
INTERNET-DRAFT Greg Hudson
Expires: March 22, 1999 ghudson@mit.edu
 MIT

 Instant Messaging / Presence Protocol Design Issues
draft-hudson-impp-issues-00.txt

1. Status of this Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Please send comments to the IMPP working group at impp@iastate.edu.

2. Abstract

This document describes design issues in the creation of the instant
messaging and presence protocols in the IMPP working group. The goal
is to objectively present arguments for and against the various
options on each issue.

3. Terminology

The following terms are defined in [Model] and are used with those
definitions in this document:

INSTANT INBOX
INSTANT MESSAGE
PRESENCE INFORMATION
PRESENTITY
SERVER
WATCHER

The following terms are defined in [Reqts] and are used with those
definitions in this document:

DOMAIN

https://datatracker.ietf.org/doc/html/draft-hudson-impp-issues-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

IDENTIFIER

4. Form of IDENTIFIERS

An IDENTIFIER uniquely determines a PRESENTITY or INSTANT INBOX and is
intended for humans. It may never appear in its human-readable form
in the wire protocols or in the message format, but it is nevertheless
important that the protocols define what an IDENTIFIER is and means;
it would not do to have different clients using different text strings
as IDENTIFIERS.

The most obvious conception of an IDENTIFIER is a string containing
two parts: a DNS domain part, which identifies the messaging or
presence provider, and the username part, which gives the local name
assigned to a PRESENTITY or INSTANT INBOX by the provider. There are,
of course, other ways to identify a person than through their
provider's DNS domain, but since there exists no Internet directory
service with the reach of the DNS, choosing some other method would
present an undesirable barrier to entry for users.

All that remains is how to represent these two components in a string.
There are two obvious precedents to follow: email addresses and World
Wide Web URLs. The email address form would be "username@domain",
whereas the obvious URL form would be either "impp://domain/username",
or "im://domain/username" for messaging and
"presence://domain/username" for presence information. Naturally,
choosing the email address form would not preclude the existence of a
secondary URL form; along the lines of the "mailto" URL, we would
expect to see at least "imto:username@domain" and possibly
"presence:username@domain".

Two obvious advantages of the email address format are conciseness and
the possibility of having a single contact address for email,
messaging, and presence information. The obvious advantage of the URL
format is that it makes the protocol explicit, and it also yields the
possibility of having similar though not identical addresses for one's
home page and for messaging and presence information.

5. Server Selection

Once a DNS domain is known for a PRESENTITY or INSTANT INBOX, there
must be some process for determining what servers to contact for
messaging or presence.

On the very simple end of the spectrum, we can do a simple A record
lookup. This is how HTTP works, which is why the domain part of most
URLs looks like "www.zone" instead of just "zone" (where "zone" is the
actual administrative demarcation). In addition to resulting in
longer domains, this scheme makes it difficult for multiple servers to
handle the messaging and presence load for a domain. On the other
hand, a simple hostname lookup is much easier in most current

programming environments than lookups of other kinds of DNS records.

A SRV record lookup, as defined in [SRV], solves both of the above
problems, providing both a level of indirection and a mechanism for
selecting from a set of servers by priority and weight. If a SRV
record does not exist for the domain, falling back to an A record
lookup would lower the barriers to adoption by people who don't
control their machines' DNS information or whose DNS servers do not
support SRV.

6. Basic Transport

Whatever protocols become standardized will be implemented on some
transport layer, whether it is one of the core Internet protocols such
as TCP or UDP, or a higher-level protocol such as HTTP, SMTP, or LDAP.
The messaging and presence protocols may use different transports, and
it may be possible to implement either protocol on multiple
transports, but the design of the protocols will depend in large part
on the preferred transport layers.

UDP bears the advantage of being lightweight for certain operations.
Especially on Unix, where in-kernel state is required for TCP
connections, a UDP-based protocol might increase the amount of load a
messaging server can handle. However, there are a number of
arguments against UDP:

 * Over the wide-area Internet, it is important that
 communications between two end-points behave politely, which
 requires keeping connection state.

