Network Working Group S. Hartman, Ed. ToC

Painless
Internet-Draft .

Security
Intended status: Standards

J. Howlett
Track
Expires: September 2, 2010 JANET (UK)

March 01, 2010

A GSS-API Mechanism for the Extensible Authentication Protocol
draft-howlett-eap-gss-00.txt

Abstract

This document defines protocols, procedures, and conventions to be
employed by peers implementing the Generic Security Service Application
Program Interface (GSS-API) when using the EAP mechanism.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The 1list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 2, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as


http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the BSD License.

Table of Contents

Introduction
1.1. Discovery
1.2. Authentication
1.3. Secure Association Protocol
Requirements notation

EAP Channel Binding and Naming
3.1. Mechanism Name Format
3.2. Exported Mechanism Names
3.3. Acceptor Name RADIUS AVP
3.4. Proxy Verification of Acceptor Name
Selection of EAP Method
Context Tokens
5.1. Mechanisms and Encryption Types
5.2. Context Options
Acceptor Services
6.1. GSS-API Channel Binding
6.2. Per-message security
6.3. Pseudo Random Function
Authorization and Naming Extensions
Applicability Considerations
Security Considerations

References

10.1. Normative References

10.2. 1Informative References
8§ Authors' Addresses

=

[

e

@

1. Introduction TOC

The Extensible Authentication Protocol (EAP) [RFC3748] (Aboba, B.,
Blunk, L., Vollbrecht, J., Carlson, J., and H. Levkowetz, “Extensible
Authentication Protocol (EAP),” June 2004.) defines a framework for
authenticating a network access client and server in order to gain
access to a network. A variety of different EAP methods are in wide
use; one of EAP's strengths is that for most types of credentials in
common use, there is an EAP method that permits the credential to be
used.

EAP is often used in conjunction with a backend authentication server
via RADIUS [RFC3579] (Aboba, B. and P. Calhoun, “RADIUS (Remote
Authentication Dial In User Service) Support For Extensible




Authentication Protocol (EAP),” September 2003.) or Diameter [RFC4072
(Eronen, P., Hiller, T., and G. Zorn, “Diameter Extensible
Authentication Protocol (EAP) Application,” August 2005.). In this
mode, the NAS simply tunnels EAP packets over the backend
authentication protocol to a home EAP/AAA server for the client. After
EAP succeeds, the backend authentication protocol is used to
communicate key material to the NAS. In this mode, the NAS need not be
aware of or have any specific support for the EAP method used between
the client and the home EAP server. The client and EAP server share a
credential that depends on the EAP method; the NAS and AAA server share
a credential based on the backend authentication protocol in use. The
backend authentication server acts as a trusted third party enabling
network access even though the client and NAS may not actually share
any common authentication methods. Using AAA proxies, this mode can be
extended beyond one organization to provide federated authentication
for network access.

The Generic Security Services Application Programming Interface (GSS-
API) [RFC2743] (Linn, J., “Generic Security Service Application Program
Interface Version 2, Update 1,” January 2000.) provides a generic
framework for applications to use security services including
authentication and per-message data security services. Between
protocols that support GSS-API directly or protocols that support SASL
[RFC4422] (Melnikov, A. and K. Zeilenga, “Simple Authentication and
Security Layer (SASL),” June 2006.), many application protocols can use
GSS-API for security services. However, with the exception of Kerberos
[REC4121] (Zhu, L., Jaganathan, K., and S. Hartman, “The Kerberos
Version 5 Generic Security Service Application Program Interface (GSS-
API) Mechanism: Version 2,” July 2005.), few GSS-API mechanisms are in
wide use on the Internet. While GSS-API permits an application to be
written independent of the specific GSS-API mechanism in use, there is
no facility to separate the server from the implementation of the
mechanism as there is with EAP and backend authentication servers.

