
INTERNET-DRAFT Hudson Ayers
Intended Status: Informational Paul Crews
Expires: December 31, 2018 Hubert Teo
 Conor McAvity
 Amit Levy
 Philip Levis
 Stanford University
 June 29, 2018

Design Considerations For Low Power Internet Protocols
draft-hudson-ayers-00

Abstract

 This document discusses guidelines for specifying low-power Internet
 protocols in order to improve implementation interoperability. These
 guidelines are based around the importance of balancing memory usage
 and energy efficiency, and the importance of not relying on Postel's
 law when dealing with low resource devices. This document applies
 these guidelines to the IPv6 over low-power wireless personal area
 networks (6LoWPAN) Internet Standard, suggesting changes that would
 make it more likely for implementations to interoperate.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on <Expiry Date>

Hudson Ayers Expires December 31, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

INTERNET DRAFT 6lo Design Considerations June 29, 2018

Copyright and License Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1 Introduction . 3
1.1 Terminology . 4

2. 6LoWPAN Interoperability Study 4
2.1 Incomplete Implementations 5
2.2 Unrealistic Bounds . 6
2.2.1 Maximum Header Decompression 6
2.2.2 Arbitrary Next Header Compression 6

2.3 No Pairing Interoperates 7
3 Implementation Concerns . 9
3.1 Processor Resources . 9

5 Contributing Factors . 11
6 Design Guidelines . 11
6.1 Guideline 1: Capability Spectrum 11
6.1.1 Guideline 1 Application to 6LoWPAN 12

6.2 Guideline 2: Capability Discovery 13
6.2.1 Guideline 2 Application to 6LoWPAN 13

6.3 Guideline 3: Provide Reasonable Bounds 14
6.3.1 Guideline 3 Application to 6LoWPAN 14

6.4 Guideline 4: Don't Break Layering 15
6.4.1 Guideline 4 Application to 6LoWPAN 16

7 Security Considerations . 18
8 IANA Considerations . 18
9 References . 18
9.1 Normative References 18
9.2 Informative References 19

 Authors' Addresses . 20

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Hudson Ayers Expires December 31, 2018 [Page 2]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

1 Introduction

 Interoperability is critical for the Internet. Not only do edge-
 devices need to interoperate with the broader Internet, they should
 also interoperate with other devices in the same network.
 Historically, though, embedded systems and sensor networks have been
 vertical silos of proprietary technologies, each using custom network
 protocols and homogeneous implementations. Networks typically require
 specialized gateways and cannot easily include devices from different
 vendors for a variety of applications.

 Interoperability is just as important in the Internet of Things, but
 end hosts in the Internet of Things are less resourceful, more
 diverse in capability, and less well audited than typical Internet
 end hosts. Using IP allows devices from different manufacturers,
 running completely different software stacks, to interoperate, share
 services, and compose into larger, more complex applications. This
 interoperability should exist not only between IoT devices
 communicating with hosts across the broader Internet, but also
 between IoT devices in the same low power wireless network. The
 presence of such interoperability precludes the need for multiple
 gateways to support different devices, simplifies network management,
 and allows for efficient, logical communication between nearby
 devices.

 To address this problem, the IETF published a series of RFCs
 detailing a standard format for transmitting IPv6 packets over low-
 power wireless link layers such as IEEE 802.15.4 {RFC 4919][RFC
 4944][RFC 6282][RFC 6775]. The 6LoWPAN RFCs define a fragmentation
 format, a compression format, and more. These 6LoWPAN standards have
 been adopted by a number of popular embedded operating systems,
 including Contiki {CONTIKI], RiotOS {RIOT], OpenThread [OPENTHREAD],
 mbedOS [ARM], and TinyOS [TINYOS].

 Unfortunately, none of these implementations are complete. Each
 implementation supports different subsets of 6LoWPAN. As a result,
 devices built using different embedded operating systems cannot
 interoperate. In fact, for every possible pairing, one implementation
 is likely to transmit 6LoWPAN packets which the other cannot process.

 This paper explores the reasons behind the lack of interoperability
 in practice, and argues that this results from the protocol too
 heavily prioritizing radio efficiency over processor resources, and
 failing to consider the broad range of devices which embedded
 operating systems will attempt to support. This document proposes
 four guidelines for designing interoperable protocols for low-power
 wireless networks, and explain them through an example application to
 two 6LoWPAN standards - RFC 4944 and RFC 6282. These guidelines are

https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282

Hudson Ayers Expires December 31, 2018 [Page 3]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 informed by an empirical analysis of existing 6LoWPAN implementations
 as well as experience implementing a full 6LoWPAN stack for the Tock
 operating system [TOCK].

