
INTERNET-DRAFT Greg Hudson
Expires: March 1, 2000 ghudson@mit.edu
 MIT

 Simple Protocol Application Data Encoding
draft-hudson-spade-03.txt

1. Status of this Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Please send comments to ghudson@mit.edu.

2. Abstract

This document describes a simple scheme for encoding network protocol
data and a simple notation for describing protocol data elements.
All encodings are self-terminating (you know when you've reached the
end) and assume that the decoder knows what type of protocol element
it is expecting.

3. Encoding

This encoding scheme uses the ASCII translation of characters into
bytes except when otherwise noted. Protocol elements are encoded as
follows:

 A byte: a byte encodes itself. So "a" encodes as "a" and so
 forth.

 An integer: a sequence of decimal digits followed by a colon.
 For instance, the number 27 encodes as "27:". Negative
 integers are preceded by a minus sign, so -27 encodes as
 "-27:". Excess leading zeroes are not allowed, and zero must
 be encoded as "0:" (not as "-0:"). Thus each integer has a
 single encoding.

https://datatracker.ietf.org/doc/html/draft-hudson-spade-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 A symbol: a sequence of letters, numbers, and dashes,
 beginning with a letter, followed by a colon. Case is
 significant. For instance, the symbol "foo" encodes as
 "foo:".

 A list of <type>: an integer giving the number of elements in
 the list, followed by the elements of the list. For instance,
 the list of numbers "1", "2", and "3" encodes as "3:1:2:3:".

 A structure: a collection of dissimilar elements can simply be
 concatenated together. For instance, a structure containing
 the number 3 and the list of bytes "ab" encodes as "3:2:ab".

 A union value: a symbol giving the type of element, an integer
 giving the length of the encoding of the element's data, and
 the data itself. For instance, an element of type "foo" with
 the same data as in the structure example above would be
 encoded as "foo:6:3:2:ab". If there is no data to be encoded,
 a data length of 0 should be given, e.g. "bar:0:".

Of these types, the union value is the most complicated. It should be
used where a protocol needs extensibility, such as for a command set,
and avoided elsewhere if possible.

Following is an ABNF (RFC 2234) for the wire encoding. The grammar is
highly ambiguous, since the encoding assumes that the decoder has
auxiliary type information:

 element = byte / integer / symbol / list / struct
 / union-val
 byte = OCTET
 unsigned = ("0" / PDIGIT *DIGIT) ":"
 integer = unsigned / ("-" PDIGIT *DIGIT ":")
 symbol = ALPHA *(ALPHA / DIGIT / "-") ":"
 list = unsigned *element
 ; unsigned determines the number of elements
 ; all elements must be of same type
 struct = 1*element
 ; number, type, and order depend on type
 union-val = symbol unsigned [element]
 ; unsigned is the length of the element
 ; unsigned is 0 if element is omitted
 PDIGIT = %x31-39
 ; 1-9

4. Notation

This notation gives a scheme for describing protocol element types and
giving them names for the purpose of semantic descriptions.

A variable declaration associates a name to be used in semantic

https://datatracker.ietf.org/doc/html/rfc2234

descriptions with a type. Variable names are valid symbols beginning
with a lowercase letter. Variable declarations end with a line break,
and are written as follows:

A byte: "Byte <name>"
An integer: "Integer <name>"
A symbol: "Symbol <name>"
A list of <type>: "List[<type>] <name>"
A structure named <structurename>: "<structurename> <name>"
A union named <unionname>: "<unionname> <name>"

As a notational short-hand, "String" may be used as a synonym for
"List[Byte]".

Structure and union names are valid symbols beginning with a capital
letter. A structure definition is written as:

 structure <structurename> {
 <variable declaration>
 .
 .
 .
 }

Unions are defined as:

 union <unionname> {
 <symbol>: <variable declaration>
 .
 .
 .
 }

As a special case, if there is no data for a particular union tag,
"Null" can be written in place of a variable declaration.

Here is an example of two structure definitions which might be used to
describe a mail message:

 structure Header {
 String name
 String value
 }

 structure Message {
 List[Header] headers
 String body
 }

Here is an example of a union definition which might be used together
with the above structure definitions to describe a command set:

 union Command {
 send: Message m
 help: Null
 quit: Null
 }

A quit command would be encoded as "quit:0:". If I have a message
with two headers, one with name "From" and value "Greg" and another
with name "To" and value "Bob", and the message body is "Test", then I
would encode a command to send this message as:

 send:29:2:4:From4:Greg2:To3:Bob4:Test

5. Rationale

The primary goal of this encoding scheme is simplicity. Protocol
implementors should not have to read a book to understand how data is
encoded. For want of a simple encoding scheme, IETF protocols have
been turning to ASN.1's basic encoding rules, which are highly
complicated and which have presented a barrier to implementation in
practice.

Two secondary goals of this encoding scheme are human readability and
space efficiency. These goals are of course at odds; integers could
be encoded more compactly by using more than ten values per byte, for
instance, at the expense of making it more difficult to examine ASCII
translations of protocol data.

The tagged union encoding provides easy extensibility in most
protocols. A protocol can find the end of the encoding of a tagged
union element even if it doesn't know the data types for the
individual tags.

This encoding does not include a length field for structures or an
overall length field for lists. Thus, it is impossible to skip to the
end of a structure or list without decoding it. This decision was a
tradeoff; it simplifies encoding and uses space more efficiently in
return for making certain decoding situations more complicated.