 * A simplistic UDP protocol can actually increase the number
 of packets transmitted over the wire, by not allowing
 multiple operations to be sent in a single packet.

 * A UDP protocol lends itself to a "routing" type of protocol
 where the server keeps very little state about the client.
 But modern point-to-point security mechanisms may require
 several packet exchanges at the beginning of a session and
 require at least some state to be kept about the client
 during the session.

 * The UDP-based protocol could not be used for large messages
 without reimplementing the TCP logic for window sizes and
 message fragmentation.

 * UDP-based protocols do not cooperate as well with firewalls
 as TCP-based protocols do (assuming the TCP protocol uses
 only client-initiated connections).

Assuming UDP is rejected, TCP becomes the natural substrate for a new
protocol. The "politeness" argument against a UDP protocol also
applies to a TCP protocol with many short-lived connections, so it is

important that the protocol allow multiple operations to take place
within a single connection.

But it is also possible to use a higher-level protocol for transport.
The arguments for using a higher-level protocol are found in the
features present in that protocol which would apply to instant
messaging or presence information. The main argument against using a
higher-level protocol is complexity; a new, tailored protocol using
only TCP will generally be simpler than a layered protocol, when
viewed as a whole.

Note that using a higher-level transport protocol does not imply using
its port number.

One common proposal is to use [RFC 821] (SMTP) as the transport layer
for instant messaging. As a messaging protocol, SMTP is at least
superficially a good fit, meaning it wouldn't impose much complexity
beyond what is actually necessary to support messaging. Here are
arguments against using SMTP:

 * SMTP's wide deployment cannot be considered as an argument
 in its favor. Existing implementations of SMTP center
 around the assumption that incoming messages should be
 written synchronously to disk and delivered to their
 destination at leisure, which is not appropriate for instant
 messaging.

 * As a simple protocol, SMTP doesn't actually lend much
 machinery to the problem. Reimplementing the machinery
 provided by SMTP would not require a great deal of work or
 involve a large number of pitfalls.

 * SMTP has an arbitrary limit on line length, and it cannot
 transmit messages which do not end in a newline. Thus, some
 messages must be encoded purely because of protocol
 limitations.

 * As originally specified, SMTP operates in lock-step with
 many round trips per message, and can only be used for 7-bit
 ASCII messages. The use of the [RFC 2197] (PIPELINING) and
 [RFC 1652] (8BITMIME) service extensions remedy these
 limitations, but a new protocol would not force implementors
 to understand these bits of history.

Another proposal is to use [RFC 2251] (LDAP) as the transport layer
for presence information. As a directory protocol, LDAP would seem to
be a good fit for presence information. Here are arguments against
using LDAP:

 * As originally specified, LDAP only allows a client to fetch
 directory information, not subscribe to changes in it.

https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc2197
https://datatracker.ietf.org/doc/html/rfc1652
https://datatracker.ietf.org/doc/html/rfc2251

 Since most of the interesting part of presence lookup is in
 subscribing, not fetching, that is a serious defect. A
 proposed "persistent search" extension to LDAP (in an
 expired draft) could be applied to presence subscriptions,
 but as a much more general tool, it might be difficult to
 implement efficiently and might complicate the retrieval of
 watcher information.

 * As an ASN.1-based protocol, LDAP is not as simple as a new
 protocol could be.

Another proposal is to use [RFC 2518] (WebDAV) as the transport layer
for presence information. WebDAV is a set of HTTP extensions for
distributed authoring. With presence attributes treated as HTTP
documents, WebDAV would provide the machinery for getting, setting, or
listing presence attributes. It would still be necessary to design
extensions for subscription and notification of presence information
and to set access controls. The argument against WebDAV comes from
its complexity: the vast majority of the machinery of HTTP and the
WebDAV extensions is inapplicable to presence information. Moreover,
the parts of the presence protocol WebDAV handles are probably the
least complicated parts.