The goal of this specification is to combine GSS-API's support for
application protocols with EAP/AAA's support for common credential
types and for authenticating to a server without requiring that server
to specifically support the authentication method in use. In addition,
this specification supports the use of the Security Assertion Markup
Language to transport assertions about attributes of client subjects to
servers. Together this combination will provide federated
authentication and authorisation for GSS-API applications.

This mechanism is a GSS-API mechanism that encapsulates an EAP
conversation. From the perspective of RFC 3748, this specification
defines a new lower-layer protocol for EAP.

Section 1.3 of [RFC5247] (Aboba, B., Simon, D., and P. Eronen,
“Extensible Authentication Protocol (EAP) Key Management Framework,”
August 2008.) outlines the typical conversation between EAP peers where
an EAP key 1is derived:

*Phase ©: Discovery



*Phase 1: Authentication

*la: EAP authentication

*1b: AAA Key Transport (optional)
*Phase 2: Secure Association Protocol
*2a: Unicast Secure Association

*2b: Multicast Secure Association (optional)

1.1. Discovery TOC

GSS-API peers discover each other and discover support for GSS-API in
an application-dependent mechanism. SASL [RFC4422] (Melnikov, A. and K.
Zeilenga, “Simple Authentication and Security Layer (SASL),”

June 2006.) describes how discovery of a particular SASL mechanism such
as a GSS-API mechanism is conducted. The Simple and Protected
Negotiation mechanism (SPNEGO) [RFC4178] (zhu, L., Leach, P.,
Jaganathan, K., and W. Ingersoll, “The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation
Mechanism,” October 2005.) provides another approach for discovering
what GSS-API mechanisms are available. The specific approach used for
discovery is out of scope for this mechanism.

1.2. Authentication TOC

GSS-API authenticates a party called the GSS-API initiator to the GSS-
API acceptor, optionally providing authentication of the acceptor to
the initiator. Authentication starts with a mechanism-specific message
called a context token sent from the initiator to the acceptor. The
acceptor may respond, followed by the initiator, and so on until
authentication succeeds or fails. GSS-API context tokens are reliably
delivered by the application using GSS-API. The application is
responsible for in-order delivery and retransmission.

EAP authentication can be started by either the peer or the
authenticator. The EAP peer maps onto the GSS-API initiator and the EAP
authenticator and EAP server maps onto the GSS-API acceptor. EAP
messages from the peer to the authenticator are called responses;
messages from the authenticator to the peer are called requests.

This specification permits a GSS-API peer to hand-off the processing of
the EAP packets to a remote EAP server by using AAA protocols such as



RADIUS, RadSec or Diameter. In this case, the GSS-API peer acts as an
EAP pass-through authenticator. If EAP authentication is successful,
and where the chosen EAP method supports key derivation, EAP keying
material may also be derived. If an AAA protocol is used, this can also
be used to replicate the EAP Key from the EAP server to the EAP
authenticator.

See Section 5 (Context Tokens) for details of the authentication
exchange.

1.3. Secure Association Protocol TOC

After authentication succeeds, GSS-API provides a number of per-message
security services that can be used:

GSS_Wrap() provides integrity and optional confidentiality for a
message.

GSS_GetMIC() provides integrity protection for data sent
independently of the GSS-API

GSS_Pseudo_random [RFC4401] (williams, N., “A Pseudo-Random Function
(PRF) API Extension for the Generic Security Service Application
Program Interface (GSS-API),” February 2006.) provides key
derivation functionality.

These services perform a function similar to security association
protocols in network access. Like security association protocols, these
services need to be performed near the authenticator/acceptor even when
a AAA protocol is used to separate the authenticator from the EAP
server. The key used for these per-message services is derived from the
EAP key; the EAP peer and authenticator derive this key as a result of
a successful EAP authentication. In the case that the EAP authenticator
is acting as a pass-through it obtains it via the AAA protocol. See
Section 6 (Acceptor Services) for details.

