
Network Working Group C. Huitema
Internet-Draft Microsoft
Intended status: Standards Track D. Kaiser
Expires: December 12, 2016 University of Konstanz
 June 10, 2016

Privacy Extensions for DNS-SD
draft-huitema-dnssd-privacy-01.txt

Abstract

 DNS-SD allows discovery of services published in DNS or MDNS. The
 publication normally discloses information about the device
 publishing the services. There are use cases where devices want to
 communicate without disclosing their identity, for example two mobile
 devices visiting the same hotspot.

 We propose to solve this problem by a two-stage approach. In the
 first stage, hosts discover Private Discovery Service Instances via
 DNS-SD using special formats to protect their privacy. These service
 instances correspond to Private Discovery Servers running on peers.
 In the second stage, hosts directly query these Private Discovery
 Servers via DNS-SD over TLS. A pairwise shared secret necessary to
 establish these connections is only known to hosts authorized by a
 pairing system.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 12, 2016.

Huitema & Kaiser Expires December 12, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DNS-SD Privacy Extensions June 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements . 3

2. Privacy Implications of DNS-SD 4
 2.1. Privacy Implication of Publishing Service Instance Names 4

2.2. Privacy Implication of Publishing Node Names 5
2.3. Privacy Implication of Publishing Service Attributes . . 5
2.4. Device Fingerprinting 6
2.5. Privacy Implication of Discovering Services 6

3. Limits of a Simple Design 7
3.1. Obfuscated Instance Names 7
3.2. Names of Obfuscated Services 8
3.3. Scaling Issues with Obfuscation 10

4. Design of the Private DNS-SD Discovery Service 11
4.1. Device Pairing . 11
4.1.1. Shared Secret . 12
4.1.2. Secure Authenticated Pairing Channel 12
4.1.3. Public Authentication Keys 12

4.2. Discovery of the Private Discovery Service 13
4.3. Private Discovery Service 14
4.3.1. A Note on Private DNS Services 15

4.4. Randomized Host Names 16
4.5. Timing of Obfuscation and Randomization 16

5. Private Discovery Service Specification 16
5.1. Host Name Randomization 17
5.2. Device Pairing . 17
5.3. Private Discovery Server 18
5.3.1. Establishing TLS Connections 18

5.4. Publishing Private Discovery Service Instances 19
5.5. Discovering Private Discovery Service Instances 19
5.6. Using the Private Discovery Service 20

6. Security Considerations 20

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Huitema & Kaiser Expires December 12, 2016 [Page 2]

Internet-Draft DNS-SD Privacy Extensions June 2016

6.1. Attacks Against the Pairing System 21
6.2. Denial of Discovery of the Private Discovery Service . . 21

 6.3. Replay Attacks Against Discovery of the Private Discovery
 Service . 22

6.4. Denial of Private Discovery Service 22
6.5. Replay Attacks against the Private Discovery Service . . 22

7. IANA Considerations . 23
8. Acknowledgments . 23
9. References . 23
9.1. Normative References 23
9.2. Informative References 24

 Authors' Addresses . 25

1. Introduction

 DNS-SD [RFC6763] enables distribution and discovery in local networks
 without configuration. It is very convenient for users, but it
 requires the public exposure of the offering and requesting
 identities along with information about the offered and requested
 services. Some of the information published by the announcements can
 be very revealing. These privacy issues and potential solutions are
 discussed in [KW14a] and [KW14b].

 There are cases when nodes connected to a network want to provide or
 consume services without exposing their identity to the other parties
 connected to the same network. Consider for example a traveler
 wanting to upload pictures from a phone to a laptop when connected to
 the Wi-Fi network of an Internet cafe, or two travelers who want to
 share files between their laptops when waiting for their plane in an
 airport lounge.

 We expect that these exchanges will start with a discovery procedure
 using DNS-SD [RFC6763]. One of the devices will publish the
 availability of a service, such as a picture library or a file store
 in our examples. The user of the other device will discover this
 service, and then connect to it.

 When analyzing these scenarios in Section 2, we find that the DNS-SD
 messages leak identifying information such as instance name, host
 name or service properties. We review the design constraint of a
 solution in Section 4, and describe the proposed solution in

Section 5.

