
Internet Draft D. Huehnlein (secunet GmbH)
 H. Schupp (GMD GmbH)
expires in six months March 1998

Credential Management for SPKM

 <draft-huehnlein-credman-spkm-00.txt>

STATUS OF THIS MEMO

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To view the entire list of current Internet Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Comments on this document should be sent to "cat-ietf@mit.edu", the
 IETF Common Authentication Technology WG discussion list or to the
 authors "huehnlein@secunet.de" and "schupp@darmstadt.gmd.de".

ABSTRACT

 The GSS-API [GSS-API1,2] offers security services independent of
 underlying mechanisms. A possible GSS-mechanism is the Simple Public
 Key Mechanism [SPKM]. This paper complements [SPKM] by providing
 concrete rules for the Credential Management. Our proposal allows
 beside the standard Credential Management based on X.509v3 [X509v3]
 and PKIX [PKIX] the self certification of temporary public keys,
 which may be used to implement a Secure Single Login variant, which
 works with temporary keys instead of the sensitive long term keys.
 The benefits of this approach are discussed in [SSLogin] more
 detailed. Since DL-based signature- and encryption algorithms are
 very well suited for the efficient generation of the temporary keys
 we propose two new RECOMMENDED algorithms for SPKM.

1 INTRODUCTION

The GSS-API [GSS-API1,2] "offers security services to callers in a

https://datatracker.ietf.org/doc/html/draft-huehnlein-credman-spkm-00.txt

generic fashion, supportable with a range of underlying mechanisms and
technologies and hence allowing source-level portabiltiy of applications
to different environments".

Possible GSS mechanisms are e.g. the well known Kerberos V5
[KERBEROS-V5] based on symmetric cryptography or the Simple Public Key
Mechanism [SPKM].

During context establishment the communication partners verify the
peer's identity and authorization and agree on a common session key,
which may be used for confidentiality and integrity purposes during the
actual communication. To proof the identity one has to acquire
credentials. In Kerberos these credentials are so called tickets with
LIMITED LIFETIME.

In public-key based mechanisms like SPKM the credentials are the secret
keys and certificates for the public keys. The secret keys are stored in
a personal security environment (PSE), which is 'opened', i.e. made
accessible, by entering a password. In practice the PSE usually is a
smartcard or a PKCS#5 encrypted file. These credentials have to be
available whenever a new GSS-connection is requested, i.e. a GSS-context
is to be established (which can be quite often, since a client usually
requests multiple GSS-connections to different servers at different
times).

This means, that either the PSE has to be open for a long time or the
user has to enter the password everytime a new connection is set up. If
this is no problem, this is the most obvious way to provide access to
the secret keys and, while not specified in SPKM, X.509 v3 / PKIX
certification for the related public keys.

However if keeping the PSE open for a long time bears security problems
or multiple entering of the password is not possible for usability
reasons the proposed SSLogin variant, as discussed in [SSLogin], is
preferable. To implement this SSLogin we need to specify a slightly
different credential management, which allows the end user to CERTIFY
ITS OWN TEMPORARY KEYS.

To keep the generation of the temporary keys efficient, we propose to
use Discrete Logarithm based algorithms for the context establishment
rather than RSA. Therefore we will propose two new RECOMMENDED
algorithms for SPKM in section 3. For convenience we will include the
comparison between the different variants in the appendix. For details
we refer to [SSLogin].

2. CREDENTIAL MANAGEMENT FOR SPKM

In this section we will specify the credential management for SPKM. In
[SPKM] there is not very much said about this problem.

 "The key management employed in SPKM is intended to be as compatible

 as possible with both X.509 and PEM, since these represent large
 communities of interest and show relative maturity in standards."

2.1 STARTING POINT - X.509 v3 / PKIX

Before we treat the new credential management in detail, we will point
out why X.509 v3 / PKIX certification only "almost" fit our needs.

The 'Basic Constraints' extension is specified by X.509 v3 and required
by PKIX. It allows to distinguish between an end user- and a
CA-certificate. It contains a boolean flag 'cA' which determines (when
FALSE), that the certificate belongs to an end user. Since this
extension is recommended to be critical an end user cannot act as a CA
without notice. If an end user signs a certificate it will not be
valid.