1.1 Terminology

 Readers are expected to be familiar with all terms and concepts
 discussed in "IPv6 over Low-Power Wireless Personal Area Networks
 (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals",
 "Transmission of IPv6 Packets over IEEE 802.15.4 Networks",
 "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based
 Networks".

 Readers would benefit from reading 6LoWPAN Neighbor Discovery (ND),
 6LoWPAN routing requirements, and 6LoWPAN design/application spaces
 for additional details of 6LoWPAN work.

2. 6LoWPAN Interoperability Study

 The IETF's 6LoWPAN working group has been concerned with
 interoperability between implementation since inception [6LO-CHART].
 Indeed, members of the working group have organized ``Plugtests'',
 where vendors verified correct implementation of the 6LowPAN
 specifications and tested interoperability with other vendors.
 Unfortunately, detailed results of these plugtests are not publicly
 available.

 A node sending IPv6 packets using 6LoWPAN may fragment the packet or
 compress headers in a large number of ways permitted by the
 specification. These choices depend both on the properties of the
 packet (e.g. whether it is a UDP packet or if the origin and
 destinations are in the same subnet) as well as on which compression
 and fragmentation options the sender chooses to use. For two nodes to
 interoperate, the 6LoWPAN implementation on each node must be able to
 receive any packet the other node might send.

 This document investigates the interoperability of 6LoWPAN
 implementations from five common embedded software platforms: Riot
 OS, Contiki, OpenThread, TinyOS, and ARM Mbed. This study is
 concerned, specifically, with each implementation's ability to
 receive and decode 6LoWPAN packets sent from other implementations.
 This document does not explore whether devices built using these
 implementations could form a network in the first place, since
 6LoWPAN leaves much of the network formation process (e.g. discovery
 and joining) unspecified.

 The compatibility analysis in this document, between five common

Hudson Ayers Expires December 31, 2018 [Page 4]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 embedded software frameworks with 6LoWPAN implementations, is based
 in three discoveries. First, a determination of how completely each
 implementation implements the 6LoWPAN specification was obtained by
 directly examining their source code. Second, this code analysis was
 extended to verify that under some circumstances, each implementation
 sends packets using compression or fragmentation options which
 another implementation cannot decode. Finally, it was discovered that
 even in cases where two implementations use compatible compression
 and fragmentation options, different implementation choices, such as
 header decompression bounds, limit their interoperability.

 As a result, no pairing of these five implementations is fully
 interoperable.

2.1 Incomplete Implementations

 The 6LoWPAN protocol consists of a large number of complex and mostly
 independent features which use the link-layer frame efficiently via
 compression and fragmentation optimizations. Examining the code and
 documentation for each of the aforementioned 6LoWPAN stacks reveals
 that the stacks do not uniformly implement the specification. In
 fact, each specification implements a different subset of the
 requirements in the 6LoWPAN specification, and none implements the
 entire specification to the letter. A visualization of the
 mismatched feature support across different 6LoWPAN implementations
 can be found in Table 1. Note that OT is an abbreviation used
 throughout this document to refer to OpenThread.

 +--+-------+--+----+---+------+
 | Feature | Stack |
 +--+-------+--+----+---+------+
 | |Contiki|OT|Riot|Arm|TinyOS|
 +--+-------+--+----+---+------+
Uncompressed IPv6	o		o	o	o
6LoWPAN Fragmentation	o	o	o	o	o
1280 byte packets	o	o	o	o	o
Dispatch_IPHC header prefix	o	o	o	o	o
IPv6 Stateless Address Compression	o	o	o	o	o
Stateless multicast address compression	o	o	o	o	o
802.15.4 16 bit short address support		o	o	o	o
IPv6 Address Autoconfiguration	o	o	o	o	o
IPv6 Stateful Address Compression	o	o	o	o	o
Stateful multicast address compression		o	o	o	
IPv6 TC and Flow label compression	o	o	o	o	o
IPv6 NH Compression: Tunneled IPv6		o		o	o
IPv6 NH Compression: UDP	o	o	o	o	o
UDP port compression	o	o	o	o	o
UDP checksum elision					o

Hudson Ayers Expires December 31, 2018 [Page 5]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 | Compression + headers past first frag | | | | | |
 +--+-------+--+----+---+------

 Table 1: 6LoWPAN Interoperability Matrix

2.2 Unrealistic Bounds

 Beyond the variation in what portions of the 6LoWPAN specification
 each stack implements, there also exists significant variation in how
 each stack handles certain implementation-specific details. Some of
 these details have little impact on interoperability, such as
 decisions regarding how many fragments a stack holds for a given
 packet before dropping all of them, whether to allow for
 reconstruction of multiple packets simultaneously, and how long to
 hold onto fragments for which the rest of the packet has not yet
 arrived. Other details, however, differ in ways that significantly
 affect interoperability between stacks. A discussion of two such
 details follows:

2.2.1 Maximum Header Decompression

 Each of the stacks analyzed imposes some limit on the maximum amount
 of header decompression possible for a received packet. Such a limit
 is necessary to ensure that packet and fragment buffers within a
 stack are large enough for received packets. The maximum amount of
 header decompression allowed by the 6LoWPAN specification is about
 1200 bytes, basically, if an entire MSS IPv6 packet was sent
 containing only compressed headers. Some of the stacks analyzed
 decompress fragments directly into the MSS buffer which will
 eventually contain the entire IPv6 packet, and thus support this
 bound. Other stacks impose significantly lower limits - limits low
 enough that packets could easily be constructed within the 6LoWPAN
 specification that would exceed these limits. For example, Contiki's
 limit of 38 bytes of header decompression is exceeded by any packet
 for which the IP header is maximally compressed (38 bytes) and the
 UDP header is compressed at all. Accordingly, certain stacks would
 send packets with a significant amount of header compression, but
 other stacks would silently drop these packets due to lacking buffer
 space for fragments requiring that much decompression. Furthermore,
 these stacks do not given any indication back to the sender that a
 packet has been dropped for this reason, making it difficult for the
 sending stack to identify how to adjust its transmission to
 successfully deliver data.

2.2.2 Arbitrary Next Header Compression

 Several of the 6LoWPAN stacks also impose limits on the arbitrary

Hudson Ayers Expires December 31, 2018 [Page 6]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 compression/decompression of IPv6 extension headers and next headers
 required by the specification. The headers which must be handled are
 as follows:

 - IPv6 Hop-By-Hop Options Header

 - IPv6 Routing Header

 - IPv6 Fragment Header

 - IPv6 Destination Options Header

 - IPv6 Mobility Header

 - IPv6 Next Header

 - UDP Next Header

 Further, 6LoWPAN implementations are expected to be able to
 decompress at least one of each of these headers, and up to two
 Destination Options headers, in almost any order. Handling all of
 these possible cases can result in complex state machines, convoluted
 code, and increase in code size and RAM use. Therefore, several of
 the stacks examined impose a limit on this arbitrary next header
 decompression - namely, Contiki and Riot. Both of these stacks only
 check for the UDP Next Header. This greatly simplifies the code
 required for decompression of next headers in these stacks as
 compared to the others, which require recursion to handle this
 arbitrary compression. The offshoot of this simplified code, however,
 is that these stacks will drop packets with certain compressed
 extension header configurations when other stacks send such messages.

2.3 No Pairing Interoperates

 These interoperability concerns are more than theoretical: existing
 6LoWPAN stacks generate valid packets that other stacks discard. This
 proves that missing receive functionality is not simply a case of
 limited 6LoWPAN stacks abstaining from handling packets which no
 existing stacks ever generate.

 What follows is a listing of each of the 10 possible combinations of
 6LoWPAN stacks, accompanied by a single example packet which can be
 generated by one of the stacks in the pairing which the other stack
 would not receive.

 Contiki, OpenThread : Contiki generated message using uncompressed
 IPv6

Hudson Ayers Expires December 31, 2018 [Page 7]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 Contiki, Riot: Riot generated message using stateful multicast
 address compression

 Contiki, Mbed: Mbed generated message using compresesd, tunneled IPv6

 Contiki, TinyOS: TinyOS generated message containing compressed IPv6
 extension headers

 OpenThread, Riot: OpenThread generated message containing any of the
 IPv6 extension headers, which the OpenThread stack automatically
 compresses

 OpenThread, Mbed: Mbed generated IPv6 packet containing the IPv6
 mobility header

 OpenThread, TinyOS: OpenThread generated message for which the
 destination address is compressed using stateful multicast
 compression

 Riot, Mbed: Mbed generated IPv6 message containing any compressed
 next header other than the UDP header

 Riot, TinyOS: Riot generated message for which the destination
 address is compressed using stateful multicast compression

 Mbed, TinyOS: Mbed generated Neighbor Discovery message using the
 6LoWPAN context option as specified in RFC 6775.

 This is a non-exhaustive listing, and for most of these pairings
 several message formats exist which could be generated by one that
 would be dropped by the other. Each instance for which a claim is
 made that packets could be easily generated has been verified via
 code analysis.

 In addition to this code analysis, tests were performed to present
 further evidence that several of these packets formats could easily
 be generated via typical use of these 6LoWPAN stacks.