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/rfc2119

Huitema & Kaiser Expires December 12, 2016 [Page 3]

Internet-Draft DNS-SD Privacy Extensions June 2016

2. Privacy Implications of DNS-SD

 DNS-Based Service Discovery (DNS-SD) is defined in [RFC6763]. It
 allows nodes to publish the availability of an instance of a service
 by inserting specific records in the DNS ([RFC1033], [RFC1034],
 [RFC1035]) or by publishing these records locally using multicast DNS
 (mDNS) [RFC6762]. Available services are described using three types
 of records:

 PTR Record: Associates a service type in the domain with an
 "instance" name of this service type.

 SRV Record: Provides the node name, port number, priority and weight
 associated with the service instance, in conformance with
 [RFC2782].

 TXT Record: Provides a set of attribute-value pairs describing
 specific properties of the service instance.

 In the remaining subsections, we will review the privacy issues
 related to publishing instance names, node names, service attributes
 and other data, as well as review the implications of using the
 discovery service as a client.

2.1. Privacy Implication of Publishing Service Instance Names

 In the first phase of discovery, the client obtains all the PTR
 records associated with a service type in a given naming domain.
 Each PTR record contains a Service Instance Name defined in Section 4
 of [RFC6763]:

 Service Instance Name = <Instance> . <Service> . <Domain>

 The <Instance> portion of the Service Instance Name is meant to
 convey enough information for users of discovery clients to easily
 select the desired service instance. Nodes that use DNS-SD over mDNS
 [RFC6762] in a mobile environment will rely on the specificity of the
 instance name to identify the desired service instance. In our
 example of users wanting to upload pictures to a laptop in an
 Internet Cafe, the list of available service instances may look like:

 Alice's Images . _imageStore._tcp . local
 Alice's Mobile Phone . _presence._tcp . local
 Alice's Notebook . _presence._tcp . local
 Bob's Notebook . _presence._tcp . local
 Carol's Notebook . _presence._tcp . local

https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/rfc1033
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc6762
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc6763#section-4
https://datatracker.ietf.org/doc/html/rfc6763#section-4
https://datatracker.ietf.org/doc/html/rfc6762

Huitema & Kaiser Expires December 12, 2016 [Page 4]

Internet-Draft DNS-SD Privacy Extensions June 2016

 Alice will see the list on her phone and understand intuitively that
 she should pick the first item. The discovery will "just work".

 However, DNS-SD/mDNS will reveal to anybody that Alice is currently
 visiting the Internet Cafe. It further discloses the fact that she
 uses two devices, shares an image store, and uses a chat application
 supporting the _presence protocol on both of her devices. She might
 currently chat with Bob or Carol, as they are also using a _presence
 supporting chat application. This information is not just available
 to devices actively browsing for and offering services, but to
 anybody passively listing to the network traffic.

2.2. Privacy Implication of Publishing Node Names

 The SRV records contain the DNS name of the node publishing the
 service. Typical implementations construct this DNS name by
 concatenating the "host name" of the node with the name of the local
 domain. The privacy implications of this practice are reviewed in
 [I-D.ietf-intarea-hostname-practice]. Depending on naming practices,
 the host name is either a strong identifier of the device, or at a
 minimum a partial identifier. It enables tracking of the device, and
 by extension of the device's owner.

2.3. Privacy Implication of Publishing Service Attributes

 The TXT record's attribute and value pairs contain information on the
 characteristics of the corresponding service instance. This in turn
 reveals information about the devices that publish services. The
 amount of information varies widely with the particular service and
 its implementation:

 o Some attributes like the paper size available in a printer, are
 the same on many devices, and thus only provide limited
 information to a tracker.

 o Attributes that have freeform values, such as the name of a
 directory, may reveal much more information.

 Combinations of attributes have more information power than specific
 attributes, and can potentially be used for "fingerprinting" a
 specific device.

 Information contained in TXT records does not only breach privacy by
 making devices trackable, but might directly contain private
 information about a device user. For instance the _presence service
 reveals the "chat status" to everyone in the same network. Users
 might not be aware of that.

Huitema & Kaiser Expires December 12, 2016 [Page 5]

Internet-Draft DNS-SD Privacy Extensions June 2016

 Further, TXT records often contain version information about services
 allowing potential attackers to identify devices running exploit-
 prone versions of a certain service.

2.4. Device Fingerprinting

 The combination of information published in DNS-SD has the potential
 to provide a "fingerprint" of a specific device. Such information
 includes:

 o The list of services published by the device, which can be
 retrieved because the SRV records will point to the same host
 name.

 o The specific attributes describing these services.

 o The port numbers used by the services.

 o The values of the priority and weight attributes in the SRV
 records.

