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Abstract

This document describes a method to transmit DNS messages over

multiple UDP datagrams by fragmenting them at the application layer.

The objective is to allow authoriative servers to successfully reply

to DNS queries via UDP using multiple smaller datagrams, where

larger datagrams may not pass through the network successfully.
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1. Introduction

1.1. Background

[RFC1035] describes how DNS messages are to be transmitted over UDP.

A DNS query message is transmitted using one UDP datagram from

client to server, and a corresponding DNS reply message is

transmitted using one UDP datagram from server to client.

The upper limit on the size of a DNS message that can be transmitted

thus depends on the maximum size of the UDP datagram that can be

transmitted successfully from the sender to the receiver. Typically

any size limit only matters for DNS replies, as DNS queries are

usually small.

As a UDP datagram is transmitted in a single IP, in theory the size

of a UDP datagram (including various lower internet layer headers)

can be as large as 64 KiB. But practically, if the datagram size

exceeds the path MTU, then the datagram will either be fragmented at
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the IP layer, or worse dropped, by a forwarder. In the case of IPv6,

DNS packets are fragmented by the sender only. If a packet's size

exceeds the path MTU, it must be fragmented. Except for the first

fragmented package, other fragmented packages do not include a UDP

or TCP header, and do not know the port number of the IP package,

and the subsequent IP slice pack is filtered off. A Packet Too Big

(PTB) ICMP message will be received by sender without any clue to

the sender to reply again with a smaller sized message, due to the

stateless feature of DNS. In addition, IP-level fragmentation caused

by large DNS response packet will introduce risk of cache poisoning 

[Fragment-Poisonous], in which the attacker can circumvent some

defense mechanisms (like port, IP, and query randomization 

[RFC5452]).

As a result, a practical DNS payload size limitation is necessary. 

[RFC1035] limited DNS message UDP datagram lengths to a maximum of

512 bytes. Although EDNS(0) [RFC6891] allows an initiator to

advertise the capability of receiving lager packets (up to 4096

bytes), it leads to fragmentation because practically most packets

are limited to 1500 byte size due to host Ethernet interfaces, or

1280 byte size due to minimum IPv6 MTU in the IPv6 stack [RFC3542].

According to DNS specifications [RFC1035], if the DNS response

message can not fit within the packet's size limit, the response is

truncated and the initiator will have to use TCP as a fallback to

re-query to receive large response. However, not to mention the high

setup cost introduced by TCP due to additional roundtrips, some

firewalls and middle boxes even block TCP/53 which cause no

responses to be received as well. It becomes a significant issue

when the DNS response size inevitably increases with DNSSEC

deployment.

In this memo, DNS message fragmentation attempts to work around

middle box misbehavior by splitting a single DNS message across

multiple UDP datagrams. Note that to avoid DNS amplification and

reflection attacks, DNS cookies [I-D.ietf-dnsop-cookies] is a

mandatory requirement when using DNS message fragments.

1.2. Motivation

It is not a new topic regarding large DNS packets(>512B) issue 

[I-D.ietf-dnsop-respsize], starting from introduction of IPv6,

EDNS(0) [SAC016], and DNSSEC deployment [SAC035]. In current

production networks, using DNSSEC with longer DNSKEYs (ZSK>1024B and

KSK>2048B) will result in response packets no smaller than 1500B 

[T-DNS]. Especially during the KSK rollover process, responses to

the query of DNSKEY RRset will be enlarged as they contain both the

new and old KSK.
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When possible, we should avoid dropped packets as this means the

client must wait for a timeout, which incurs a high cost. For

example, a validator behind a firewall suffers waiting till the

timeout with no response, if the firewall drops large EDNS(0)

packets and IP fragments. It may even cause disaster when the

validator can not recieve response for new trust anchor KSK due to

the extreme case of bad middle boxes which also drop TCP/53.