7. Protocol Command Encoding

Depending on the choice of transport protocol, it may be necessary to
choose how to encode protocol commands as bytes. There are many
desirable properties for encodings for protocol commands, many of
which contradict each other:

 * Simplicity (ease of implementation)
 * Compactness
 * Readability (can see the data easily)
 * Self-description (can understand the data easily)
 * Extensibility where it might be required
 * Generality (no arbitrary restrictions on content)

One option is to design our own encoding. Tools such as [RFC 2234]
(ABNF) or bit-packing diagrams (as used in [RFC 791]) can be used to
specify the encoding precisely. This option gives us the most
flexibility to make tradeoffs different ways in different places.
Arguments against designing our own encoding are:

 * It is more work for us. (Although probably not more work
 than arguing about what kind of encoding is best.)

 * It is more work for the implementor if the implementor would
 have otherwise been able to use a general tool to handle the
 encoding part of the protocol. (It might be less work if
 the implementor would have otherwise had to implement some
 complicated general encoding specification, however.)

https://datatracker.ietf.org/doc/html/rfc2518
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc791

 * It carries more pitfalls--we could accidentally introduce
 cases where the same encoding could correspond to two pieces
 of data, or cases where certain kinds of data cannot be
 encoded.

Two likely proposals are [XML] or [Binary XML]. An XML encoding would
be readable and self-describing, but it has some drawbacks:

 * The full range of XML is a fairly complicated piece of
 machinery and is not trivial to decode.

 * Although we can choose to ignore or disallow some of XML's
 features such as attributes and processor instructions, an
 implementor who chooses to use an existing XML library will
 generally be confronted with those features in the process
 of learning how to use the library.

 * If we choose to disallow some of the more complicated
 features of XML to make it easier to write a custom decoder,
 designers of future extensions may be fooled into believing
 that the full range of XML is fair game.

 * In text form, XML is gratuitously verbose; an element
 terminator does not need to include the name of the element
 for readability either by humans or machines. This oddity
 is due to XML's heritage in SGML, which allowed overlapping
 elements.

Binary XML is a more rigid format and would be somewhat easier to
implement for someone lacking an appropriate XML library, but the
encoding would not be readable or self-describing.

Another proposal is [SPADE]. A SPADE protocol would be readable,
simple, and general, but not self-describing. Although it would not
be a binary encoding per se, it would be fairly close to a binary
encoding in spirit.

Another proposal is [ACP]. An ACP-based protocol would be readable,
fairly simple, general, and self-describing. It would be similar in
spirit to [RFC 2060] (IMAP), which is a text protocol.

8. Presence Information Format

We will need to choose a model and encoding for presence information.

One approach is to take a very minimal and restrictive attitude
towards presence information, mandating that it consists only of a
fixed set of simple fields, preferrably containing only information
which varies frequently. This approach has a certain appeal and would
make it easy to design a custom encoding for presence information, but
it might leave too many potential adopters unsatisified.

https://datatracker.ietf.org/doc/html/rfc2060

If the minimal approach is not taken, presence information will tend
to grow complicated and highly structured over time. The encoding of
presence information will have to take this need for structure into
account, so simple formats like a series of name-value pairs would be
inadequate. Writing a decoder for a format which can handle arbitrary
structured information starts to approach being a non-trivial problem,
so it makes sense to put more weight on comforming to a format which
has existing implementations.

Probably the most widely accepted such format is [XML]. The same
arguments which apply against XML for protocol commands also apply
against it here, of course. One new argument in favor of XML in this
realm is the applicability of [XML-namespace] to the problem of
multiple parties definining new presence fields. A piece of presence
information using heavily-constrained XML and namespaces might look
like:

 <?xml version="1.0"?>
 <pi:presence xmlns:pi='http://www.ietf.org/impp/schema'>
 <pi:status>online</pi:status>
 <pi:textloc>In my office</pi:textloc>
 <pi:phone><pi:type>work</pi:work>(333) 333-3333</pi:phone>
 </pi:presence>

Note that the URL "http://www.ietf.org/impp/schema" is merely a name;
[XML-namespace] does not require or ensure that there is a document
available at that URL describing the schema in any way. All of the
field names are examples only.