Another extension is 'Key Usage', which allows to restrict the usage of
the key contained in the certificate and is recommended to be
critical. The information is provided by a combination of distinguished
bits, each standing for a special purpose. The most interesting bits for
us are digitalSignature(0), nonRepudiation(1), keyCertSign(5), and
cRLSign(6). As one can see, the signing of certificates is not covered
by the simple 'digitalSignature' bit, but requires the 'keyCertSign'
bit, which is only set for CA-certificates.

Up to here it seems to be impossible to reach our goal of
self-certification of temporary keys, if there were not the 'Extended
Key Usage' extension.
This extension field was not present in the X.509 recommendations
[DAM-X.509] and the PKIX profile [PKIX] until recently.
Experiences in deploying the base standard showed, that there are
situations, in which it is necessary to specify the key usage somewhat
more concrete.

We will use this extension (together with a somewhat relaxed evaluation
of the Basic Constraints and KeyUsage extensions) to specify a scheme
for certificate verification that is as close to PKIX as possible but
allows self-certification of temporary keys to implement our proposed
Secure Single Login.

It is secure in that it allows circumvention of PKIX in only one,
well defined manner and for our special purpose. Furthermore it
introduces only one small exception to the PKIX verification procedure,
so it will be easy to implement in an existing implementation of the
SPKM GSS-API mechanism.

Another extension to mention is the 'Subject Alternative Name'. It
provides the possibility to specify the subject's identity in another
form as the Distinguished Name in the X.509 v1 field 'subject'. If the
latter one is left empty, this extension should be critical.

The same extension exists for the 'issuer' field ('Issuer Alternative
Name').

Last but not least, the extension 'Authority Key Identifier' provides a
way to refer to a specific key of the issuer, that shall be used for the
verification of a certificate. The issuing certificate can be identified
by the name of its issuing authority (the "grandparent" of the
certificate we look at right now) and its serial number or by a unique
octet string (KeyIdentifier), which should appear in the issuing
certificates 'Subject Key Identifier' extension.

2.2 SECURE SINGLE LOGIN

During our proposed secure single login, the user will

 1. open the PSE to be able to access the long term signature key.

Furthermore the user's software will

 2. generate a new temporary (assymetric) key(s) for use in SPKM.

There is no specific order for these two operations, they even could be
performed at the same time in a multi-threaded environment.
Then the temporary public key(s) are

 3. self-certified with the long term signature key.

After that, the PSE is closed again and the valuable long term keys are
not exposed any more.

The philosophy of SSLogin is equal to Kerberos' [KERBEROS-V5], where we
use temporary keys (tickets) with a limited lifetime to authenticate. If
an attacker manages to access the memory or the harddrive he will only
get the temporary secret keys instead of the valuable long term keys. If
this disclosure is recognized the temporary certificate may be revoked.

Note, that the self-certification in step 3. violates the PKIX-profile,
because an end user is not allowed to sign certificates. In the proposed
SSLogin-SPKM however it is essential, that this self-certification is
allowed. It would take too long for a user to contact a trusted
certification authority to get the temporary public key(s)
certified. Since the conservative evaluation of the basic constraints
and the key-usage extension is not necessary in this context, we can
change the proposed SPKM-profile accordingly, like discussed in the next
section.

2.3 SSLOGIN-SPKM PROFILE

We propose to use the PKIX profile with the following incremental
changes to allow the self-certification of the temporary public key(s).

We define two new key purposes for the 'Extended Key Usage' field:

* SignTempCert

 If this key purpose is present, the contained subject public key is
 allowed to verify a certificate for a temporary key, even if the
 cA-flag in the Basic constraints extension is set to FALSE. The Key
 Usage bit 'digitalSignature' has to be set and 'nonRepudiation' may be
 set.

 id-kp-SignTempCert OBJECT IDENTIFIER ::= { id-kp 1 }

* Temporary

 This key purpose indicates, that it is a temporary key and that the
 next certificate in the verification chain is a user certificate in
 which id-kp-SignTempCert should be present.

 id-kp-Temporary OBJECT IDENTIFIER ::= { id-kp 2 }

To use already issued certificates without id-kp-SignTempCert being
present, it is valid that this key purpose is not present. For new
certificates however we recommend to include this key purpose.