 These tests involved slightly modifying basic example networking apps
 on each stack, such that the existing 6LoWPAN interface could be used
 to send certain packets. These modified examples were flashed onto
 embedded hardware platforms supported by each. The transmitted
 packets were captured using a wireless packet sniffer, and the
 sniffed packets analyzed using Wireshark. This exercise verified that
 these non-interoperable packets could in fact be sent. Further
 description of this hardware generation of select packets can be
 found in [DESIGN].

https://datatracker.ietf.org/doc/html/rfc6775

Hudson Ayers Expires December 31, 2018 [Page 8]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

3 Implementation Concerns

 The 6LoWPAN specification was created with a clear goal---to allow
 for IPv6 connectivity over a link-layer with an order of magnitude
 smaller frame sizes than Ethernet. Unfortunately, fragmented IPv6 on
 its own requires header overhead much greater than typical wireless
 protocols designed for low power devices. As a result, the
 specification places an extreme focus on minimizing protocol overhead
 and, thus, radio utilization.

 The primary problem with 6LoWPAN is that this focus was taken too
 far. This focus has resulted in complex implementations that require
 significant processor resources. In order for devices to
 interoperate, they must be able to parse any valid received 6LoWPAN
 packet that might be sent by others.

 In practice, many 6LoWPAN implementations do not implement the entire
 specification and, therefore, are not interoperable. This is not a
 result of poor software design, but rather intentional choices to
 implement different subsets of the specification that favor limited
 RAM and code size, security concerns, and minimizing engineering
 effort.

 In fact, in some cases even these incomplete 6LoWPAN implementations
 systems are too resource intensive for some devices. As a result,
 several implementations allow the developer to remove portions of the
 6LoWPAN stack during compilation. Even when implementations use
 overlapping portions of the specification, additional
 interoperability conflicts arise from different choices of memory
 bounds for decompression.

3.1 Processor Resources

 Evidence that developers of these 6LoWPAN stacks were concerned about
 6LoWPAN's consumption of processor resources is baked into the design
 of each. One of the primary indicators that each implementation was
 concerned with code size is the prevalence of options to compile
 limited subsets of the 6LoWPAN stack. For example, Contiki defines
 the SICSLOWPAN_CONF_COMPRESSION compilation flag, which can be set to
 force all Contiki packets (sent and received!) to be processed as
 uncompressed IPv6. Riot presents extensive compilation options for
 6LoWPAN, allowing for the exclusion of all IPHC compression, the
 exclusion of context based compression alone, the exclusion of
 fragmentation, the exclusion of ND, and the exclusion of next header
 compression. The Mbed stack allows users to exclude elements of the
 IPv6 stack such as security features, routing specific features,
 link-layer features, and more. Further, Mbed defines macros which can
 be used to save RAM at the expense of flash, or vice-versa. TinyOS by

Hudson Ayers Expires December 31, 2018 [Page 9]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 default removes all code in a stack that is not being used by an
 application, and this can easily be observed by compiling different
 6LoWPAN application binaries.

 Table 2 shows the code size overhead of each of the five
 implementations broken into independent overheads for compression,
 fragmentation, mesh and broadcast headers, as well as totals for
 6LoWPAN and the entire networking stack including physical layer
 drivers, IPv6, UDP, ICMP, etc.

 +----------+--------+---------+-------------+------+----------------+
 | Stack | Code Size Measurements (Bytes) |
 +----------+--------+---------+-------------+------+----------------+
 | | IP-All | 6Lo-All | Compression | Frag | Mesh/Bcast Hdr |
 +----------+--------+---------+-------------+------+----------------+
Contiki	37538	11262	5952	3319	N/A
OT	42262	26375	4146-20000	1310	4500
Riot	30942	7500	>4712	1514	N/A
Arm Mbed	46030	22061	17900	3104	1331
TinyOS	37312	16174	----	----	600
 +----------+--------+---------+-------------+------+----------------+

 Table 2: 6LoWPAN Stack Code Size

 The methodology use to collect these values can be found in [DESIGN].
 These results likely overestimate the overhead of fragmentation and
 underestimate the overhead of certain kinds of compression since some
 of the complexity of compression is born on the fragmentation logic.
 Moreover, for OpenThread and Arm Mbed, which required manual
 examination of binaries, the results almost certainly underestimate
 the overhead of all 6LoWPAN components since we only counted
 procedures which unambiguously implemented particular functionality,
 though some of the complexity is implemented in other portions of the
 stack. In summary:

 - 6LoWPAN stack developers were concerned with processor resource
 requirements of the protocol.