2. Requirements notation TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).




3. EAP Channel Binding and Naming TOC

EAP authenticates a realm. The peer knows that it has exchanged
authentication with an EAP server in a given realm. Today, the peer
does not typically know which NAS it is talking to securely. That is
often fine for network access. However privileges to delegate to a chat
server seem very different than privileges for a file server or trading
site. Also, an EAP peer knows the identity of the home realm, but
perhaps not even the visited realm.

In contrast, GSS-API takes a name for both the initiator and acceptor
as inputs to the authentication process. When mutual authentication is
used, both parties are authenticated. The granularity of these names is
somewhat mechanism dependent. In the case of the Kerberos mechanisnm,
the acceptor name typically identifies both the protocol in use (such
as IMAP) and the specific instance of the service being connected to.
The acceptor name almost always identifies the administrative domain
providing service.

An EAP GSS-API mechanism needs to provide GSS-API naming semantics in
order to work with existing GSS-API applications. EAP channel binding
[I-D.ietf-emu-chbind] (Clancy, C. and K. Hoeper, “Channel Binding
Support for EAP Methods,” October 2009.) is used to provide GSS-API
naming semantics. Channel binding sends a set of attributes from the
peer to the EAP server either as part of the EAP conversation or as
part of a secure association protocol. In addition, attributes are sent
in the backend authentication protocol from the authenticator to the
EAP server. The EAP server confirms the consistency of these
attributes. Confirming attribute consistency also involves checking
consistency against a local policy database as discussed below. In
particular, the peer sends the name of the acceptor it is
authenticating to as part of channel binding. The acceptor sends its
full name as part of the backend authentication protocol. The EAP
server confirms consistency of the names.

EAP channel binding is easily confused with a facility in GSS-API also
called channel binding. GSS-API channel binding provides protection
against man-in-the-middle attacks when GSS-API is used as
authentication inside some tunnel; it is similar to a facility called
cryptographic binding in EAP. See [RFC5056] (Williams, N., “On the Use
of Channel Bindings to Secure Channels,” November 2007.) for a
discussion of the differences between these two facilities and

Section 6.1 (GSS-API Channel Binding) for how GSS-API channel binding
is handled in this mechanism.

T0C



3.1. Mechanism Name Format

Before discussing how the initiator and acceptor names are validated in
the AAA infrastructure, it is necessary to discuss what composes a name
for an EAP GSS-API mechanism. GSS-API permits several types of generic
names to be imported using GSS_Import_name(). Once a mechanism 1is
chosen, these names are converted into a mechanism name form. This
section first discusses name types that need to be imported and then
discusses the structure of the mechanism name.

The GSS_C_NT_USER_NAME form represents the name of an individual user.
From the standpoint of this mechanism it may take the form either of an
undecorated user name or a network access identifier (NAI) [RFC4282]
(Aboba, B., Beadles, M., Arkko, J., and P. Eronen, “The Network Access
Identifier,” December 2005.).

The GSS_C_NT_HOSTBASED_SERVICE name form represents a service running
on a host; it is textually represented as "HOST@SERVICE". This name
form is required by most SASL profiles and is used by many existing
applications that use the Kerberos GSS-API mechanism. While support for
this name form is critical, it presents an interesting challenge in
terms of channel binding. Consider a case where the server communicates
with a "server proxy," or a AAA server near the server. That server
proxy communicates with the EAP server. The EAP server and server proxy
are in different administrative realms. The server proxy 1is in a
position to verify that the request comes from the indicated host.
However the EAP server cannot make this determination directly. So, the
EAP server needs to determine whether to trust the server proxy to
verify the host portion of the acceptor name. This trust decision
depends both on the host name and the realm of the server proxy. In
effect, the EAP server decides whether to trust that the realm of the
server proxy is the right realm for the given hostname and then makes a
trust decision about the server proxy itself. The same problem appears
in Kerberos: there, clients decide what Kerberos realm to trust for a
given hostname.