Another possible format is the structure format used by [ACP]. This
format is less verbose and would be less likely fool people into
designing extensions using attributes and processor instructions, but
is also less widely accepted and implemented. A piece of presence
information using this format might look something like:

 ((STATUS "online")
 (TEXTLOC "In my office")
 (PHONE "(333) 333-3333" (TYPE "work")))

The field name examples are given in uppercase merely to offset them
from the content. Note that ACP does not specify a way of associating
values with names, just formats for atoms, strings, numbers, and
parenthesized lists. Specifying how to create nested name-value pairs
from those units would be a task for us, albeit a simple one. There
is no namespace extension specified for use with ACP, although of
course nothing would prevent us from adapting the ideas of
[XML-namespace] to an ACP-based presence structure.

Another possible format is the Kerberos profile format, which is based
on Windows INI files. A piece of presence information using this

format might look like:

 [presence]
 status = online
 textloc = In my office
 phone = {
 type = work
 number = (333) 333-3333
 }

Note one subtle limitation of this format: a variable such as "phone"
cannot have a text value in addition to sub-variables, so an existing
variable such as "textloc" cannot be annotated with sub-variables.

Independent of the encoding, there is a question of whether we model
presence information as a single document or as a collection of
records which can be subscribed to individually. The finer-grain
approach could result in both smaller notifications and fewer of them
when only one component of presence information changse; the
monolithic approach results in a simpler protocol. It is worth
considering whether the bandwidth which will be used by presence
notifications will be significant enough to warrant optimizations of
this sort.

9. Instant Message Format

We will need to choose a format for instant messages. The most
obvious option is to adopt [RFC 2045-2049] (MIME). As a message
specification, MIME is a perfect fit for the problem at hand and
provides a lot of machinery which would be difficult to recreate. The
drawbacks of MIME come from its history in [RFC 822]; that is, MIME is
somewhat more complicated than it could have been if it had no
existing practice to be backward compatible with.

Since we have no existing practice to be compatible with and
potentially no SMTP restrictions to be concerned about, we could also
attempt to modify MIME, perhaps reusing the header specifications but
encoding the headers or message body in a different way. This option
might yield a message format which can be more easily implemented from
scratch, or it might lead to a lot of confusion.

10. Security

So far there have been no concrete proposals for security, except for
one sample implementation which uses OpenPGP. The problem breaks down
into several parts:

 * When a WATCHER requests PRESENCE INFORMATION, how can it
 verify that it is receiving correct data from the authorized
 SERVER and not something tampered with by a third party?

 * When a WATCHER requests PRESENCE INFORMATION, how does it

https://datatracker.ietf.org/doc/html/rfc822

 authenticate to the SERVER? Likewise, when a PRESENTITY
 requests a change in its PRESENCE INFORMATION, how does it
 authenticate to the SERVER?

 * How are INSTANT MESSAGES authenticated and encrypted?

Potential security proposals for each part could fall into one of
three categories:

 * Users authenticate and encrypt directly with other users
 ("end to end").

 * Users authenticate and encrypt only with their local
 DOMAINS, and DOMAINS authenticate and encrypt to each other
 ("domain-based").

 * Users authenticate and encrypt with local and foreign
 DOMAINS ("hybrid").

In the domain-based case, each part of the security problem breaks
down into two sub-parts (user authenticating with local DOMAIN,
DOMAINS authenticating with each other).

A domain-based security system has the advantage that local sites can
take advantage of any existing security infrastructure they might have
such as Kerberos. An end-to-end security system has the advantage
that the compromise of a SERVER might not lead to the immediate
compromise of user communications (although it could lead to the
compromise of newly exchanged keys), and it would allow users to
exchange keys through external channels if they do not wish to trust
one or the other user's DOMAIN. But an end-to-end security system
does not allow sites to reuse existing security infrastructure, and
requires users to keep more state about other users.

A hybrid security system would seem to have all of the disadvantages
listed above and none of the advantages.

Using a domain-based system would not, of course, prohibit users from
also using an end-to-end system such as [RFC 2311, RFC 2312] (S/MIME)
for instant messages.