Since UDP requires fewer packets on the wire and less state on

servers than TCP, in this memo we propose continuing to use UDP for

transmission but fragment the larger DNS packets into smaller DNS

packets at the application layer. We would like the fragments to

easily go through middle boxes and avoid falling back to TCP.

2. DNS Message Fragmentation Method

2.1. Client Behavior

Clients supporting DNS message fragmentation add an EDNS option to

their queries, which declares their support for this feature.

If a DNS reply is received that has been fragmented, it will consist

of multiple DNS message fragments (each transmitted in a respective

UDP packet), and every fragment contain an EDNS option which says

how many total fragments there are, and the identifier of the

fragment that the current packet represents. The client collects all

of the fragments and uses them to reconstruct the full DNS message.

Clients MUST maintain a timeout when waiting for the fragments to

arrive.

Clients that support DNS message fragments MUST be able to

reassemble fragments into a DNS message of any size, up to the

maximum of 64KiB.

The client MAY save information about what sizes of packets have

been received from a given server. If saved, this information MUST

have a limited duration.

Any DNSSEC validation is performed on the reassembled DNS message.

2.2. Server Behavior

Servers supporting DNS message fragmentation will look for the EDNS

option which declares client support for the feature. If not

present, the server MUST NOT use DNS message fragmentation. The

server MUST check that DNS cookies are supported. [**FIXME**]

Implementation of the first request case, where no existing

established cookie is available needs discussion; we want to avoid

additional round-trips here. Shane: don't cookies already handle

this case?
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The server prepares the response DNS message normally. If the

message exceeds the maximum UDP payload size specified by the

client, then it should fragment the message into multiple UDP

datagrams.

Each fragment contains an identical DNS header with TC=1, possibly

varying only in the section counts. Setting the TC flag in this way

insures that clients which do not support DNS fragments can fallback

to TCP transparently.

As many RR are included in each fragment as are possible without

going over the desired size of the fragment. An EDNS option is added

to every fragment, that includes both the fragment identifier and

the total number of fragments.

The server needs to know how many total fragments there are to

insert into each fragment. A simple approach would be to generate

all fragments, and then count the total number at the end, and

update the previously-generated fragments with the total number of

fragments. Other techniques may be possible.

The server MUST limit the number of fragments that it uses in a

reply. (See "Open Issues and Discussion" for remaining work.)

The server MUST NOT exceed the maximum fragment size requested by a

client.

The server should use the following sizes for each fragment in the

sequence in IPv4:

Fragment ID Size

1 min(512, client_specified_max)

2 min(1460, client_specified_max)

3 min(1480, client_specified_max)

N min(1480, client_specified_max)

Table 1

The rationale is that the first packet will always get through,

since if a 512 octet packet doesn't work, DNS cannot function. We

then increase to sizes that are likely to get through. 1460 is the

1500 octet Ethernet packet size, minus the IP header overhead and

enough space to support tunneled traffic. 1480 is the 1500 octet

Ethernet packet size, minus the IP header overhead. [**FIXME**] Why

not add 1240 here? Shane answers: 1280 is not any kind of limit in

IPv4, as far as I know.

The server should use the following sizes for each packet in the

sequence in IPv6:

¶

¶

¶

¶

¶

¶

¶

¶

¶



Fragment ID Size

1 min(1240, client_specified_max)

2 min(1420, client_specified_max)

3 min(1460, client_specified_max)

N min(1460, client_specified_max)

Table 2

Like with IPv4, the idea is that the first packet will always get

through. In this case we use the IPv6-mandated 1280 octets, minus

the IP header overhead. We then increase to 1420, which is the 1500

octet Ethernet packet size, minus the IP header overhead and enough

space to support tunneled traffic. 1460 is the 1500 octet Ethernet

packet size, minus the IP header overhead.

2.3. Other Notes

The FRAGMENT option MUST NOT be present in DNS query messages,

i.e., when QR=0. If a DNS implementation notices the FRAGMENT

option in a DNS query message, it MUST ignore it.

