASL & GSS-API December 2013

 use the certificate or ticket expiry time if absent.

6.2.4. "nonce" (Mutual authentication nonce)

 The nonce as received from the initiator. This MUST NOT be present
 unless a nonce was received from the initiator, and the acceptor is
 signing the assertion with a private key.

6.2.5. "tkt" (Ticket)

 This contains a JSON object that may be used for re-authenticating to
 the acceptor without acquiring an assertion. It has two parameters:
 "tid", an opaque identifier to be presented in a re-authentication
 assertion (this need not be a string); and "exp", the expiry time of
 the ticket. This claim is OPTIONAL.

6.2.6. "jti" (JWT ID)

 This contains a base64 URL encoded random value of at least 64 bits
 that is used to uniquely identify the acceptor response, in the case
 that the extra round trip option is used. It SHOULD not be present
 unless the initiator requested the extra round trip option.

6.3. Error (acceptor/RP) assertion

 Error assertions are backed assertions containing any or all of the
 following claims. In addition, they MUST have the "iat" claim, for
 initiator clock skew correction. All other response assertion claims
 are OPTIONAL or not applicable in error assertions. Conversely, the
 claims listed below MUST NOT be present in a non-error response
 assertion.

 The error assertion MAY be signed if a key is available, otherwise
 the signature is absent and the value of the "alg" header parameter
 is "none".

6.3.1. "gss-maj" (GSS major status code)

 This contains a GSS major status code represented as a number.

6.3.2. "gss-min" (GSS minor status code)

 This contains a GSS minor status code represented as a number.

 If REAUTH_FAILED is received, the initiator SHOULD attempt to send
 another initial context token containing a fresh assertion.

 The following protocol minor status codes are defined. Note that the

Howard & Williams Expires June 12, 2014 [Page 25]

Internet-Draft BrowserID SASL & GSS-API December 2013

 API representation of these status codes is implementation dependent.
 Status codes with the high bit set are GSS BrowserID protocol errors;
 the remainder are BrowserID protocol errors.

 +---------------------------+------------+--------------------------+
 | Error | Protocol | Description |
 +---------------------------+------------+--------------------------+
INVALID_JSON	8	Invalid JSON encoding
INVALID_BASE64	9	Invalid Base64 encoding
INVALID_ASSERTION	10	Invalid assertion
TOO_MANY_CERTS	13	Too many certificates
UNTRUSTED_ISSUER	14	Untrusted issuer
INVALID_ISSUER	15	Invalid issuer
MISSING_ISSUER	16	Missing issuer
MISSING_AUDIENCE	17	Missing audience
BAD_AUDIENCE	18	Bad audience
EXPIRED_ASSERTION	19	Assertion expired
ASSERTION_NOT_YET_VALID	20	Assertion not yet valid
EXPIRED_CERT	21	Certificate expired
CERT_NOT_YET_VALID	22	Certificate not yet
		valid
INVALID_SIGNATURE	23	Invalid signature
MISSING_ALGORITHM	24	Missing JWS algorithm
UNKNOWN_ALGORITHM	25	Unknown JWS algorithm
MISSING_PRINCIPAL	34	Missing principal
		attribute
UNKNOWN_PRINCIPAL_TYPE	35	Unknown principal type
MISSING_CERT	36	Missing certificate
MISSING_CHANNEL_BINDINGS	38	Missing channel bindings

Howard & Williams Expires June 12, 2014 [Page 26]

Internet-Draft BrowserID SASL & GSS-API December 2013

CHANNEL_BINDINGS_MISMATCH	39	Channel bindings do not
		match
NOT_REAUTH_ASSERTION	70	Not a re-authentication
		assertion
BAD_SUBJECT	71	Bad subject name
MISMATCHED_RP_RESPONSE	72	Mismatched RP response
		token
REFLECTED_RP_RESPOSNE	73	Reflected RP response
		token
UNKNOWN_EC_CURVE	77	Unknown ECC curve
INVALID_EC_CURVE	78	Invalid ECC curve
MISSING_NONCE	79	Missing nonce
WRONG_SIZE	0x80000001	Buffer is incorrect size
WRONG_MECH	0x80000002	Mechanism OID is
		incorrect
BAD_TOK_HEADER	0x80000003	Token header is
		malformed or corrupt
TOK_TRUNC	0x80000004	Token is missing data
BAD_DIRECTION	0x80000005	Packet was replayed in
		wrong direction
WRONG_TOK_ID	0x80000006	Received token ID does
		not match expected
KEY_UNAVAILABLE	0x80000007	Key unavailable
KEY_TOO_SHORT	0x80000008	Key too weak
CONTEXT_ESTABLISHED	0x80000009	Context already
		established
CONTEXT_INCOMPLETE	0x8000000A	Context incomplete
BAD_CONTEXT_TOKEN	0x8000000B	Context token malformed
		or corrupt

Howard & Williams Expires June 12, 2014 [Page 27]

Internet-Draft BrowserID SASL & GSS-API December 2013

BAD_ERROR_TOKEN	0x8000000C	Error token malformed or
		corrupt
BAD_CONTEXT_OPTION	0x8000000D	Bad context option
REAUTH_FAILED	0x8000000E	Re-authentication
		failure
 +---------------------------+------------+--------------------------+

6.4. XRT assertion

 No claims are presently defined for the extra round trip assertion.
 Unknown claims MUST be ignored by the acceptor.

Howard & Williams Expires June 12, 2014 [Page 28]

Internet-Draft BrowserID SASL & GSS-API December 2013

7. Key derivation

 The following function is used as the base algorithm for deriving
 keys:

 browserid-derive-key(K, usage) = HMAC(K, "BrowserID" || K || usage ||
 0x01)

 The HMAC hash algorithm for all currently specified key lengths is
 SHA-256. Note that the inclusion of K in the HMAC input is for
 interoperability with some crypto implementations.

7.1. Diffie-Hellman Key (DHK)

 This key is the shared secret resulting from the ECDH exchange. Its
 length corresponds to the selected EC curve. It is never used
 without derivation and thus may be used with implementations that do
 not expose the ECDH value directly.

7.2. Context Master Key (CMK)

 This is the Diffie-Hellman Key (DHK) for all initially authenticated
 contexts and the Authenticator Session Key (ASK) for re-authenticated
 contexts.

7.3. RP Response Key (RRK)

 If mutual authentication without a fast re-authentication ticket is
 performed then the response assertion will be signed with a public
 key signature using the private key for the acceptor's certificate.