Since the proposed SSLogin mechanism is tailormade for SPKM we recommend
to subordinate these two object identifiers to SPKM behind the two
mechanism-variants ({id-spkm 1} for 3 way authentication and {id-spkm 2}
for two-way authentication with secure time stamps) specified in [SPKM].
Thus we propose

 id-kp OBJECT IDENTIFIER ::= { id-spkm 3 },

where

 id-spkm OBJECT IDENTIFIER ::= { iso(1) org(3) dod(6) internet(1)
 security(5) mechanisms(5) 1 }

We will assume, that a user already got X.509 v3 / PKIX certified public
keys. Since we want to use the key for signing a certificate, we only
need the signature key. The user's corresponding certificate will
contain these fields (informally):

v1 fields:
 * U-serialNo
 * issuer = CA
 * validity = U-validity
 * subject = User
v3 extensions:
 * subjectAltName = UserAlt (optional, if subject not empty)

 * issuerAltName = CAAlt (optional, if issuer not empty)
 * Key usage
 - digitalSignature = TRUE
 * Basic constraints
 - cA = FALSE

To be in conformance to our proposed profile, these additional
restrictions are necessary:

+ the 'Key Usage' extension is made critical and contains at least the
 bit digital signature(0)
+ the 'Basic Contraints' extension is made critical
+ the 'Extended Key Usage' extension is present and contains
 id-kp-SignTempCerts
 This extension should be marked non-critical to allow usage of this
 certificate in applications which are not in conformance with this
 profile.

In summary, the users long term certificate of the public signature key
is:

v1 fields:
 * U-serialNo
 * issuer = CA
 * validity = U-validity
 * subject = User
v3 extensions:
 * subjectAltName = UserAlt
 * issuerAltName = CAAlt
 * Key usage (critical = TRUE)
 - digitalSignature = TRUE
 * Extended key usage (critical = FALSE)
 - id-kp-SignTempCert
 * Basic constraints (critical = TRUE)
 - cA = FALSE

It is assumed, that this certificate is issued by a trusted CA,
conforming to PKIX.

The certificate for the temporary public signature key will
(informally) look like this:

v1 fields:
 * T-serialNo
 * issuer = User
 * validity = T-validity
 * subject = User
v3 extensions:
 * subjectAltName = UserAlt
 * issuerAltName = UserAlt
 * Key usage (critical = TRUE)

 - digitalSignature = TRUE
 (all others = FALSE)
 * Extended key usage (critical = TRUE)
 - id-kp-Temporary
 * Basic constraints (critical = TRUE)
 - cA = FALSE
 * Authority key identifier (critical = FALSE)
 - authorityCertIssuer = CA
 - authorityCertSerialNumber = U-serialNo

The certificate for the temporary public encryption key looks similar,
except for the 'Key Usage' extension, which should have set the bits
keyEncipherment(2) - or keyAgreement(4), whichever is appropriate,
instead of digitalSignature.

The use of the 'Authority Key Identifier' extension is recommended (also
by PKIX), but not required. It facilitates the search for the users
long-term certificate and makes absolutely clear, that this is a
self-signed certificate and no prototype certificate like used by some
certification request mechanisms.

Alternatively or additionally to the issuer/serialNumber pair, the key
identifier method can be used for this extension. This is closer to PKIX
recommendations.

The serial number of the temporary certificates should ideally be
consecutively numbered, so that the temporary certificates can be
identified uniquely by issuer (User) and serial number, but this is no
critical requirement.

Clearly, a certificate verification procedure conform to the PKIX
profile will reject this temporary certificate, because it is certified
(signed) with an end user's signature key. The (long term) user
certificate has not set the 'keyCertSign' bit and the 'cA' flag
in the Basic constraints extension is FALSE. Therefore we propose a
somewhat relaxed certificate verification:

A certificate will be valid, if

 a) all certificates in the verification chain are PKIX conform

or if

 b) all of the following requirements are fulfilled:

 1. The first (temporary) certificate has the following properties:
 1.1 issuer == subject,
 1.2 issuerAltName == subjectAltName,
 1.3 T-validity is subrange of U-validity, i.e.
 1.3.1 T-validity.notBefore > U-validity.notBefore,
 1.3.2 T-validity.notAfter < U-validity.notAfter,
 1.4 the Key Usage extension is critical,

 1.5 nonRepudiation == FALSE,
 1.6 keyCertSign == FALSE,
 1.7 cRLSign == FALSE,
 1.8 the Extended Key Usage extension is critical,
 1.9 'id-kp-Temporary' is present in Extended Key Usage,
 1.10 the Basic constraints extension is critical,
 1.11 cA == FALSE,