 - Fragmentation, the only portion of 6LoWPAN that's strictly
 necessary for sending IPv6 packets, consumes significantly less
 ROM than compression.

 - Implementations with more complete adherence to compression
 specification consume more code for compression

 - Mesh and broadcast headers are relatively expensive given that
 few real-world applications use them

Hudson Ayers Expires December 31, 2018 [Page 10]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

5 Contributing Factors

 Several fundamental factors contributed to 6LoWPAN's interoperability
 problems.

 When writing low power networking specifications, an important
 "slider'' exists - the tradeoff between code size and protocol
 efficiency. This tradeoff is similar to the historically significant
 tradeoff between RAM and code size. Techniques such as advanced MAC
 and physical layers, and tracking the state of a network can reduce
 packet sizes and, thus, radio energy consumption. However, these
 techniques typically require larger and more complex
 implementations.

 Even moving beyond the constraints of code size, added complexity
 harms interoperability in the general case, and complex
 implementations are undesirable in the space of low power embedded
 devices. Finally, 6LoWPAN failed to consider the reality that some
 implementations of the protocol may be incomplete, and accordingly
 failed to include any affirmative indications of interoperability
 failures, with interoperability failures instead only being visible
 as silent packet drops. All of these factors contributed to 6LoWPAN's
 interoperability problems, and inspire the guidelines that follow.

6 Design Guidelines

 This section describes four protocol design guidelines which, if
 followed, lead to low-power protocols that are more likely to have
 interoperable implementations. In the next section, these are
 further explained by showing how each can be applied to 6LoWPAN.

6.1 Guideline 1: Capability Spectrum

 A low power protocol should be implementable on devices which are at
 the low end of code and RAM resources. Rather than require every
 device pay the potential energy costs of fewer optimizations, a
 protocol should support a spectrum of device capabilities. This
 spectrum defines a clear ordering via which especially resource
 constrained devices can reduce code size or RAM use by eliding
 features. Such a spectrum makes a protocol usable by extremely low
 resource devices without forcing more resourceful devices to
 communicate inefficiently.

 This capability spectrum should be a linear scale. For a device to
 support capability level N, it must also support all lower capability
 levels. More complex configuration approaches (e.g., a set of
 independent options) would allow for a particular application or
 implementation to be more efficient, picking the features that give

Hudson Ayers Expires December 31, 2018 [Page 11]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 the most benefit at the least complexity cost. However, this sort of
 optimization then makes interoperability more difficult, as two
 devices must negotiate which features to use.

6.1.1 Guideline 1 Application to 6LoWPAN

 Application of this guideline would require replacing the large
 collection of "MUST'' requirements - those "features'' in Table 1 -
 into 6 levels of functionality. These levels prioritize features that
 provide the best packet size savings given the resulting
 implementation complexity. For example, the greatest savings results
 from compressing 128-bit IPv6 addresses.

 0. Uncompressed IPv6

 0a. Uncompressed IPv6

 0b. 6LoWPAN Fragmentation and the Fragment Header

 0c.1280 Byte Packets

 1. IPv6 Compression Basics + Stateless Address Compression

 1a. Support for the Dispatch_IPHC Header Prefix

 1b. Correctly handle elision of IPv6 length and version

 1c. Stateless compression of unicast addresses

 1d. Stateless compression of multicast addresses

 1e. Compression even when 16 bit addresses are used at the link
 layer

 1f. IPv6 address autoconfiguration

 2. Stateful IPv6 Address Compression

 2a. Stateful compression of unicast addresses

 2b. Stateful compression of multicast addresses

 3. IPv6 Traffic Class and Flow Label Compression

 3a. Traffic Class compression 3b. Flow Label Compression 3c. Hop
 Limit Compression

 4. IPv6 and UDP NH Compression + UDP Port Compression

Hudson Ayers Expires December 31, 2018 [Page 12]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 4a. Handle Tunneled IPv6 correctly

 4b. Handle the compression of the UDP Next Header

 4c. Correctly handle elision of the UDP length field

 4d. Correctly handle the compression of UDP ports

 4e. Correctly handle messages for which headers go on
 longer than the first fragment, and the headers in the first
 fragment are compressed.

 5. Entire Specification

 5a. Support the broadcast header and the mesh header as
 described in RFC 4944

 5b Support compression of all IPv6 Extension headers

 The classes in this scale do not precisely reflect the current
 feature support of the implementations described above. For example,
 Contiki supports UDP port compression (level 5) but does not support
 802.15.4 short addresses (level 2) or tunneled IPv6 (level 5):
 following this formulation, Contiki only provides level 1 support. If
 Contiki supported 16-bit addresses, it would provide level 4 support.