 Otherwise a symmetric RP Response Key (RRK) is derived as follows:

 RRK = browserid-derive-key(CMK, "RRK")

7.4. Context Root Key (CRK)

 The Context Root Key (CRK) is used for [RFC4121] message protection
 services, e.g. GSS_Wrap() and GSS_Get_MIC(). If the extra round-
 trip option is in effect, it is derived as follows:

 CRK = random-to-key(browserid-derive-key(XRTK, "CRK"))

 Otherwise, the CMK is used:

 CRK = random-to-key(browserid-derive-key(CMK, "CRK"))

 The random-to-key function is defined in [RFC3961].

https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc3961

Howard & Williams Expires June 12, 2014 [Page 29]

Internet-Draft BrowserID SASL & GSS-API December 2013

7.5. Authenticator Root Key (ARK)

 The Authenticator Root Key (ARK) is used to sign assertions used for
 fast re-authentication. (The term "authenticator" is equivalent to
 "re-authentication assertion" and exists for historical reasons.) It
 is derived as follows:

 ARK = browserid-derive-key(CMK, "ARK")

7.6. Authenticator Session Key (ASK)

 The Authenticator Session Key (ASK) is used instead of the DHK for
 re-authenticated contexts. It is derived as follows:

 ASK = browserid-derive-key(ARK, nonce-binary)

 The usage (nonce-binary) is the base64 URL decoding of the initiator
 "nonce" claim.

7.6.1. Extra Round Trip Key (XRTK)

 The Extra Round Trip Key (XRTK) is used to sign the extra round trip
 token, and also as the master key for the CRK when the extra round
 trip option is used.

 XRTK = browserid-derive-key(CMK, acceptor-jti-binary)

 The usage (acceptor-jti-binary) is the base64 URL decoding of the
 acceptor "jti" claim.

7.7. GSS Pseudo-Random Function (PRF)

 The BrowserID mechanism shares the same Pseudo-Random Function (PRF)
 as the Kerberos GSS mechanism, defined in [RFC4402].
 GSS_C_PRF_KEY_FULL and GSS_C_PRF_KEY_PARTIAL are equivalent. The
 protocol key to be used for GSS_Pseudo_random() SHALL by the Context
 Root Key (CRK).

 [[anchor7: Can we replace this with a function that imports less of
RFC3962? We arguably should, because otherwise the only things we

 import from RFC3962 (and 3961) are random-to-key (the identity
 function in RFC3962) and the crypto bits needed for RFC4121 per-
 message tokens.]]

https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc3962
https://datatracker.ietf.org/doc/html/rfc3962
https://datatracker.ietf.org/doc/html/rfc3962
https://datatracker.ietf.org/doc/html/rfc4121

Howard & Williams Expires June 12, 2014 [Page 30]

Internet-Draft BrowserID SASL & GSS-API December 2013

8. Example

 Suppose a mail user agent for the principal lukeh@lukktone.com wishes
 to authenticate to an IMAP server rand.mit.de.padl.com. They do not
 have a re-authentication ticket. The mail user agent would display a
 dialog box in which the principal would sign in to their IdP and
 request a fresh assertion be generated.

 C: <connects to IMAP port>
 S: * OK
 C: C1 CAPABILITY
 S: * CAPABILITY IMAP4rev1 SASL-IR SORT [...] AUTH=BROWSERID-AES128
 S: C1 OK Capability Completed
 C: C2 AUTHENTICATE BROWSERID-AES128
 biwsYyxleUpoYkdjaU9pSlNVekkxTmlKOS5leUp3ZFdKc2FXTXRhMlY
 1SWpwN0ltRnNaMjl5YVhSb2JTSTZJa1JUSWl3aWVTSTZJak01TVRObE
 9EZ3laRGhqTXpWa01qSm1ObVEwTURZNVkyVTJNREJrWW1OallqTTVOR
 0ZqWVdGaFl6WTBPV1prTjJZNVptTmtObU0wTVRJME5tWTFOakk1TUdW
 bU1HTmpNemMwTnpaaE1EUmhOREU0WXpGbE9ETXhPV0kxTkdJeFpXTml
 ObVkyWTJWaE56VTBOR1kyWlRFMU5qTmxaR05sWkdNNU1EWmtOamcwTT
 JRd01XSmpaVFJtTjJFMVpqY3dOMk5tWVRZd1lXTTVNVE0yWm1GbU5qS
 m1aR0ZtTkRoa09HRTVPRGxoWVdGbE5EUXdOMlZrTmpjeU56ZGhNVGM0
 TW1WallXRXhOVFppWkdOaFpXRXhOamRtTWpZek56STFaR1UyTTJWa09
 HWXlPR0UyTUROaU5tWm1OVEV3WmpRNE1ESmtOelJrTjJWaFpUZGhZbU
 15WldJaUxDSndJam9pWm1ZMk1EQTBPRE5rWWpaaFltWmpOV0kwTldWa
 FlqYzROVGswWWpNMU16TmtOVFV3WkRsbU1XSm1NbUU1T1RKaE4yRTRa
 R0ZoTm1Sak16Um1PREEwTldGa05HVTJaVEJqTkRJNVpETXpOR1ZsWld
 GaFpXWmtOMlV5TTJRME9ERXdZbVV3TUdVMFkyTXhORGt5WTJKaE16ST
 FZbUU0TVdabU1tUTFZVFZpTXpBMVlUaGtNVGRsWWpOaVpqUmhNRFpoT
 XpRNVpETTVNbVV3TUdRek1qazNORFJoTlRFM09UTTRNRE0wTkdVNE1t
 RXhPR00wTnprek16UXpPR1k0T1RGbE1qSmhaV1ZtT0RFeVpEWTVZemh
 tTnpWbE16STJZMkkzTUdWaE1EQXdZek5tTnpjMlpHWmtZbVEyTURRMk
 16aGpNbVZtTnpFM1ptTXlObVF3TW1VeE55SXNJbkVpT2lKbE1qRmxNR
 FJtT1RFeFpERmxaRGM1T1RFd01EaGxZMkZoWWpOaVpqYzNOVGs0TkRN
 d09XTXpJaXdpWnlJNkltTTFNbUUwWVRCbVpqTmlOMlUyTVdaa1pqRTR
 OamRqWlRnME1UTTRNelk1WVRZeE5UUm1OR0ZtWVRreU9UWTJaVE5qT0
 RJM1pUSTFZMlpoTm1ObU5UQTRZamt3WlRWa1pUUXhPV1V4TXpNM1pUQ
 TNZVEpsT1dVeVlUTmpaRFZrWldFM01EUmtNVGMxWmpobFltWTJZV1l6
 T1Rka05qbGxNVEV3WWprMllXWmlNVGRqTjJFd016STFPVE15T1dVME9
 ESTVZakJrTUROaVltTTNPRGsyWWpFMVlqUmhaR1UxTTJVeE16QTROVG
 hqWXpNMFpEazJNalk1WVdFNE9UQTBNV1kwTURreE16WmpOekkwTW1Fe
 k9EZzVOV001WkRWaVkyTmhaRFJtTXpnNVlXWXhaRGRoTkdKa01UTTVP
 R0prTURjeVpHWm1ZVGc1TmpJek16TTVOMkVpZlN3aWNISnBibU5wY0d
 Gc0lqcDdJbVZ0WVdsc0lqb2liSFZyWldoQWJIVnJhM1J2Ym1VdVkyOX
 RJbjBzSW1saGRDSTZNVE0yTWprMk1UQTVOakV5TWl3aVpYaHdJam94T
 XpZeU9UWTBOamsyTVRJeUxDSnBjM01pT2lKc2IyZHBiaTV3WlhKemIy
 NWhMbTl5WnlKOS5mT3V5ZlZkNWFZZ285ckJncmdHVDJHYjkzUUoxVnp
 LSE9rNjdFUXBEeU9pUENPdXFweUw5a2tVVDdxcGNZaWZsb0NTWjlPej