In DNS reply messages, the FRAGMENT option MUST NOT be present in

datagrams when truncation is not done, i.e., when TC=0. If a DNS

implementation notices the FRAGMENT option in a DNS reply message

fragment datagram that is not truncated, i.e, when TC=0, it MUST

drop all DNS reply message fragment datagrams received so far

(awaiting assembly) for that message's corresponding question

tuple (server IP, port, message ID) without using any data from

them. [**FIXME**] Dropping fragments to be received yet will be

problematic for implementations, but dropping fragments received

so far ought to be sufficient.

More than one FRAGMENT option MUST NOT be present in a DNS reply

message fragment datagram. If a DNS implementation notices

multiple FRAGMENT options in a DNS reply message fragment

datagram, it MUST drop all reply datagrams received for that

message's corresponding question tuple (server IP, port, message

ID) without using any data from them. [**FIXME**] Dropping

fragments to be received yet will be problematic for

implementations, but dropping fragments received so far ought to

be sufficient.

3. The ALLOW-FRAGMENTS EDNS(0) Option

ALLOW-FRAGMENTS is an EDNS(0) [RFC6891] option that a client uses to

inform a server that it supports fragmented responses. [**FIXME**]

Why not simply use the FRAGMENT option here with count=0,

identifier=ignored and avoid using another option code? Shane: There

are no shortage of options. Plus, if we want to include a maximum
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fragment size value in the ALLOW-FRAGMENTS then we really need a

separate option.

3.1. Wire Format

TBD.

3.2. Option Fields

3.2.1. Maximum Fragment Size

The Maximum Fragment Size field is represented as an unsigned 16-bit

integer. This is the maximum size used by any given fragment the

server returns. [**FIXME**] This field's purpose has to be

explained. Shane: discussed in the discussion section now.

3.3. Presentation Format

As with other EDNS(0) options, the ALLOW-FRAGMENTS option does not

have a presentation format.

4. The FRAGMENT EDNS(0) Option

FRAGMENT is an EDNS(0) [RFC6891] option that assists a client in

gathering the various fragments of a DNS message from multiple UDP

datagrams. It is described in a previous section. Here, its syntax

is provided.

4.1. Wire Format

TBD.

4.2. Option Fields

4.2.1. Fragment Identifier

The Fragment Identifier field is represented as an unsigned 8-bit

integer. The first fragment is identified as 1. Values in the range

[1,255] can be used to identify the various fragments. Value 0 is

used for signalling purposes.

4.2.2. Fragment Count

The Fragment Count field is represented as an unsigned 8-bit

integer. It contains the number of fragments in the range [1,255]

that make up the DNS message. Value 0 is used for signalling

purposes.
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4.3. Presentation Format

As with other EDNS(0) options, the FRAGMENT option does not have a

presentation format.

5. Network Considerations

5.1. Background

TCP-based application protocols co-exist well with competing traffic

flows in the internet due to congestion control methods such as in 

[RFC5681] that are present in TCP implementations.

UDP-based application protocols have no restrictions in lower layers

to stop them from flooding datagrams into a network and causing

congestion. So applications that use UDP have to check themselves

from causing congestion so that their traffic is not disruptive.

In the case of [RFC1035], only one reply UDP datagram was sent per

request UDP datagram, and so the lock-step flow control

automatically ensured that UDP DNS traffic didn't lead to

congestion. When DNS clients didn't hear back from the server, and

had to retransmit the question, they typically paced themselves by

using methods such as a retransmission timer based on a smoothed

round-trip time between client and server.

Due to the message fragmentation described in this document, when a

DNS query causes multiple DNS reply datagrams to be sent back to the

client, there is a risk that without effective control of flow, DNS

traffic could cause problems to competing flows along the network

path.

Because UDP does not guarantee delivery of datagrams, there is a

possibility that one or more fragments of a DNS message will be lost

during transfer. This is especially a problem on some wireless

networks where a rate of datagrams can continually be lost due to

interference and other environmental factors. With larger numbers of

message fragments, the probability of fragment loss increases.