Sometimes, the client may know what AAA realm a particular host should
belong to. In this case it would be desirable to use a name form that
included a service, host and realm. Syntactically, this appears the
same as the domain-based name discussed in [RFC5178] (Williams, N. and
A. Melnikov, “Generic Security Service Application Program Interface
(GSS-API) Internationalization and Domain-Based Service Names and Name
Type,” May 2008.), but the semantics do not appear sufficiently similar
to use the same name form.

A name form is needed to identify a SAML endpoint and a specific
instance of SAML metadata associated with that endpoint. The metadata
describes properties of the endpoint including public keys. One of the
motivating use cases is to be able to use GSS-API to build trust in
this metadata. In this case it is desirable to authenticate to an
acceptor based on the endpoint and a cryptographic hash of the
metadata.




The mechanism name form must be able to represent all of these names.
In addition, the mechanism name form MUST make it easy for intermediate
AAA proxies to extract the hostname portion when present. One possible
starting point is the Kerberos name form discussed in [RFC1964] (Linn,
J., “The Kerberos Version 5 GSS-API Mechanism,” June 1996.). The major
down side of that approach is that there is no guaranteed way to be
able to extract a hostname from a Kerberos name. Also, Kerberos naming
may provide more flexibility than is needed.

3.2. Exported Mechanism Names TOC

GSS-API provides the GSS_Export_name call. This call can be used to
export the binary representation of a name. This name form can be
stored on access control lists for binary comparison.

This section defines the format of the exported name token for this
mechanism.

3.3. Acceptor Name RADIUS AVP TOC

This section defines an attribute-value pair for transporting the name
of the acceptor in a RADIUS or Diameter message. This AVP is included
by the server to indicate the acceptor name it claims. This AVP is
included in channel bindings by the client to indicate what acceptor is
authenticated against.

3.4. Proxy Verification of Acceptor Name TOC

4., Selection of EAP Method TOC

The specification currently describes a single GSS-API mechanism. The
peer and authenticator exchange EAP messages. The GSS-API mechanism
specifies no constraints about what EAP method types are used; text in
the specification says that negotiation of which EAP method to use
happens at the EAP layer.

EAP does not provide a facility for an EAP server to advertise what
methods are available to a peer. Instead, a server starts with its
preferred method selection. If the peer does not accept that method,



the peer sends a NAK response containing the list of methods supported
by the client.

Providing multiple facilities to negotiate which security mechanism to
use is undesirable. Section 7.3 of [RFC4462] (Hutzelman, J., Salowey,
J., Galbraith, J., and V. Welch, “Generic Security Service Application
Program Interface (GSS-API) Authentication and Key Exchange for the
Secure Shell (SSH) Protocol,” May 2006.)describes the problem
referencing the SSH key exchange negotiation and the SPNEGO GSS-API
mechanism. If a client preferred an EAP method A, a non-EAP
authentication mechanism B, and then an EAP method C, then the client
would have to commit to using EAP before learning whether A is actually
supported. Such a client might end up using C when B is available.

The standard solution to this problem is to perform all the negotiation
at one layer. In this case, rather than defining a single GSS-API
mechanism, a family of mechanisms should be defined. Each mechanism
corresponds to an EAP method. The EAP method type should be part of the
GSS-API 0ID. Then, a GSS-API rather than EAP facility can be used for
negotiation.

Unfortunately, using a family of mechanisms has a number of problems.
First, GSS-API assumes that both the initiator and acceptor know the
entire set of mechanisms that are available. Some negotiation
mechanisms are driven by the client; others are driven by the server.
With EAP GSS-API, the acceptor does not know what methods the EAP
server implements. The EAP server that is used depends on the identity
of the client. The best solution so far is to accept the disadvantages
of multi-layer negotiation and commit to using EAP GSS-API before a
specific EAP method. This has two main disadvantages. First,
authentication may fail when other methods might allow authentication
to succeed. Second, a non-optimal security mechanism may be chosen.