6. Comparisons

This section compares SPADE to several previous wire encodings,
including XDR (RFC 1832), CDR (CORBA/IIOP 2.3 section 15.3), ABNF (RFC
2234), ASN.1 (ITU-T X.680-X.691), and XML (W3 REC-XML).

XDR is similar in philosophy to SPADE: data can only be decoded with
auxiliary type information, and simple schemes are used to encode
structures and lists. However, XDR made tradeoffs which make the
encoding more complex and less general than SPADE. Here are the major
differences:

 * XDR uses a fixed-length binary encoding for integers

https://datatracker.ietf.org/doc/html/rfc1832

 (usually 32-bit) and enforces four-byte alignment on the
 encoding of all data types, so that a C implementation on
 most platforms can byte-swap an integer encoding and cast it
 to the appropriate type. As a result, there are two
 different sizes of integers, integers are constrained by any
 XDR-using protocol to a certain range, integer encodings are
 not human-readable in an ASCII protocol trace, and padding
 is required for the encoding and decoding of strings.

 * XDR needlessly distinguishes between "opaque data" (bytes)
 and "strings" (ASCII characters).

 * XDR's "discriminated union" does not provide the length
 field needed to extend the union in later revisions of a
 protocol. As a result, unions have less overhead, but it is
 harder to make a protocol extensible.

 * XDR does not provide symbols; instead, it provides
 enumerations which map symbols to numbers. In most cases,
 such mappings are unnecessary and a debugging hindrance.
 The discriminant of an XDR union must be a number.

 * XDR has more types: it provides floating point numbers,
 fixed-length lists, and optional data, and it distinguishes
 between signed and unsigned integers.

CDR is similar to XDR in all of the respects noted above. It is
slightly more complicated than XDR: it provides a wider variety of
integral types, has different alignment constraints for different
types, and allows integral types to be encoded in either little-endian
or big-endian form (XDR always uses big-endian).

ABNF is not really a wire encoding scheme at all; it is a scheme for
describing syntaxes. It can be used to describe any wire encoding,
but does not in itself nail down how integers, strings, lists,
etc. should be encoded. As a notational device, it is not geared
towards describing data types; the description of a data type would
have to be intrinsically linked to its encoding, which is undesirable,
and ABNF has no notion of counting, so it cannot link the length field
of a list with the number of list elements provided.

ASN.1 is a very large and complicated specification. Even third-party
attempts to describe the ASN.1 basic and distinguished encoding rules
tend to be long and difficult to understand. Some differences between
ASN.1 with the Distinguished Encoding Rules (DER) and SPADE are:

 * The DER provide explicit type information in the encoding.
 As a result, a DER decoder can turn a wire encoding into
 a data structure with no auxiliary type information, but the
 encoding is space-inefficient and the encoding scheme
 becomes much more complex. Someone writing an encoder by

 hand for an ASN.1-using protocol will be constantly adding
 in magic numbers which are always the same.

 * The DER provide an overall length field for lists ("SEQUENCE
 OF"), but not an element count. So a decoder can easily
 skip over a list without parsing the elements, but it cannot
 allocate memory for the list elements until it has decoded
 the list.

 * The DER provide an overall length field for structures
 ("SEQUENCE"), making it easy to skip over structures without
 decoding their contents. The cost is a less space-efficient
 protocol.

 * The DER rely heavily on bit-packing to encode type tags and
 lengths, resulting in a very complex wire encoding which is
 nonetheless not space-efficient.

 * ASN.1 needlessly distingishes between "OCTET STRING",
 "IA5String" (ASCII), "PrintableString" (restricted ASCII),
 and "T61String" (extended ASCII). A wire encoding does not
 need to get into the interpretation of octets as characters.

XML takes a different view of encoding protocol data than SPADE,
ASN.1, or XDR. The only "primitive data type" is character data,
which is arranged into a tree of elements according to a Document Type
Definition (DTD). Protocol data is encoded in a markup language
instead of being packed precisely according to rigid data types. Some
resulting differences between XML and SPADE are:

 * An XML encoding will be much more verbose than a SPADE
 encoding (or even an ASN.1 DER encoding in most cases),
 due to the addition of element names. Of course, this
 makes it easier for a human reader of a protocol dump to
 guess the meaning of each data element.

 * Because XML uses markup rather than advance-length encoding,
 an encoder or decoder has more quoting issues to deal with.
 This and other facets of XML make XML a much more
 complicated specification than SPADE.

 * An XML DTD is generally not understandable to a reader not
 skilled in XML, whereas a SPADE or XDR or ASN.1 data type
 generally is.

 * Hand-coding an encoder or decoder for an XML-using protocol
 is probably a lost cause.

7. Security Considerations

For maximum generality, this encoding scheme places no limits on the
length of any data type. This could lead to denial of service attacks

against implementations of protocols using this encoding ("here
follows a string of length two gazillion"). It does not seem
appropriate to choose limits in the wire encoding to prevent this sort
of attack, so guarding against these attacks will have to be the
responsibility of particular protocols or their implementations.

8. Acknowledgements

Thanks to Elliot Schwartz for suggesting the name.

Thanks to Chris Newman for providing the basis for the ABNF for the
wire encoding, and other useful suggestions.