Regardless of what type of security system is chosen, there are two
essentially unsolveable problems:

 * There is currently no security hierarchy with the reach of
 the Domain Name System.

 * United States export controls prevent the development of a
 secure implementation which can be used outside of the
 United States.

These problems make it likely that many users will not be able to

https://datatracker.ietf.org/doc/html/rfc2312

communicate securely.

[Possibly helpful machinery: DNSSEC, TLS, OpenPGP, SASL,
GSSAPI/SPNEG0]

11. References

[Model]
M. Day, J. Rosenberg, H. Sagano. "A Model for Presence." Work in
progress, draft-ietf-impp-model-03.txt.

[Reqts]
M. Day, S. Aggarwal, G. Mohr, J. Vincent. "Instant Message / Presence
Protocol Requirements." Work in progress,
draft-ietf-impp-reqts-03.txt.

[SRV]
A. Gulbrandsen. "A DNS RR for specifying the location of services
(DNS SRV)." Work in progress, draft-ietf-dnsind-rfc2052bis-02.txt.

[SPADE]
G. Hudson. "Simple Protocol Application Data Encoding." Work in
progress, draft-hudson-spade-03.txt.

[ACP]
R. Earthart. "Application Core Protocol." Work in progress,
draft-earthart-acp-spec-00.txt.

[XML]
T. Bray, J. Paoli, C. M. Sperberg-McQueen. "Extensible Markup
Language (XML) 1.0." W3C Recommendation REC-xml-19980210, February
1998.

[Binary XML]
"WAP Binary XML Content Format".
http://www1.wapforum.org/what/technical/SPEC-WBXML-19990616.pdf

[XML-namespace]
T. Bray, D. Hollander, A. Layman. "Namespaces in XML." W3C
Recommendation REC-names-19990114, January 1999.

[RFC 791]
J. Postel. "Internet Protocol." RFC 791, September 1981.

[RFC 821]
J. Postel. "Simple Mail Transfer Protocol." RFC 821, August 1982.

[RFC 822]
D. Crocker. "Standard for the format of ARPA Internet text message."
RFC 822, August 1982.

[RFC 1652]

https://datatracker.ietf.org/doc/html/draft-ietf-impp-model-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-impp-reqts-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dnsind-rfc2052bis-02.txt
https://datatracker.ietf.org/doc/html/draft-hudson-spade-03.txt
https://datatracker.ietf.org/doc/html/draft-earthart-acp-spec-00.txt
http://www1.wapforum.org/what/technical/SPEC-WBXML-19990616.pdf
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc822

J. Klensin, N. Freed, M. Rose, E. Stefferud, D. Crocker. "SMTP
Service Extension for 8bit-MIMEtransport." RFC 1652, July 1994.

[RFC 2045-2049]
N. Freed, N. Borenstein. "Multipurpose Internet Mail Extensions
(MIME)." RFC 2045-2049, November 1996.

[RFC 2060]
M. Crispin. "Internet Message Access Protocol - Version 4rev1." RFC
2060, December 1996.

[RFC 2197]
N. Freed. "SMTP Service Extension for Command Pipelining." RFC 2197,
September 1997.

[RFC 2234]
D. Crocker, Ed., P. Overell. "Augmented BNF for Syntax
Specifications: ABNF." RFC 2234, November 1997.

[RFC 2251]
M. Wahl, T. Howes, S. Kille. "Lightweight Directory Access Protocol
(v3)." RFC 2251, December 1997.

[RFC 2311]
S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, L. Repka. "S/MIME
Version 2 Message Specification." RFC 2311, March 1998.

[RFC 2312]
S. Dusse, P. Hoffman, B. Ramsdell, J. Weinstein. "S/MIME Version 2
Certificate Handling." RFC 2312, March 1998.

[RFC 2518]
E. Whitehead, A. Faizi, S. Carter, D. Jensen. "HTTP Extensions for
Distributed Authoring." RFC 2518, February 1999.

https://datatracker.ietf.org/doc/html/rfc1652
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2197
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc2311
https://datatracker.ietf.org/doc/html/rfc2312
https://datatracker.ietf.org/doc/html/rfc2518