5. Context Tokens TOC

All context establishment tokens emitted by the EAP mechanism SHALL
have the framing described in section 3.1 of [RFC2743], as illustrated
by the following pseudo-ASN.1 structures:



GSS-API DEFINITIONS ::=
BEGIN

MechType ::= OBJECT IDENTIFIER
-- representing EAP mechanism
GSSAPI-Token ::=
-- option indication (delegation, etc.) indicated within
-- mechanism-specific token
[APPLICATION 0] IMPLICIT SEQUENCE {
thisMech MechType,
innerToken ANY DEFINED BY thisMech
-- contents mechanism-specific
-- ASN.1 structure not required

END

The innerToken field contains an EAP packet or special token. The first
EAP packet SHALL be a EAP response/identity packet from the initiator
to acceptor. The acceptor SHALL respond either with an EAP request or
an EAP failure packet.

The initiator and acceptor will continue exchanging response/request
packets until authentication succeeds or fails.

After the EAP authentication succeeds, channel binding tokens are
exchanged; see Section 6.1 (GSS-API Channel Binding) for details.
Currently, the channel binding tokens are the only types of special
tokens in use.

5.1. Mechanisms and Encryption Types TOC

This mechanism family uses the security services of the Kerberos
cryptographic framework [RFC3961] (Raeburn, K., “Encryption and
Checksum Specifications for Kerberos 5,” February 2005.). As such, a
particular encryption type needs to be chosen. A new GSS-API 0ID should
be defined for EAP GSS-API with a given Kerberos crypto system. This
document defines the eap-aesl128-cts-hmac-shal-96 GSS-API mechanism. XXX
define an OID for that and use the right language to get that into the
appropriate SASL registry.

5.2. Context Options TOC

GSS-API provides a number of optional per-context services requested by
flags on the call to GSS_Init_sec_context and indicated as outputs from



both GSS_Init_sec_context and GSS_Accept_sec_context. This section
describes how these services are handled.

Integrity, confidentiality, sequencing and replay detection are always
available. Regardless of what flags are requested in
GSS_Init_sec_context, implementations MUST set the flag corresponding
to these services in the output of GSS_Init_sec_context and
GSS_Accept_sec_context.

The PROT_READY service is never available with this mechanism.
Implementations MUST NOT offer this flag or permit per-message security
services to be used before context establishment.

Open issue: how is the mutual authentication request and return
handled? The big question here is figuring out how this interacts with
EAP and transporting state back to a pass-through authenticator.

Open issue: handling of lifetime parameters.

6. Acceptor Services TOC

The context establishment process may be passed through to a EAP server
via a backend authentication protocol. However after the EAP
authentication succeeds, security services are provided directly by the
acceptor.

This mechanism uses an RFC 3961 cryptographic key called the context
root key (CRK). The CRK 1is the result of the random-to-key operation
consuming the appropriate number of bits from the EAP master session
key. For example for aesl128-cts-hmac-shal-96, the random-to-key
operation consumes 16 octets of key material; thus the first 16 bytes
of the master session key are input to random-to-key to form the CRK.

6.1. GSS-API Channel Binding TOC

GSS-API channel binding [RFC5554] (Williams, N., “Clarifications and
Extensions to the Generic Security Service Application Program
Interface (GSS-API) for the Use of Channel Bindings,” May 2009.) is a
protected facility for exchanging a cryptographic name for an enclosing
channel between the initiator and acceptor. The initiator sends channel
binding data and the acceptor confirms that channel binding data has
been checked.

The acceptor SHOULD accept any channel binding providing by the
initiator if null channel bindings are passed into
gss_accept_sec_context. Protocols such as HTTP Negotiate depend on this
behavior of some Kerberos implementations. It is reasonable for the
protocol to distinguish an acceptor ignoring channel bindings from an
acceptor successfully validating them. No facility is currently




provided for an initiator implementation to expose this distinction to
the initiator code.
Define a token format, token ID and key usage for this token.