Howard & Williams Expires June 12, 2014 [Page 31]

Internet-Draft BrowserID SASL & GSS-API December 2013

 UtVWRrcldlcTZXUkRLcUdOeXg0OFdyVGduVkoyRlM3MU1Mbl9DeWhGM
 Go1Y1ZsQ0E5WWh3YVlWTHhsbW9YU01uWTdyRzFWa0VSdjRtaWtCM3FD
 cFB2NXJtSEswbkNiRlpiN1dXR3JkVEdkcmNHTkRkZHlDQkQ5a1dpUUd
 VbkktenN3WXdiZXJUTmQ3Nmc1Z2N1c1MtbWxjVk5jbzNMTG4zMlNhbG
 x0eDBCUHAtVTAyMXpvR00wWEhibm1Sa2VRdGVtblVXZGloYzRVbVpNR
 EJJZ05nSFFCSmdXMGhBcTlHWVFmYzVObFNzZW5RX0p5MGR4anE1bHdE
 Wll3SExsUXlmYnVYbGFtRTNDZ3ZkZUF+ZXlKaGJHY2lPaUpFVXpFeU9
 DSjkuZXlKdWIyNWpaU0k2SW1nMVVEUkxja2M0ZVc1bklpd2laV05rYU
 NJNmV5SjRJam9pWm1wYVRuQnpRbXBIYmw5WVFVTnRaMkpPZDBGemRuS
 TRPR2MwUmxkNmRHOWljWEExVkUxaVgxbEdNQ0lzSW1OeWRpSTZJbEF0
 TWpVMklpd2llU0k2SWxKTFJYWktlalU1WTNOaGRqaExZM2RsVlhZMVd
 IRkdaM1E0UVZkRFFXdHlTa0o2TTFCUWNVeEtkSE1pZlN3aVkySjBJam
 9pWW1sM2N5SXNJbVY0Y0NJNk1UTTJNamsyTVRJeE5qRTBPU3dpWVhWa
 0lqb2lkWEp1T25ndFozTnpPbWx0WVhBdmNtRnVaQzV0YVhRdVpHVXVj
 R0ZrYkM1amIyMGlmUS51ZHRvSTNVNUMtM3BwNHhJSloxbWstQ3o0Ymh
 sQkxlSzAyNlVhbWRhMjhwTFk4c013Tk50Y0E=
 S: + Qyx
 +ZXlKaGJHY2lPaUpTVXpJMU5pSXNJbmcxWXlJNld5Sk5TVWxFZW1wRF
 EwRnlZV2RCZDBsQ1FXZEpRa0o2UVU1Q1oydHhhR3RwUnpsM01FSkJVV
 lZHUVVSQ1pFMVJjM2REVVZsRVZsRlJSMFYzU2tKV1ZFVmxUVUozUjBF
 eFZVVkRaM2RXVlVWR1JWUkRRbFJpTWxvd1pESkdlVnBUUWxGa1NHdG5
 WRWhTYTAxVE5IZE1RVmxFVmxGUlJFUkRWbEZSVlZKTlNVWk9kbHB1VW
 pOWldFcHNTVVZPYkdOdVVuQmFiV3hxV1ZoU2NHSXlOR2RSV0ZZd1lVY
 zVlV0ZZVWpWTlFqUllSRlJGZWsxRVJYaE5WRUV4VFhwUmVVMUdiMWhF
 VkVVeVRVUkZlRTFVUVRGTmVsRjVUVVp2ZDFSRVJVeE5RV3RIUVRGVlJ
 VSm9UVU5SVmxWNFNHcEJZMEpuVGxaQ1FXOU5SbFpDUWxKRmQyZFZNam
 x0WkVoa2FHTnRWV2RWU0ZJMVNVVjRNRnBFUldSTlFuTkhRVEZWUlVGM
 2QxVmpiVVoxV2tNMWRHRllVWFZhUjFWMVkwZEdhMkpETldwaU1qQjNa
 MmRGYVUxQk1FZERVM0ZIVTBsaU0wUlJSVUpCVVZWQlFUUkpRa1IzUVh
 kblowVkxRVzlKUWtGUlJFSm9la1p3Wmt3MmRraDRjM2d5UkhaR1dsQX
 JSMUl3Vlc5dFJIQXZRMFZsSzA5SVRqQmFNR00yT1RGWlp6bG5WMWh0V
 lROdVVIRldWR0pCU1hGWVNEaEJWWFIyWmpkTmVtSlpNamh2Vm14d1ds
 UXdOWHB0TW1NdmRFVXpaMnRvVkhodFdFOVNaMUZ5WTNWMVozVnFUMWh
 OUm1oSk5ITjJSVm9yUTJKSVVHeGFhVm92VkhwcldFeElVREk1UlhvM2
 QwNWFiakZJTlRkQlRIRnRVMEZ2TlZRMGNYaE5SbWRDV1hWa2R5OWFlR
 kJTZWtSMFZXOUpWakJ6TWpOWlp6UjRWRGxoZDBwdWNqRkhaMDFWVW1s
 aVZVSnFSamQ1WW1OdE1FczRjMHBVSzFWSFpVSTNjbTFNYkZCM0syWkJ
 hMDltTjFwcVdqbDBjRlJyUlUxcE9IVk1SVTF4WTNoaFIxTkJTeThyYT
 FjM05YRlBlR1JCUmtrNGVsbGFXRFV6WjNCbk5HMXBLMUZYWmtkWk1Wc
 E9VVXBOZFVoSFVWaG5MM1ZtZUUxNllYaE9UalJvTVdGUGJHMWFXbGxy
 UWtod05USkJPWGxKVFZWaVFXZE5Ra0ZCUjJwbllXdDNaMkZaZDBOUld
 VUldVakJVUWtGSmQwRkVRWE5DWjJ4bmFHdG5RbWgyYUVOQlVUQkZTSG
 haWkZRelFteGliRTVVVkVOQ1NGcFhOV3hqYlVZd1dsZFJaMUV5Vm5sa
 1IyeHRZVmRPYUdSSFZYZElVVmxFVmxJd1QwSkNXVVZHUzFOemRXSkZS
 SFZpVWtsSFNFTkNkSFJCYkZSMk1rWlhSMllyVFVJNFIwRXhWV1JKZDF
 GWlRVSmhRVVpNYVhwYWJFMVhia3RMTVZCWllXZGtTbXByVm5WU2FFVl
 JTbXBOUVd0SFFURlZaRVZSVVVOTlFVRjNRM2RaUkZaU01GQkNRVkZFU
 VdkWVowMUNUVWRCTVZWa1NsRlJUVTFCYjBkRFEzTkhRVkZWUmtKM1RV