 2. all other certificates in the verification chain are PKIX conform,

 3. and the second (User's long term) Certificate has the following,
 properties:
 3.1 the Key Usage extension is critical,
 3.2 digitalSignature=TRUE,
 3.3 'id-kp-SignTempKey' is present in Extended Key Usage,
 3.4 subject == issuer-of-temp-cert, see 1.1

It is obvious, that these requirements restrict the presented temporary
certificate concept to the first certificate in the verification
chain. Since the Basic constraints and Key Usage extension is set
appropriate, it will not be possible to act as CA, by maliciously
presenting the temporary certificate to an ordinary (PKIX conform)
verification procedure. Furthermore the validity period of the temporary
certificate is smaller than the validity period of the long term user
certificate and it is not possible to issue such temporary certificates
for other subjects. Typically the validity period of the temporary
certificate will not exceed one day. Through the requirements given in
3, it is ensured, that only the long term signature key can be used to
produce temporary certificates and that this self-certification is
allowed at all. Note, that the verification has to fail, if the subject
of the temporary certificate is different from the subject in the long
term certificate, which is implicit in our description above and
enforced by step 3.4 of the verification procedure.

Note, that other extensions, like Policy constraints are not affected by
these changes, because we self-certify only user keys. Furthermore it
should be mentioned, that the absence of the extended key purpose
'id-kp-SignTempkey' could be treated more relaxed to allow the use of
already issued certificates without 'id-kp-SignTempkey' for our scheme.

It should be mentioned, that it is not possible to (mis-)use the
Authorization Data field (included in the first SPKM-token, see
[SPKM] page 12) to implement the full functionality proposed, because
this Authorization Data field is ONLY present in the FIRST token. Thus
the target system can not use temporary keys to authenticate.

3. NEW ALGORITHMS FOR SPKM

Since Discrete Logarithm based encryption- and signature algorithms are
very well suited for the efficient generation of temporary key pairs,
we propose two new algorithms to be used for SPKM, like mentioned

in [SSLogin].

We propose the RECOMMENDED algorithms, specified in [OSI/OIW]:

elGamal ALGORITHM PARAMETER NULL ::= { 1 3 14 7 2 1 }
and
dsaWithSHA1 ALGORITHM PARAMETER DSAParameters ::= { 1 3 14 7 3 27 }

It is intended to propose analogous algorithms based on Elliptic Curves
as OPTIONAL algorithms for SPKM as soon as the standardization in
e.g. [IEEEP1363] is finished.

4. ACKNOWLEDGEMENT
We would like to thank C. Adams, P. Eisenacher and T. Surkau for
fruitful comments on earlier versions of this draft.

APPENDIX A (Security - Usability - Efficiency)

In this section we will briefly recall the different variants for the
SPKM credential management introduced in [SSLogin], compare them in
terms of Security, Usability, Time-Efficiency and Space-Efficiency
and give more concrete recommendations for implementation.

To compare the time efficiency, we group the operations to be performed
in Once, Every GSS-session and Every GSS-context establishment and
estimate the workload in terms of modular (1024 bit)
multiplications. The times for generation of temporary keys are crude
estimates, based on practical measurements with SECUDE [SECUDE].

To compare the space efficiency we estimate the number of bytes, which
have to be stored permanently in Secure Storage, i.e. inside the PSE and
Insecure Storage, i.e. on the harddisk. We may assume, that a user
already got certified long term (1024 bit) RSA key pairs for signatures
and encryption and that the SPKM credential management like presented in
this specification is applied to all variants. We will only focus on
additional time and space requirements. I.e. we neither consider the
time needed to generate the long term keys, nor the space required to
store them in the PSE. Since we neglect some operations, e.g. computing
hash values, generation of random numbers etc. and have to 'convert' the
time for some operations to our 'unit' (1024 bit modular
multiplication), these estimates are very rough in nature. We may
assume, that the secret RSA keys are stored in the RSAPrivateKey-format
[PKCS1], so that the decryption and signature operations can be speeded
up by application of the Chinese Remainder Theorem.