 The specific spectrum presented here is based off of measurements of
 code size, the saved bits that each additional level of compression
 allows for, and observations of existing 6LoWPAN implementations.

6.2 Guideline 2: Capability Discovery

 The second guideline immediately follows from the first: if two
 implementations may have different capability levels, there should be
 an explicit mechanism by which two devices can efficiently discover
 what level to use when they communicate

 If two devices wish to communicate, they default to the lower of
 their supported capability levels. For example, suppose a TinyOS
 device supports level 2 and a Contiki device supports level 4;
 Contiki must operate at level 2 when communicating with the TinyOS
 device. This requires keeping only a few bits of state for any device
 to communicate with. Also, note that this state is per-hop; for a
 layer 3 protocol like IP, it is stored for link-layer neighbors (not
 IP endpoints) and so does not require knowledge of the whole network.

6.2.1 Guideline 2 Application to 6LoWPAN

https://datatracker.ietf.org/doc/html/rfc4944

Hudson Ayers Expires December 31, 2018 [Page 13]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 6lowpan could implement capability discovery using two mechanisms:
 neighbor discovery (ND) and ICMP. Neighbor discovery allows devices
 to probe and determine capability levels, while ICMP allows devices
 to determine when incompatible features are used, or when ND is not
 available.

 Neighbor discovery: 6LoWPAN ND should add an option that allows a
 device to communicate its capability class during association with a
 network. The inclusion of a few extra bits in ND messages would allow
 all devices that learn neighbor addresses via ND to also know how to
 send packets which that neighbor can receive. This option minimizes
 the energy cost of communicating capabilities. It is worth noting
 that [RFC7400] already employs a similar method for communicating
 whether devices implement General Header Compression: adding such an
 option is clearly viable.

 ICMP: All IPv6 devices are already required to support ICMP. A new
 ICMPv6 message type - 6LoWPAN Class Unsupported - should be added,
 which could be sent in response to messages received encoded using a
 6LoWPAN class higher than the class of the receiving host. This
 would allow for communication of capabilities even in networks not
 constructed using IPv6 ND. This ICMPv6 message would allow hosts to
 indicate exactly what class the receiving host does support,
 preventing any need for repeated retransmissions using different
 compression or fragmentation formats.

6.3 Guideline 3: Provide Reasonable Bounds

 Specifications should impose reasonable bounds on recursive or
 variable features so implementations can bound RAM use. These bounds
 have two benefits. First, it allows implementations to safely limit
 their RAM use without silent interoperability failures. E.g., today,
 if an mbed device sends a 6lowpan packet whose compression is greater
 than 38 bytes to a Contiki device, Contiki will silently drop the
 packet. Second, it ensures that capability discovery is sufficient to
 interoperate.

 The original designers of a specification may not know exactly what
 these values should be. This is not a new problem: TCP congestion
 control, for example, had to specify initial congestion window
 values. The bounds should initially be very conservative. Over time,
 if increasing resources or knowledge suggests they should grow, then
 future devices will have the onus of using fewer resources to
 interoperate with earlier ones.

6.3.1 Guideline 3 Application to 6LoWPAN

Section 2 discussed two unreasonable bounds which affect 6LoWPAN

https://datatracker.ietf.org/doc/html/rfc7400

Hudson Ayers Expires December 31, 2018 [Page 14]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 interoperability. The first is the 1280 byte bound on maximum header
 decompression (the amount a header will grow when decompressed). A
 bound allows implementations to conserve RAM. As a result, some
 implementations impose their own lower bounds, but these bounds do
 not agree so some stacks cannot decompress some packets sent by other
 stacks. The lack of a bound on arbitrary next header compression was
 demonstrated as adding significant complexity to implementations to
 service packets which should rarely be used.

 To address this, maximum header decompression in 6LoWPAN packets
 should be bounded to 50 bytes. This bound allows for significant RAM
 savings in implementations that decompress first fragments into the
 same buffer in which the fragment was originally held prior to any
 copying into a 1280 byte buffer.

 Second, the requirement for compression of interior headers for
 tunneled IPv6 should be removed. Currently, section 4.2 of RFC 6282
 states "When the identified next header is an IPv6 Header...The
 following bytes MUST be encoded using LOWPAN_IPHC''. This is
 problematic because it places no bound on how many tunneled IPv6
 headers may need to be compressed or decompressed, creating locations
 in code that require unbounded amounts of recursion. Implementations
 should adjust their path MTU constraints and responses to support
 inserting source routing headers, rather than tunnel IPv6.