Howard & Williams Expires June 12, 2014 [Page 32]

Internet-Draft BrowserID SASL & GSS-API December 2013

 Uk5RVEJIUTFOeFIxTkpZak5FVVVWQ1FsRlZRVUUwU1VKQlVVSkVNVUo
 2VVZBcmNrNHhWVlY2TjBFMmVpdExSRkJoY1Roek1tbENSekJHZWxwNG
 MxZ3lVVlZQZFhCQ1JVbGlkVnB3TUV0S1lYVnFWazFuTURGbVpHcHpkV
 WRITUhWWVlrMW1aVkpIZVU1c1ZYTk5UaXRhUkhrNEwwMUpUMmd4WVZW
 SGRqQlRWWGRMZEVOMFRIUlhja3AyTmpWMWQwaEhSM1ExZFVaTGVFMUZ
 OakZXVkRRcmNYQkpNa0ZIY1hoNE5XUnljM2hGVEVKUFpIbFFibVYxUV
 dsTVVIaEdkV0pTUm0xNmRXaFdVMGszUVZCTmJEYzVUMnN6TUc5WGRXU
 kJORGxzVlZnNWQzb3paemx4T1haa2JEbDVhR2RsWlZWVFZYQk5hR3hh
 TWpSVll6bFFkVXg2Y2pFMWFqWjJOak5ZZW5KVFpGZDBUbnAyTUVZeE1
 HVkViRFI1VkZWT1YxTkthRGR4UW1obmNURkpiMWc1UVZCUFQzVk1Zaz
 FPY25BMlltVkZaVzkzYURNMGNGWlhabFJoVTNoSk4yNUxOVGRyU3pKN
 GFGSlZORE5sZDFscU1ta3ZVM0o2T0VkelRWTTVNWFZ5TWpWSmRDSmRm
 US5leUowYTNRaU9uc2lhblJwSWpvaVlXVmhlVEJIU21sNlJIZzNPVUZ
 uTFMxWFRDMTJkelpaT1VKWWVGSjFRekZZYzFwNGNuazFNVk5WU1NJc0
 ltVjRjQ0k2TVRNMk1qazVOekE1T0RBd01IMHNJbVZqWkdnaU9uc2llQ
 0k2SWtveFNWZGlTREpCTlVNelkyaFBWVWx4YldaWWNGQmZVbEZGUlU5
 dFpESkZlRmh2UzNKeFVWRllURTBpTENKNUlqb2lYekpGZEhoaWVsOTJ
 TbVZsVlZWaWVUSnlabVJsYTFSVVVGVlNjR0pIU2tnM2EzbEpWM0Z0YT
 BsRlp5SjlMQ0p1YjI1alpTSTZJbWcxVURSTGNrYzRlVzVuSWl3aVpYa
 HdJam94TXpZeU9UWTBOamsyTURBd2ZRLnFaaFVxdXBWUHgzRTdNSTBH
 dnNIZjZER3pzc3ByMkJsdUVUMFNwMERxdkpFS1F4S3BiOG9faVZsWHZ
 Qa2p2SXp0Qm5JajNNb084UlZMUWJwdE9QZDFrN3FoTUVwRkhOVGI1WF
 pKYWVJTlBpQUNSSzA5dUZpVE5ud1cxanMxQ3pPY2FMakxsSTN4bFdkL
 Ul1em8zODhyTUxsSXVkbmkxak5uRS0yOXZfc1NUTnRxLUMwQmNoNUMw
 T3drbDcxQk54eHgzaFVxeEcxT0w0UHQyZ0JKWUFQX3NOVk12aDFwWDl
 hRzd0Vms0S2sxS2NjaXRqUFdGN0dXc3JGeld4ekRSMHU2REZ0RmFjaE
 NPYmVmcmZnZkUxOXFlWnJLcnpJMFVkQ3JEUHpZazlYb1dKR2twRlNPd
 1dhY192Q0N1dXY1VjNHZF9MTlNJM3JCaS1GYWVoWUhBRjFJUQ==

 Unpacking the mail user agent's AUTHENTICATE message reveals the
 following:

Howard & Williams Expires June 12, 2014 [Page 33]