In the following table, these variants are compared:
1. Single Login: enter password once and leave PSE open for the whole
 GSS-session.
2. Multiple Login: enter password everytime a GSS-context is
 established. Close the PSE right afterwards.
3. Secure Single Login with RSA:
 usage of one temporary RSA key pair, used both for signatures and

 encryption.
4. Secure Single Login with a Discrete Logarithm based crypto system
 (naive, without precomputation):
 usage of one temporary DSA key pair for signatures and one temporary
 ElGamal key pair for encryption
5. Secure Single Login with a Discrete Logarithm based crypto system
 (with precomputation):
 same as 4. but using a precomputed table of group elements

Note, that variants 4. and 5. assume a GSS-API implementation, that
supports the algorithms ElGamal and DSA (see section 3).

 Variant | 1. | 2. | 3. | 4. | 5. |
 ==
 Security | low | high | high | high | high |
 Usability | good | bad | good | good | good |
 ------------------+--------+--------+--------+--------+--------+
 Time-Efficiency | | | | | |
 (in 1024bit mod. | | | | | |
 multiplications) | | | | | |
 | | | | | |
 Once | / | / | / | 116000 | 116517 |
 Session | / | / | 108315 | 1267 | 675 |
 Context | | | | | |
 - e = Fermat4 | 698 | 698 | 321 | 2408 | 1540 |
 - general | 5526 | 5526 | 3758 | 7236 | 6368 |
 ------------------+--------+--------+--------+--------+--------+
 Space-Efficiency | | | | | |
 (in bytes) | | | | | |
 Secure | / | / | / | 20 | 20 |
 Insecure | / | / | 740 | 1348 | 19780 |
 ------------------+--------+--------+--------+--------+--------+
 Table 1. Variants for the SPKM credential management

>From this table we can see, that we can combine security and usability
at only slightly higher expenses at Login-time and context
establishment. The application of DL based algorithms turns out to be
very well suited to implement the the SSLogin variant, because the time
for the actual key generation is negligible small and may be well
performed at Login-time. Furthermore it is possible to speed up the
context establishment by applying exponentiation variants with
precomputation, which is not possible in RSA-type cryptosystems. In this
case only slightly more memory is needed to store the precomputed
values. Since the additional storage of about 20000 byte should be
possible in every implementation, we recommend the application of this
exponentiation technique.

APPENDIX B (References)

[GSS-API1] J. Linn: Generic Security Service Application Program
Interface, RFC 1508, Sep. 1993

[GSS-API2] J. Linn: Generic Security Service Application Program
Interface Version 2, RFC 2078, Jan. 1997

[IEEEP1363] IEEE Working Group P1363: Standard for Public Key
Cryptography, draft, via http://www.ieee.org

[KERBEROS-V5] J. Kohl, C. Neumann: The Kerberos Network Authentication
Service (V5), RFC 1510, Sep. 1993

[OSI/OIW] OSI/OIW: Part 12 - OSSecurity (Stable), June 1995, via
http://www.nemo.ncsl.nist.gov/oiw/agreements/stable/OSI/12s_9506.txt

[PKCS1] RSA Lab.: PKCS#1 - RSA Encryption Standard, Version 1.5, 1993

[PKIX] R. Housley, W. Ford, S. Farrel, D. Solo: Internet Public Key
Infrastructure, Part I: X.509 Certificate and CRL Profile,
Internet-Draft: draft-ietf-pkix-ipki-part1-06.txt, 15th October 1997

[SECUDE] GMD/TKT-SIT: SECUrity Development Environment for Open Networks
- Online Documentation, http://www.darmstadt.gmd.de/secude/Doc/index.htm

[SPKM] C. Adams: The Simple Public-Key GSS-API Mechanism (SPKM), RFC
2025, Okt. 1996

[SSLogin] D. Huehnlein: Credential Management and Secure Single Login
for SPKM, to appear in the Proceedings of NDSS '98, San Diego, March
11-13, 1998

[X509v3] ISO/IEC 9594-8: Information Technology - Open Systems
Interconnection - The Directory: Authentication Framework, CCITT/ITU
Recommendation X.509, 1993.

[DAM-X.509] ISO/IEC JTC 1/SC 21/WG 4 and ITU-T Q15/7: Final Text of
Draft Amendment 1 to ISO/IEC 9594-8 on Certificate Extensions, June 1997

https://datatracker.ietf.org/doc/html/rfc1508
https://datatracker.ietf.org/doc/html/rfc2078
http://www.ieee.org
https://datatracker.ietf.org/doc/html/rfc1510
http://www.nemo.ncsl.nist.gov/oiw/agreements/stable/OSI/12s_9506.txt
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-part1-06.txt
http://www.darmstadt.gmd.de/secude/Doc/index.htm