6.2. Per-message security TOC

The per-message tokens of section 4 of RFC 4121 are used. The CRK SHALL
be treated as the initiator sub-session key, the acceptor sub-session
key and the ticket session key.

6.3. Pseudo Random Function TOC

The pseudo random function defined in [RFC4402] (wWilliams, N., “A
Pseudo-Random Function (PRF) for the Kerberos V Generic Security
Service Application Program Interface (GSS-API) Mechanism,”
February 2006.) is used.

7. Authorization and Naming Extensions TOC

One goal of this mechanism is to support retrieving a SAML assertion as
a result of the EAP authentication. The GSS-API naming extensions will
be used to access this message. This section will be expanded to
discuss details.

8. Applicability Considerations TOC

Section 1.3 of RFC 3748 provides the applicability statement for EAP.
Among other constraints, EAP is scoped for use in network access. This
specification anticipates using EAP beyond its current scope. The
assumption is that some other document will discuss the issues
surrounding the use of EAP for application authentication and expand
EAP's applicability. That document will likely enumerate considerations
that a specific use of EAP for application authentication needs to
handle. Examples of such considerations might include the multi-layer
negotiation issue, deciding when EAP or some other mechanism should be
used, and so forth. This section serves as a placeholder to discuss any
such issues with regard to the use of EAP and GSS-API.



9. Security Considerations TOC

RFC 3748 discusses security issues surrounding EAP. RFC 5247 discusses
the security and requirements surrounding key management that leverages
the AAA infrastructure. These documents are critical to the security
analysis of this mechanism.

RFC 2743 discusses generic security considerations for the GSS-API. RFC
4121 discusses security issues surrounding the specific per-message
services used in this mechanism.

As discussed in Section 4 (Selection of EAP Method), this mechanism may
introduce multiple layers of security negotiation into application
protocols. Multiple layer negotiations are vulnerable to a bid-down
attack when a mechanism negotiated at the outer layer is preferred to
some but not all mechanisms negotiated at the inner layer; see section
7.3 of [RFC4462] (Hutzelman, J., Salowey, J., Galbraith, J., and V.
Welch, “Generic Security Service Application Program Interface (GSS-
API) Authentication and Key Exchange for the Secure Shell (SSH)
Protocol,” May 2006.) for an example. One possible approach to mitigate
this attack is to construct security policy such that the preference
for all mechanisms negotiated in the inner layer falls between
preferences for two outer layer mechanisms or falls at one end of the
overall ranked preferences including both the inner and outer layer.
Another approach is to only use this mechanism when it has specifically
been selected for a given service. The second approach is likely to be
common in practice because one common deployment will involved an EAP
supplicant interacting with a user to select a given identity. Only
when an identity is successfully chosen by the user will this mechanism
be attempted.

The security of this mechanism depends on the use and verification of
EAP channel binding. Today EAP channel binding is in very limited
deployment. If EAP channel binding is not used, then the system may be
vulnerable to phishing attacks where a user is diverted from one
service to another. These attacks are possible with EAP today although
not typically with common GSS-API mechanisms.

Every proxy in the AAA chain from the authenticator to the EAP server
needs to be trusted to help verify channel bindings and to protect the
integrity of key material. GSS-API applications may be built to assume
a trust model where the acceptor is directly responsible for
authentication. However, GSS-API is definitely used with trusted-third-
party mechanisms such as Kerberos.

10. References TOC



10.1. Normative References TOC

[I-D.ietf-

emu-chbind]

[RFC2119]

[RFC2743]

[RFC3748]

[RFC3961]

[RFC4121]

[RFC4282]

[RFC4401]

[RFC4402]

[RFC5056]

[RFC5554]

Clancy, C. and K. Hoeper, “Channel Binding Support for
EAP Methods,” draft-ietf-emu-chbind-04 (work in
progress), October 2009 (TXT).