5.2. Implementation Requirements

TBD.

6. Open Issues and Discussion

Resolver behavior

We need some more discussion of resolver behavior in general,

at least to the point of making things clear to an implementor.
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The use of DNS fragments mechanism

Is this mechanism designed for all DNS transactions, or only

used in some event or special cases like a key rollover

process? If the mechanism is designed for general DNS

transactions, when is it triggered and how is it integrated

with existing patterns?

One option is that DNS fragments mechanism works as a backup

with EDNS, and triggered only when a larger packet fails in the

middle. It will be orthogonal with TCP which provide additional

context that TC bit will be used in server side.

What is the size of fragments?

Generally speaking the number of fragment increases if fragment

size is small (512 bytes, or other empirical value), which

makes the mechanism less efficient. If the size can changed

dynamically according to negotiation or some detection, it will

introduce more cost and round trip time.

What happens if a client that does not support DNS fragments

receives an out-of-order or partial fragment?

We need to consider what happens when a client that does not

support DNS fragments gets a partial response, possibly even

out of order.

We should explain risk of congestion, packet loss, etc. when

introducing the limit on the number of fragments. We might also

set specific upper limits for number of fragments.

EDNS buffer sizes vs. maximum fragmentation sizes

Mukund Sivaraman: We need further discussion about the sizes;

also an upper limit for each *fragment* has to be the client's

UDP payload size as it is the driver and it alone knows the

ultimate success/failure of message delivery. So if it sets a

maximum payload size of 1200, there's no point in trying 1460.

Clients that support DNS message fragments (and signal support

using the EDNS option) should adapt their UDP payload size

discovery algorithm to work with this feature, as the following

splits on sizes will assist PMTU discovery.

Shane Kerr: I think we need to separate the EDNS maximum UDP

payload size from the maximum fragment size. I think that it is

quite likely that (for example) we will want to restrict each

fragment to 1480 bytes, but that the EDNS buffer size might

remain at 4 kibibytes.
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TSIG should be addressed

We need to document how to handle TSIG, even though this is not

likely to be a real-world issue. Probably each fragment should

be TSIG signed, as this makes it harder for an attacker to

inject bogus packets that a client will have to process.

RR splitting should be addressed

We need to document whether or not RR can be split. Probably it

makes sense not to allow this, although this will reduce the

effectiveness of the fragmentation, as the units that can be

packed into each fragment will be bigger.

We need to document that some messages may not be possible to

split.

Some messages may be too large to split. A trivial example is a

TXT record that is larger than the buffer size. Probably the

best behavior here is to truncate.

DNSSEC checks

DNSSEC checks should be done on the final reassembled packet.

This needs to be documented.

Name compression

Name compression should be done on the each fragment

separately. This needs to be documented.

OPT-RR

Some OPT-RR seem to be oriented at the entire message, others

make more sense per packet. This needs to be sorted out. Also

we need to investigate the edge case where fragments have

conflicting options (Mukund Sivaraman thinks that we can copy

the approach in the EDNS specification and use the same rules

about conflicting OPT-RR that it uses.)

7. Security Considerations

To avoid DNS amplification or reflection attacks, DNS cookies 

[I-D.ietf-dnsop-cookies] must be used. The DNS cookie EDNS option is

identical in all fragments that make up a DNS message. The

duplication of the same cookie values in all fragments that make up

the message is not expected to introduce a security weakness in the

case of off-path attacks.
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[Fragment-Poisonous]

[I-D.ietf-dnsop-cookies]

[I-D.ietf-dnsop-respsize]

[RFC1035]

[RFC1123]

[RFC3542]

[RFC5452]

[RFC5681]

8. IANA Considerations

The ALLOW-FRAGMENTS and FRAGMENT EDNS(0) options require option

codes to be assigned for them.
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