Internet-Draft BrowserID SASL & GSS-API December 2013

 n,,c,eyJhbGciOiJSUzI1NiJ9.eyJwdWJsaWMta2V5Ijp7ImFsZ29yaXRob
 SI6IkRTIiwieSI6IjM5MTNlODgyZDhjMzVkMjJmNmQ0MDY5Y2U2MDBkYmNj
 YjM5NGFjYWFhYzY0OWZkN2Y5ZmNkNmM0MTI0NmY1NjI5MGVmMGNjMzc0NzZ
 hMDRhNDE4YzFlODMxOWI1NGIxZWNiNmY2Y2VhNzU0NGY2ZTE1NjNlZGNlZG
 M5MDZkNjg0M2QwMWJjZTRmN2E1ZjcwN2NmYTYwYWM5MTM2ZmFmNjJmZGFmN
 DhkOGE5ODlhYWFlNDQwN2VkNjcyNzdhMTc4MmVjYWExNTZiZGNhZWExNjdm
 MjYzNzI1ZGU2M2VkOGYyOGE2MDNiNmZmNTEwZjQ4MDJkNzRkN2VhZTdhYmM
 yZWIiLCJwIjoiZmY2MDA0ODNkYjZhYmZjNWI0NWVhYjc4NTk0YjM1MzNkNT
 UwZDlmMWJmMmE5OTJhN2E4ZGFhNmRjMzRmODA0NWFkNGU2ZTBjNDI5ZDMzN
 GVlZWFhZWZkN2UyM2Q0ODEwYmUwMGU0Y2MxNDkyY2JhMzI1YmE4MWZmMmQ1
 YTViMzA1YThkMTdlYjNiZjRhMDZhMzQ5ZDM5MmUwMGQzMjk3NDRhNTE3OTM
 4MDM0NGU4MmExOGM0NzkzMzQzOGY4OTFlMjJhZWVmODEyZDY5YzhmNzVlMz
 I2Y2I3MGVhMDAwYzNmNzc2ZGZkYmQ2MDQ2MzhjMmVmNzE3ZmMyNmQwMmUxN
 yIsInEiOiJlMjFlMDRmOTExZDFlZDc5OTEwMDhlY2FhYjNiZjc3NTk4NDMw
 OWMzIiwiZyI6ImM1MmE0YTBmZjNiN2U2MWZkZjE4NjdjZTg0MTM4MzY5YTY
 xNTRmNGFmYTkyOTY2ZTNjODI3ZTI1Y2ZhNmNmNTA4YjkwZTVkZTQxOWUxMz
 M3ZTA3YTJlOWUyYTNjZDVkZWE3MDRkMTc1ZjhlYmY2YWYzOTdkNjllMTEwY
 jk2YWZiMTdjN2EwMzI1OTMyOWU0ODI5YjBkMDNiYmM3ODk2YjE1YjRhZGU1
 M2UxMzA4NThjYzM0ZDk2MjY5YWE4OTA0MWY0MDkxMzZjNzI0MmEzODg5NWM
 5ZDViY2NhZDRmMzg5YWYxZDdhNGJkMTM5OGJkMDcyZGZmYTg5NjIzMzM5N2
 EifSwicHJpbmNpcGFsIjp7ImVtYWlsIjoibHVrZWhAbHVra3RvbmUuY29tI
 n0sImlhdCI6MTM2Mjk2MTA5NjEyMiwiZXhwIjoxMzYyOTY0Njk2MTIyLCJp
 c3MiOiJsb2dpbi5wZXJzb25hLm9yZyJ9.fOuyfVd5aYgo9rBgrgGT2Gb93Q
 J1VzKHOk67EQpDyOiPCOuqpyL9kkUT7qpcYifloCSZ9Oz5-UdkrWeq6WRDK
 qGNyx48WrTgnVJ2FS71MLn_CyhF0j5cVlCA9YhwaYVLxlmoXSMnY7rG1VkE
 Rv4mikB3qCpPv5rmHK0nCbFZb7WWGrdTGdrcGNDddyCBD9kWiQGUnI-zswY
 wberTNd76g5gcusS-mlcVNco3LLn32Salltx0BPp-U021zoGM0XHbnmRkeQ
 temnUWdihc4UmZMDBIgNgHQBJgW0hAq9GYQfc5NlSsenQ_Jy0dxjq5lwDZY
 wHLlQyfbuXlamE3CgvdeA~eyJhbGciOiJEUzEyOCJ9.eyJub25jZSI6Img1
 UDRLckc4eW5nIiwiZWNkaCI6eyJ4IjoiZmpaTnBzQmpHbl9YQUNtZ2JOd0F
 zdnI4OGc0Rld6dG9icXA1VE1iX1lGMCIsImNydiI6IlAtMjU2IiwieSI6Il
 JLRXZKejU5Y3NhdjhLY3dlVXY1WHFGZ3Q4QVdDQWtySkJ6M1BQcUxKdHMif
 SwiY2J0IjoiYml3cyIsImV4cCI6MTM2Mjk2MTIxNjE0OSwiYXVkIjoidXJu
 OngtZ3NzOmltYXAvcmFuZC5taXQuZGUucGFkbC5jb20ifQ.udtoI3U5C-3p
 p4xIJZ1mk-Cz4bhlBLeK026Uamda28pLY8sMwNNtcA

 The initial "n,," is the GS2 header (indicating that there are no
 channel bindings). The "c," denotes the token as being a BrowserID
 initial context token. The remaining base64 URL encoded data is a
 BrowserID backed assertion, containing the following certificate (for
 clarity, the payload has been reformatted and JWT header and
 signature omitted):

Howard & Williams Expires June 12, 2014 [Page 34]

Internet-Draft BrowserID SASL & GSS-API December 2013

 {
 "public-key": {
 "algorithm": "DS",
 "y": "3913e882d8c35d22f6d4069ce600dbccb394acaaac649
 fd7f9fcd6c41246f56290ef0cc37476a04a418c1e8319
 b54b1ecb6f6cea7544f6e1563edcedc906d6843d01bce
 4f7a5f707cfa60ac9136faf62fdaf48d8a989aaae4407
 ed67277a1782ecaa156bdcaea167f263725de63ed8f28
 a603b6ff510f4802d74d7eae7abc2eb",
 "p": "ff600483db6abfc5b45eab78594b3533d550d9f1bf2a9
 92a7a8daa6dc34f8045ad4e6e0c429d334eeeaaefd7e2
 3d4810be00e4cc1492cba325ba81ff2d5a5b305a8d17e
 b3bf4a06a349d392e00d329744a5179380344e82a18c4
 7933438f891e22aeef812d69c8f75e326cb70ea000c3f
 776dfdbd604638c2ef717fc26d02e17",
 "q": "e21e04f911d1ed7991008ecaab3bf775984309c3",
 "g": "c52a4a0ff3b7e61fdf1867ce84138369a6154f4afa929
 66e3c827e25cfa6cf508b90e5de419e1337e07a2e9e2a
 3cd5dea704d175f8ebf6af397d69e110b96afb17c7a03
 259329e4829b0d03bbc7896b15b4ade53e130858cc34d
 96269aa89041f409136c7242a38895c9d5bccad4f389a
 f1d7a4bd1398bd072dffa896233397a"
 },
 "principal": {
 "email": "lukeh@lukktone.com"
 },
 "iat": 1362961096122,
 "exp": 1362964696122,
 "iss": "login.persona.org"
 }

 and assertion:

 {
 "nonce": "h5P4KrG8yng",
 "epk": {
 "x": "fjZNpsBjGn_XACmgbNwAsvr88g4FWztobqp5TMb_YF0",
 "crv": "P-256",
 "kty": "EC",
 "y": "RKEvJz59csav8KcweUv5XqFgt8AWCAkrJBz3PPqLJts"
 },
 "cb": "biws",
 "exp": 1362961216149,
 "aud": "imap/rand.mit.de.padl.com"
 }

 Note the channel binding token that protects the GS2 header.

Howard & Williams Expires June 12, 2014 [Page 35]

Internet-Draft BrowserID SASL & GSS-API December 2013

 [[anchor8: The encoded example needs to be regenerated to reflect
 that "cb" is now used for channel bindings.]]