Bradner, S., “Key words for use in RFCs to Indicate
Reguirement Levels,” BCP 14, RFC 2119, March 1997
(IXT, HTML, XML).

Linn, J., “Generic Security Service Application
Program Interface Version 2, Update 1,” RFC 2743,
January 2000 (TXT).

Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and
H. Levkowetz, “Extensible Authentication Protocol
(EAP),” RFC 3748, June 2004 (TXT).

Raeburn, K., “Encryption and Checksum Specifications
for Kerberos 5,” RFC 3961, February 2005 (TXT).

Zhu, L., Jaganathan, K., and S. Hartman, “The Kerberos
Version 5 Generic Security Service Application Program
Interface (GSS-API) Mechanism: Version 2,” RFC 4121,
July 2005 (TXT).

Aboba, B., Beadles, M., Arkko, J., and P. Eronen, “The
Network Access Identifier,” RFC 4282, December 2005
(IXT).

wWilliams, N., “A Pseudo-Random Function (PRF) API
Extension for the Generic Security Service Application
Program Interface (GSS-API),” RFC 4401, February 2006
(TXT).

Williams, N., “A Pseudo-Random Function (PRF) for the
Kerberos V Generic Security Service Application
Program Interface (GSS-API) Mechanism,” RFC 4402,
February 2006 (TXT).

wWilliams, N., “On the Use of Channel Bindings to
Secure Channels,” RFC 5056, November 2007 (TXT).
Williams, N., “Clarifications and Extensions to the
Generic Security Service Application Program Interface
(GSS-API) for the Use of Channel Bindings,” RFC 5554,
May 2009 (TXT).

10.2. Informative References

[RFC1964]

[RFC3579]

TOC
Linn, J., “The Kerberos Version 5 GSS-API Mechanism,”
RFC 1964, June 1996 (TXT).
Aboba, B. and P. Calhoun, “RADIUS (Remote Authentication
Dial In User Service) Support For Extensible
Authentication Protocol (EAP),” RFC 3579, September 2003
(TXT).



http://www.ietf.org/internet-drafts/draft-ietf-emu-chbind-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-emu-chbind-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-emu-chbind-04.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:jlinn@rsasecurity.com
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://www.rfc-editor.org/rfc/rfc2743.txt
http://tools.ietf.org/html/rfc3748
http://tools.ietf.org/html/rfc3748
http://www.rfc-editor.org/rfc/rfc3748.txt
http://tools.ietf.org/html/rfc3961
http://tools.ietf.org/html/rfc3961
http://www.rfc-editor.org/rfc/rfc3961.txt
http://tools.ietf.org/html/rfc4121
http://tools.ietf.org/html/rfc4121
http://tools.ietf.org/html/rfc4121
http://www.rfc-editor.org/rfc/rfc4121.txt
http://tools.ietf.org/html/rfc4282
http://tools.ietf.org/html/rfc4282
http://www.rfc-editor.org/rfc/rfc4282.txt
http://tools.ietf.org/html/rfc4401
http://tools.ietf.org/html/rfc4401
http://tools.ietf.org/html/rfc4401
http://www.rfc-editor.org/rfc/rfc4401.txt
http://tools.ietf.org/html/rfc4402
http://tools.ietf.org/html/rfc4402
http://tools.ietf.org/html/rfc4402
http://www.rfc-editor.org/rfc/rfc4402.txt
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://www.rfc-editor.org/rfc/rfc5056.txt
http://tools.ietf.org/html/rfc5554
http://tools.ietf.org/html/rfc5554
http://tools.ietf.org/html/rfc5554
http://www.rfc-editor.org/rfc/rfc5554.txt
mailto:John.Linn@ov.com
http://tools.ietf.org/html/rfc1964
http://www.rfc-editor.org/rfc/rfc1964.txt
http://tools.ietf.org/html/rfc3579
http://tools.ietf.org/html/rfc3579
http://tools.ietf.org/html/rfc3579
http://www.rfc-editor.org/rfc/rfc3579.txt

[RFC4072] Eronen, P., Hiller, T., and G. Zorn, “Diameter Extensible
Authentication Protocol (EAP) Application,” RFC 4072,
August 2005 (TXT).