 This change would limit the complexity of arbitrary next header
 compression slightly. In addition, an ordering should be imposed on
 the order of IPv6 extension options if they are to be compressed.
 This would allow for implementations to avoid recursive functions to
 decompress these headers, and instead use simple if/else statements.
 If for some reason IPv6 extension headers must be placed in a
 different order for a particular packet, those options must be sent
 uncompressed.

6.4 Guideline 4: Don't Break Layering

 Designers should ensure that interoperability is a central priority
 for specifications throughout the design process, and that
 interoperability is not simply assumed from the fact that devices
 will be communicating via a shared protocol. In particular,
 specifications should be careful that considerations introduced to
 save energy in certain scenarios should not make assumptions about
 the rest of the stack. Layering is a foundational network design
 principle. As the difficulty NATs introduced to Internet connectivity
 in the early 2000s demonstrated, breaking layering can introduce
 unforeseen and extremely difficult to fix interoperability problems.

 The appeal of cross-layer optimization in embedded systems is even

https://datatracker.ietf.org/doc/html/rfc6282#section-4.2

Hudson Ayers Expires December 31, 2018 [Page 15]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 stronger than in traditional computers. Designed for a specific
 application, a developer can understand and know exactly how the
 entire system works, from hardware to application code. However,
 while this whole-system knowledge makes sense for a particular device
 or iteration of an application, long-lived systems will evolve and
 change. This is especially true if the device will need to
 interoperate with new gateways or application devices. Furthermore,
 as embedded systems have grown more complex, their software has begun
 to resemble more traditional systems. Rather than write software from
 scratch every time, systems use and draw on existing operating
 systems as well as libraries. By breaking layering, cross-layer
 optimizations require that developers own and customize the entire
 software stack.

6.4.1 Guideline 4 Application to 6LoWPAN

 UDP checksum compression, as defined in section 4.3.2 of RFC 6282,
 should be removed from the 6LoWPAN specification. The RFC says that a
 higher layer may request the checksum be elided if it has an
 integrity mechanism that covers the UDP header. At first glance, this
 seems sufficient: if the UDP header is covered by a message integrity
 code (MIC) or other checksum, then corrupted packets will be
 correctly dropped.

 However, it misses an important error case: if the UDP ports are
 corrupted, then a packet missing a checksum may be delivered to the
 wrong application, and this incorrect application may not impose a
 replacement integrity measure or know one exists. It therefore cannot
 verify the MIC. Furthermore, protecting the header with a link-layer
 MIC is insufficient, as it only protects packets against sub-link
 corruption.

 The end-to-end principle [E2E], foundational to all modern network
 design, says that only endpoints can verify correct communication.
 The only place that can safely verify the UDP header is the UDP
 stack. It is worth noting that the seminal example that led to
 definition of the end-to-end principle was a memory corruption:
 packets held in memory to be sent were corrupted before being sent.
 The recommended workarounds in RFC 6282 are vulnerable to such an
 event. A packet sent by an application that elides the UDP checksum
 could be corrupted in memory before the link-layer MIC is computed.
 Such a packet would be successfully received by the destination and
 dispatched to the wrong application, which would not check the
 application-level MIC.

 The payoff of UDP checksum compression is not even significant - 2
 bytes of checksum is a small portion of a 127 byte frame. The
 problematic nature of UDP checksum compression is further

https://datatracker.ietf.org/doc/html/rfc6282#section-4.3.2
https://datatracker.ietf.org/doc/html/rfc6282

Hudson Ayers Expires December 31, 2018 [Page 16]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 demonstrated by the fact that only one of the five stacks analyzed in
 this document implements the feature.

Hudson Ayers Expires December 31, 2018 [Page 17]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

7 Security Considerations

 This informational document does have some implications for security
 if followed.

 First, capability advertisements of the type recommended in this
 document are liable to leak some information regarding the type of
 device sending those advertisements. In any situation for which this
 information is priveleged, such advertisements must be suppressed.

 Second, implementations should be careful not to take for granted
 that the suggestions in this document will be implemented by all
 other transmitting devices. Accordingly, though this document
 recommends reasonable bounds, receivers still must be careful to
 prevent buffer overflows in the event these bounds are not followed.

 Finally, it is worth noting that breaking layering has clear security
 implications, and that the recommendation in this document to avoid
 this practice should be expected to improve security by allowing the
 security protocols in place at individual layers to work as intended.

8 IANA Considerations

 This is an informational document, and accordingly does not formally
 request any IANA changes. However, it is worth noting that the
 example application of the guidelines to 6LoWPAN would require some
 changes by IANA, if actually implemented.