 Turning to the response backed assertion sent from the IMAP server to
 the mail user agent, we have the following after base64 decoding:

 eyJhbGciOiJSUzI1NiIsIng1YyI6WyJNSUlEempDQ0FyYWdBd0lCQWdJQkJ
 6QU5CZ2txaGtpRzl3MEJBUVVGQURCZE1Rc3dDUVlEVlFRR0V3SkJWVEVlTU
 J3R0ExVUVDZ3dWVUVGRVRDQlRiMlowZDJGeVpTQlFkSGtnVEhSa01TNHdMQ
 VlEVlFRRERDVlFRVVJNSUZOdlpuUjNZWEpsSUVObGNuUnBabWxqWVhScGIy
 NGdRWFYwYUc5eWFYUjVNQjRYRFRFek1ERXhNVEExTXpReU1Gb1hEVEUyTUR
 FeE1UQTFNelF5TUZvd1RERUxNQWtHQTFVRUJoTUNRVlV4SGpBY0JnTlZCQW
 9NRlZCQlJFd2dVMjltZEhkaGNtVWdVSFI1SUV4MFpERWRNQnNHQTFVRUF3d
 1VjbUZ1WkM1dGFYUXVaR1V1Y0dGa2JDNWpiMjB3Z2dFaU1BMEdDU3FHU0li
 M0RRRUJBUVVBQTRJQkR3QXdnZ0VLQW9JQkFRREJoekZwZkw2dkh4c3gyRHZ
 GWlArR1IwVW9tRHAvQ0VlK09ITjBaMGM2OTFZZzlnV1htVTNuUHFWVGJBSX
 FYSDhBVXR2ZjdNemJZMjhvVmxwWlQwNXptMmMvdEUzZ2toVHhtWE9SZ1FyY
 3V1Z3VqT1hNRmhJNHN2RVorQ2JIUGxaaVovVHprWExIUDI5RXo3d05abjFI
 NTdBTHFtU0FvNVQ0cXhNRmdCWXVkdy9aeFBSekR0VW9JVjBzMjNZZzR4VDl
 hd0pucjFHZ01VUmliVUJqRjd5YmNtMEs4c0pUK1VHZUI3cm1MbFB3K2ZBa0
 9mN1pqWjl0cFRrRU1pOHVMRU1xY3hhR1NBSy8ra1c3NXFPeGRBRkk4ellaW
 DUzZ3BnNG1pK1FXZkdZMVpOUUpNdUhHUVhnL3VmeE16YXhOTjRoMWFPbG1a
 WllrQkhwNTJBOXlJTVViQWdNQkFBR2pnYWt3Z2FZd0NRWURWUjBUQkFJd0F
 EQXNCZ2xnaGtnQmh2aENBUTBFSHhZZFQzQmxibE5UVENCSFpXNWxjbUYwWl
 dRZ1EyVnlkR2xtYVdOaGRHVXdIUVlEVlIwT0JCWUVGS1NzdWJFRHViUklHS
 ENCdHRBbFR2MkZXR2YrTUI4R0ExVWRJd1FZTUJhQUZMaXpabE1XbktLMVBZ
 YWdkSmprVnVSaEVRSmpNQWtHQTFVZEVRUUNNQUF3Q3dZRFZSMFBCQVFEQWd
 YZ01CTUdBMVVkSlFRTU1Bb0dDQ3NHQVFVRkJ3TURNQTBHQ1NxR1NJYjNEUU
 VCQlFVQUE0SUJBUUJEMUJ6UVArck4xVVV6N0E2eitLRFBhcThzMmlCRzBGe
 lp4c1gyUVVPdXBCRUlidVpwMEtKYXVqVk1nMDFmZGpzdUdHMHVYYk1mZVJH
 eU5sVXNNTitaRHk4L01JT2gxYVVHdjBTVXdLdEN0THRXckp2NjV1d0hHR3Q
 1dUZLeE1FNjFWVDQrcXBJMkFHcXh4NWRyc3hFTEJPZHlQbmV1QWlMUHhGdW
 JSRm16dWhWU0k3QVBNbDc5T2szMG9XdWRBNDlsVVg5d3ozZzlxOXZkbDl5a
 GdlZVVTVXBNaGxaMjRVYzlQdUx6cjE1ajZ2NjNYenJTZFd0Tnp2MEYxMGVE
 bDR5VFVOV1NKaDdxQmhncTFJb1g5QVBPT3VMYk1OcnA2YmVFZW93aDM0cFZ
 XZlRhU3hJN25LNTdrSzJ4aFJVNDNld1lqMmkvU3J6OEdzTVM5MXVyMjVJdC
 JdfQ.eyJ0a3QiOnsianRpIjoiYWVheTBHSml6RHg3OUFnLS1XTC12dzZZOU
 JYeFJ1QzFYc1p4cnk1MVNVSSIsImV4cCI6MTM2Mjk5NzA5ODAwMH0sImVjZ
 GgiOnsieCI6IkoxSVdiSDJBNUMzY2hPVUlxbWZYcFBfUlFFRU9tZDJFeFhv
 S3JxUVFYTE0iLCJ5IjoiXzJFdHhiel92SmVlVVVieTJyZmRla1RUUFVScGJ
 HSkg3a3lJV3Fta0lFZyJ9LCJub25jZSI6Img1UDRLckc4eW5nIiwiZXhwIj
 oxMzYyOTY0Njk2MDAwfQ.qZhUqupVPx3E7MI0GvsHf6DGzsspr2BluET0Sp
 0DqvJEKQxKpb8o_iVlXvPkjvIztBnIj3MoO8RVLQbptOPd1k7qhMEpFHNTb
 5XZJaeINPiACRK09uFiTNnwW1js1CzOcaLjLlI3xlWd-Iuzo388rMLlIudn
 i1jNnE-29v_sSTNtq-C0Bch5C0Owkl71BNxxx3hUqxG1OL4Pt2gBJYAP_sN
 VMvh1pX9aG7tVk4Kk1KccitjPWF7GWsrFzWxzDR0u6DFtFachCObefrfgfE
 19qeZrKrzI0UdCrDPzYk9XoWJGkpFSOwWac_vCCuuv5V3Gd_LNSI3rBi-Fa
 ehYHAF1IQ

Howard & Williams Expires June 12, 2014 [Page 36]

Internet-Draft BrowserID SASL & GSS-API December 2013

 Here we show the JWT header for the response assertion, as it
 includes an ASN.1 encoded X.509 certificate, which is used to
 mutually authenticate the IMAP server to the UA:

 {
 "alg": "RS256",
 "x5c": [
 "MIIDzjCCAragAwIBAgIBBzANBgkqhkiG9w0BAQUFADBdMQswCQ
 YDVQQGEwJBVTEeMBwGA1UECgwVUEFETCBTb2Z0d2FyZSBQdHkg
 THRkMS4wLAYDVQQDDCVQQURMIFNvZnR3YXJlIENlcnRpZmljYX
 Rpb24gQXV0aG9yaXR5MB4XDTEzMDExMTA1MzQyMFoXDTE2MDEx
 MTA1MzQyMFowTDELMAkGA1UEBhMCQVUxHjAcBgNVBAoMFVBBRE
 wgU29mdHdhcmUgUHR5IEx0ZDEdMBsGA1UEAwwUcmFuZC5taXQu
 ZGUucGFkbC5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwgg
 EKAoIBAQDBhzFpfL6vHxsx2DvFZP+GR0UomDp/CEe+OHN0Z0c6
 91Yg9gWXmU3nPqVTbAIqXH8AUtvf7MzbY28oVlpZT05zm2c/tE
 3gkhTxmXORgQrcuugujOXMFhI4svEZ+CbHPlZiZ/TzkXLHP29E
 z7wNZn1H57ALqmSAo5T4qxMFgBYudw/ZxPRzDtUoIV0s23Yg4x
 T9awJnr1GgMURibUBjF7ybcm0K8sJT+UGeB7rmLlPw+fAkOf7Z
 jZ9tpTkEMi8uLEMqcxaGSAK/+kW75qOxdAFI8zYZX53gpg4mi+
 QWfGY1ZNQJMuHGQXg/ufxMzaxNN4h1aOlmZZYkBHp52A9yIMUb
 AgMBAAGjgakwgaYwCQYDVR0TBAIwADAsBglghkgBhvhCAQ0EHx
 YdT3BlblNTTCBHZW5lcmF0ZWQgQ2VydGlmaWNhdGUwHQYDVR0O
 BBYEFKSsubEDubRIGHCBttAlTv2FWGf+MB8GA1UdIwQYMBaAFL
 izZlMWnKK1PYagdJjkVuRhEQJjMAkGA1UdEQQCMAAwCwYDVR0P
 BAQDAgXgMBMGA1UdJQQMMAoGCCsGAQUFBwMDMA0GCSqGSIb3DQ
 EBBQUAA4IBAQBD1BzQP+rN1UUz7A6z+KDPaq8s2iBG0FzZxsX2
 QUOupBEIbuZp0KJaujVMg01fdjsuGG0uXbMfeRGyNlUsMN+ZDy
 8/MIOh1aUGv0SUwKtCtLtWrJv65uwHGGt5uFKxME61VT4+qpI2
 AGqxx5drsxELBOdyPneuAiLPxFubRFmzuhVSI7APMl79Ok30oW
 udA49lUX9wz3g9q9vdl9yhgeeUSUpMhlZ24Uc9PuLzr15j6v63
 XzrSdWtNzv0F10eDl4yTUNWSJh7qBhgq1IoX9APOOuLbMNrp6b
 eEeowh34pVWfTaSxI7nK57kK2xhRU43ewYj2i/Srz8GsMS91ur
 25It"]
 }

 The assertion payload is below (again, for clarity the actual JWT
 signature has been omitted):

Howard & Williams Expires June 12, 2014 [Page 37]

Internet-Draft BrowserID SASL & GSS-API December 2013

 {
 "tkt": {
 "tid": "aeay0GJizDx79Ag--WL-vw6Y9BXxRuC1XsZxry51SUI",
 "exp": 1362997098000
 },
 "epk": {
 "x": "J1IWbH2A5C3chOUIqmfXpP_RQEEOmd2ExXoKrqQQXLM",
 "y": "_2Etxbz_vJeeUUby2rfdekTTPURpbGJH7kyIWqmkIEg"
 },
 "nonce": "h5P4KrG8yng",
 "exp": 1362964696000
 }

 Note the fast re-authentication ticket and the nonce echoed back from
 the initiator.

Howard & Williams Expires June 12, 2014 [Page 38]

Internet-Draft BrowserID SASL & GSS-API December 2013

9. Security Considerations

 This document defines a GSS-API security mechanism, and therefore
 deals in security and has security considerations text embedded
 throughout. This section only addresses security considerations
 associated with the BrowserID GSS mechanism described in this
 document. It does not address security considerations associated
 with the BrowserID protocol or the GSS-API themselves.

 This mechanism provides for authentication of initiator principals
 using private keys to public key crypto-systems, using the BrowserID
 specification for user certificates (which are NOT PKIX [RFC5280]
 certificates). Authentication of the acceptor principal is optional.
 Fast re-authentication is supported via acceptor-issued fast re-
 authentication tickets.

 All cryptography for per-message tokens is imported from the Kerberos
 GSS-API mechanism [RFC4121].

 This mechanism actually has several mechanism OIDs, composed of a
 prefix identifying this family of mechanisms followed by an arc
 identifying the [RFC3961] encryption type for use with per-message
 tokens and the GSS_Pseudo_random() function. The NULL encryption
 type is supported, and when it is used then the GSS-API per-message
 tokens and GSS_Pseudo_random() function are not available, but
 channel binding and mutual authentication may be available. Also,
 when using the NULL encryption type the fast re-authentication
 feature is not available because key exchange is only performed the
 initiator application uses the variant of this mechanism that
 supports per-message tokens and the GSS_Pseudo_random() function.

 Acceptor credentials are PKIX [RFC5280] certificates and their
 private keys.

9.1. Host certificates for mutual authentication

 Allowing a match on only the DNS subjectAltName in an acceptor's
 X.509 certificate permits different services on the same host to
 impersonate each other. This should be subject to local policy.

9.2. Error statuses

 Returning rich error information in the clear (see Section 6.3.2) may
 leak information. Implementations may squash status codes and/or
 avoid returning minor statuses entirely. Indeed, applications may
 even not send back error tokens at all, instead closing the
 connection or whatever might be appropriate for the application.
 (This is a generic GSS-API security consideration.)

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc5280

Howard & Williams Expires June 12, 2014 [Page 39]

Internet-Draft BrowserID SASL & GSS-API December 2013

10. IANA Considerations

 This specification creates a number of IANA registries.