[RFC4178] Zzhu, L., Leach, P., Jaganathan, K., and W. Ingersoll,
“The Simple and Protected Generic Security Service
Application Program Interface (GSS-API) Negotiation
Mechanism,” RFC 4178, October 2005 (TXT).

[RFC4422] Melnikov, A. and K. Zeilenga, “Simple Authentication and
Security Layer (SASL),” RFC 4422, June 2006 (TXT).

[RFC4462] Hutzelman, J., Salowey, J., Galbraith, J., and V. Welch,
“Generic Security Service Application Program Interface
(GSS-API) Authentication and Key Exchange for the Secure
Shell (SSH) Protocol,” RFC 4462, May 2006 (TXT).

[RFC5178] Wwilliams, N. and A. Melnikov, “Generic Security Service
Application Program Interface (GSS-API)
Internationalization and Domain-Based Service Names and
Name Type,” RFC 5178, May 2008 (TXT).

[RFC5247] Aboba, B., Simon, D., and P. Eronen, “Extensible
Authentication Protocol (EAP) Key Management Framework,”
RFC 5247, August 2008 (TXT).

Authors' Addresses
TOC

Sam Hartman (editor)
Painless Security
Email: hartmans-ietf@mit.edu

Josh Howlett
JANET (UK)
Email: josh.howlett@ja.net



http://tools.ietf.org/html/rfc4072
http://tools.ietf.org/html/rfc4072
http://www.rfc-editor.org/rfc/rfc4072.txt
http://tools.ietf.org/html/rfc4178
http://tools.ietf.org/html/rfc4178
http://tools.ietf.org/html/rfc4178
http://www.rfc-editor.org/rfc/rfc4178.txt
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422
http://www.rfc-editor.org/rfc/rfc4422.txt
http://tools.ietf.org/html/rfc4462
http://tools.ietf.org/html/rfc4462
http://tools.ietf.org/html/rfc4462
http://www.rfc-editor.org/rfc/rfc4462.txt
http://tools.ietf.org/html/rfc5178
http://tools.ietf.org/html/rfc5178
http://tools.ietf.org/html/rfc5178
http://tools.ietf.org/html/rfc5178
http://www.rfc-editor.org/rfc/rfc5178.txt
http://tools.ietf.org/html/rfc5247
http://tools.ietf.org/html/rfc5247
http://www.rfc-editor.org/rfc/rfc5247.txt
mailto:hartmans-ietf@mit.edu
mailto:josh.howlett@ja.net

	A GSS-API Mechanism for the Extensible Authentication Protocoldraft-howlett-eap-gss-00.txt
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1.  Introduction
	1.1.  Discovery
	1.2.  Authentication
	1.3.  Secure Association Protocol
	2.  Requirements notation
	3.  EAP Channel Binding and Naming
	3.1.  Mechanism Name Format
	3.2.  Exported Mechanism Names
	3.3.  Acceptor Name RADIUS AVP
	3.4.  Proxy Verification of Acceptor Name
	4.  Selection of EAP Method
	5.  Context Tokens
	5.1.  Mechanisms and Encryption Types
	5.2.  Context Options
	6.  Acceptor Services
	6.1.  GSS-API Channel Binding
	6.2.  Per-message security
	6.3.  Pseudo Random Function
	7.  Authorization and Naming Extensions
	8.  Applicability Considerations
	9.  Security Considerations
	10.  References
	10.1. Normative References
	10.2. Informative References
	Authors' Addresses