 Namely, IANA would be requested to update some of the "6LoWPAN
 Capability Bits" under the "Internet Control Message Protocol Version
 6 (ICMPv6) Parameters" registry such that some of the unassigned bits
 could be repurposed for capability advertisements as described in
 this document.

 Additionally, IANA would be requested to update the "IPv6 Neighbor
 Discovery Option Formats" registry to include a new ND option format
 for capability advertisements [RFC4861].

9 References

9.1 Normative References

 [RFC4919] Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs):
 Overview, Assumptions, Problem Statement, and Goals", RFC

https://datatracker.ietf.org/doc/html/rfc4861

Hudson Ayers Expires December 31, 2018 [Page 18]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 4919, DOI 10.17487/RFC4919, August 2007, <https://www.rfc-
editor.org/info/rfc4919>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007, <http://www.rfc-

editor.org/info/rfc4944>.

 [RFC6282] Hui, J. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 September 2011, <http://www.rfc-editor.org/info/rfc6282>.

 [RFC6775] Shelby, Z., Chakrabarti, S., Nordmark, E., and C. Bormann,
 "Neighbor Discovery Optimization for IPv6 over Low-Power
 Wireless Personal Area Networks (6LoWPANs)", RFC 6775,
 November 2012, <http://www.rfc-editor.org/info/rfc6775>.

9.2 Informative References

 [DESIGN] Ayers, H. et al., "Design Considerations for Low Power
 Internet Protocols", Arxiv, June 2018.

 [TINYOS] TinyOS Alliance, "TinyOS", 2018,
 <https://github.com/tinyos/tinyos-main>.

 [ARM] ARM Mbed, "ARM Mbed OS", 2018,
 <https://github.com/ARMmbed/mbed-os>.

 [RIOT] FU Berlin, "Riot OS", 2018, <https://github.com/RIOT-
OS/RIOT>.

 [CONTIKI] Dunkels, A., "Contiki OS", 2018,
 <https://github.com/contiki-os/contiki>.

 [OPENTHREAD] Nest, "OpenThread", 2018,
 <https://github.com/openthread/openthread>.

 [TOCK] Levy, A., Campbell, B., Pannuto, P., Dutta, P., Levis, P.,
 "The Case for Writing a Kernel in Rust", APSys, 2017,
 <https://doi.org/10.1145/3124680.3124717>.

 [6LO-CHART] Lemon, T., "IPv6 over Low power WPAN WG Charter", IETF,
 2005, <https://datatracker.ietf.org/doc/charter-ietf-

6lowpan/>.

 [E2E] Saltzer, J. H., Reed, D. P., Clark, D. D., "End-to-end
 Arguments in System Design", ACM Trans. Comput. Syst.,
 November 1984.

https://www.rfc-editor.org/info/rfc4919
https://www.rfc-editor.org/info/rfc4919
https://datatracker.ietf.org/doc/html/rfc4944
http://www.rfc-editor.org/info/rfc4944
http://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282
http://www.rfc-editor.org/info/rfc6282
https://datatracker.ietf.org/doc/html/rfc6775
http://www.rfc-editor.org/info/rfc6775
https://github.com/tinyos/tinyos-main
https://github.com/ARMmbed/mbed-os
https://github.com/RIOT-OS/RIOT
https://github.com/RIOT-OS/RIOT
https://github.com/contiki-os/contiki
https://github.com/openthread/openthread
https://doi.org/10.1145/3124680.3124717
https://datatracker.ietf.org/doc/charter-ietf-6lowpan/
https://datatracker.ietf.org/doc/charter-ietf-6lowpan/

Hudson Ayers Expires December 31, 2018 [Page 19]

INTERNET DRAFT 6lo Design Considerations June 29, 2018

 [RFC7400] Bormann, C., "6LoWPAN-GHC: Generic Header Compression for
 IPv6 over Low-Power Wireless Personal Area Networks
 (6LoWPANs)", RFC 7400, DOI 10.17487/RFC7400, November
 2014, <https://www.rfc-editor.org/info/rfc7400>.

Authors' Addresses

 Hudson Ayers
 Stanford University

 EMail: hayers@stanford.edu

 Paul Crews
 Stanford University

 EMail: ptcrews@stanford.edu

 Hubert Hua Kian Teo
 Stanford University

 EMail: hteo@stanford.edu

 Conor McAvity
 Stanford University

 EMail: cmcavity@stanford.edu

 Amit Levy
 Stanford University

 EMail: levya@cs.stanford.edu

 Philip Levis
 Stanford University

 EMail: pal@stanford.edu

https://datatracker.ietf.org/doc/html/rfc7400
https://www.rfc-editor.org/info/rfc7400

Hudson Ayers Expires December 31, 2018 [Page 20]