10.1. OID Registry

 Prefix: iso.org.dod.internet.private.enterprise.padl.gssBrowserID
 (1.3.6.1.4.1.5322.24)

 +---------+------------+---+
 | Decimal | Name | Description |
 +---------+------------+---+
0	Reserved	Reserved
1	mechanisms	A sub-arc containing BrowserID mechanisms
2	nametypes	A sub-arc containing BrowserID name types
 +---------+------------+---+

 Prefix:
 iso.org.dod.internet.private.enterprise.padl.gssBrowserID.mechanisms
 (1.3.6.1.4.1.5322.24.1)

 +-------+------------------+---------------------+-------+----------+
 | Decim | Name | Description | ECDH | Symmetri |
 | al | | | curve | c hash |
 +-------+------------------+---------------------+-------+----------+
0	gss-browserid-nu	The NULL security	N/A	N/A
	ll	mechanism		
17	gss-browserid-ae	The	P-256	HS256
	s128	aes128-cts-hmac-sha		
		1-96 mechanism		
18	gss-browserid-ae	The	P-521	HS256
	s256	aes256-cts-hmac-sha		
		1-96 mechanism		
 +-------+------------------+---------------------+-------+----------+

 Prefix:
 iso.org.dod.internet.private.enterprise.padl.gssBrowserID.nametypes
 (1.3.6.1.4.1.5322.24.2)

Howard & Williams Expires June 12, 2014 [Page 40]

Internet-Draft BrowserID SASL & GSS-API December 2013

 +---------+------------------------------+-------------+
 | Decimal | Name | Description |
 +---------+------------------------------+-------------+
 | 0 | Reserved | Reserved |
 | | | |
 | 1 | GSS_C_NT_BROWSERID_PRINCIPAL | 3.1.1 |
 +---------+------------------------------+-------------+

10.2. SASL Registry

 Subject: Registration of SASL mechanisms BROWSERID-AES128 and
 BROWSERID-AES128-PLUS

 SASL mechanism names: BROWSERID-AES128 and BROWSERID-AES128-PLUS

 Security considerations: See RFC 5801 and draft-howard-gss-browserid

 Published specification (recommended): draft-howard-gss-browserid

 Person & email address to contact for further information:

 Luke Howard lukeh@padl.com

 Intended usage: common

 Owner/Change controller: iesg@ietf.org

 Note: This mechanism describes the GSS BrowserID mechanism used with
 the aes128-cts-hmac-sha1-96 encryption type. The GSS-API OID for
 this mechanism is 1.3.6.1.4.1.5322.24.1.17. As described in RFC 5801
 a PLUS variant of this mechanism is also required.

 [[anchor9: We could use the NULL encryption type variant for SASL, as
 the GS2 bridge does not use message protection services. However,
 because that mechanisms is unkeyed, re-authentication would not be
 available. Defining a single AES128 mechanism is consistent with GSS
 EAP.]]

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/draft-howard-gss-browserid
https://datatracker.ietf.org/doc/html/draft-howard-gss-browserid
https://datatracker.ietf.org/doc/html/rfc5801

Howard & Williams Expires June 12, 2014 [Page 41]

Internet-Draft BrowserID SASL & GSS-API December 2013

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC4402] Williams, N., "A Pseudo-Random Function (PRF) for the
 Kerberos V Generic Security Service Application Program
 Interface (GSS-API) Mechanism", RFC 4402, February 2006.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121,
 July 2005.

 [RFC4178] Zhu, L., Leach, P., Jaganathan, K., and W. Ingersoll, "The
 Simple and Protected Generic Security Service Application
 Program Interface (GSS-API) Negotiation Mechanism",

RFC 4178, October 2005.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC4556] Zhu, L. and B. Tung, "Public Key Cryptography for Initial
 Authentication in Kerberos (PKINIT)", RFC 4556, June 2006.

 [RFC4757] Jaganathan, K., Zhu, L., and J. Brezak, "The RC4-HMAC
 Kerberos Encryption Types Used by Microsoft Windows",

RFC 4757, December 2006.

 [RFC4985] Santesson, S., "Internet X.509 Public Key Infrastructure
 Subject Alternative Name for Expression of Service Name",

RFC 4985, August 2007.

 [RFC5178] Williams, N. and A. Melnikov, "Generic Security Service
 Application Program Interface (GSS-API)
 Internationalization and Domain-Based Service Names and
 Name Type", RFC 5178, May 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4178
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4556
https://datatracker.ietf.org/doc/html/rfc4757
https://datatracker.ietf.org/doc/html/rfc4985
https://datatracker.ietf.org/doc/html/rfc5178

Howard & Williams Expires June 12, 2014 [Page 42]

Internet-Draft BrowserID SASL & GSS-API December 2013

 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [RFC6680] Williams, N., Johansson, L., Hartman, S., and S.
 Josefsson, "Generic Security Service Application
 Programming Interface (GSS-API) Naming Extensions",

RFC 6680, August 2012.

 [I-D.ietf-jose-json-web-algorithms]
 Jones, M., "JSON Web Algorithms (JWA)",

draft-ietf-jose-json-web-algorithms-18 (work in progress),
 November 2013.

 [I-D.ietf-jose-json-web-key]
 Jones, M., "JSON Web Key (JWK)",

draft-ietf-jose-json-web-key-18 (work in progress),
 November 2013.

 [I-D.ietf-jose-json-web-signature]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", draft-ietf-jose-json-web-signature-18
 (work in progress), November 2013.

 [I-D.ietf-oauth-json-web-token]
 Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", draft-ietf-oauth-json-web-token-13 (work in
 progress), November 2013.

 [I-D.zhu-negoex]
 Short, M., Zhu, L., Damour, K., and D. McPherson, "SPNEGO
 Extended Negotiation (NEGOEX) Security Mechanism",

draft-zhu-negoex-04 (work in progress), January 2011.

 [I-D.zhu-pku2u]
 Zhu, L., Altman, J., and N. Williams, "Public Key
 Cryptography Based User-to-User Authentication - (PKU2U)",

draft-zhu-pku2u-09 (work in progress), November 2008.

 [BrowserID]
 Adida, B., "BrowserID Specification", February 2013.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc6680
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-18
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-18
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-signature-18
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-json-web-token-13
https://datatracker.ietf.org/doc/html/draft-zhu-negoex-04
https://datatracker.ietf.org/doc/html/draft-zhu-pku2u-09

Howard & Williams Expires June 12, 2014 [Page 43]

Internet-Draft BrowserID SASL & GSS-API December 2013

11.2. Informative References

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

Howard & Williams Expires June 12, 2014 [Page 44]

https://datatracker.ietf.org/doc/html/rfc4120

Internet-Draft BrowserID SASL & GSS-API December 2013

Authors' Addresses

 Luke Howard
 PADL Software
 PO Box 59
 Central Park, VIC 3145
 Australia

 Email: lukeh@padl.com

 Nicolas Williams
 Cryptonector, LLC

 Email: nico@cryptonector.com

Howard & Williams Expires June 12, 2014 [Page 45]