 This combination of services and attributes will often be sufficient
 to identify the version of the software running on a device. If a
 device publishes many services with rich sets of attributes, the
 combination may be sufficient to identify the specific device.

 There is however an argument that devices providing services can be
 discovered by observing the local traffic, because different services
 have different traffic patterns. The observation could in many cases
 also reveal some specificities of the service's implementation. Even
 if the traffic is encrypted, the size and the timing of packets may
 be sufficient to reveal that information. This argument can be used
 to assess the priority of, for example, protecting the fact that a
 device publishes a particular service. However, we may assume that
 the developers of sensitive services will use counter-measures to
 defeat such traffic analysis.

2.5. Privacy Implication of Discovering Services

 The consumers of services engage in discovery, and in doing so reveal
 some information such as the list of services they are interested in
 and the domains in which they are looking for the services. When the
 clients select specific instances of services, they reveal their
 preference for these instances. This can be benign if the service
 type is very common, but it could be more problematic for sensitive
 services, such as for example some private messaging services.

Huitema & Kaiser Expires December 12, 2016 [Page 6]

Internet-Draft DNS-SD Privacy Extensions June 2016

 One way to protect clients would be to somehow encrypt the requested
 service types. Of course, just as we noted in Section 2.4, traffic
 analysis can often reveal the service.

3. Limits of a Simple Design

 We first tried a simple design for mitigating the issues outlined in
Section 2. The basic idea was to advertise obfuscated names, so as

 to not reveal the particularities of the service providers. This
 design is tempting, because it only requires minimal changes in the
 DNS-SD processing. However, as we will see in the following
 subsections, it has two important drawbacks:

 o The simple design leads to UI issues, because users of unmodified
 DNS-SD agents will see a mix of clear text names and obfuscated
 names, which is unpleasant.

 o With this simple design, there is no good way to hide the type of
 services provided or consumed by a specific node.

 o The simple design either requires having a shared key between all
 "authorized users" of a service, which implies substandard key
 management practices, or publishing as many instances of a service
 as there are authorized users, which leads to the scaling issues
 discussed in Section 3.3.

 Both issues are mitigated by the two-stage design presented in
Section 4. The following subsections detail the simple design, and

 its drawbacks.

3.1. Obfuscated Instance Names

 The privacy issues described in Section 2.1 could be solved by
 obfuscating the instance names. Instead of a user friendly
 description of the instance, the nodes would publish a random looking
 string of characters. To prevent tracking over time and location,
 different string values would be used at different locations, or at
 different times.

 Authorized parties have to be able to "de-obfuscate" the names, while
 non-authorized third parties will not be. For example, if both
 Alice's notebook and Bob's laptop use an obfuscation process, the
 list of available services should appear differently to them and to
 third parties. Alice's phone will be able to de-obfuscate the name
 of Alice's notebook, but not that of Bob's laptop. Bob's phone will
 do the opposite. Carol will do neither.

 Alice will see something like:

Huitema & Kaiser Expires December 12, 2016 [Page 7]

Internet-Draft DNS-SD Privacy Extensions June 2016

 QwertyUiopAsdfghjk (Alice's Images) . _imageStore._tcp . local
 GobbeldygookBlaBla (Alice's Mobile Phone) . _presence._tcp . local
 MNbvCxzLkjhGfdEdhg (Alice's Notebook) . _presence._tcp . local
 Abracadabragooklybok (Bob's Notebook) . _presence._tcp . local
 Carol's Notebook . _presence._tcp . local

 Bob will see:

 QwertyUiopAsdfghjk . _imageStore._tcp . local
 GobbeldygookBlaBla . _presence._tcp . local
 MNbvCxzLkjhGfdEdhg . _presence._tcp . local
 Abracadabragooklybok (Bob's Notebook) . _presence._tcp . local
 Carol's Notebook . _presence._tcp . local

 Carol will see:

 QwertyUiopAsdfghjk . _imageStore._tcp . local
 GobbeldygookBlaBla . _presence._tcp . local
 MNbvCxzLkjhGfdEdhg . _presence._tcp . local
 Abracadabragooklybok . _presence._tcp . local
 Carol's Notebook . _presence._tcp . local

 In that example, Alice, Bob and Carol will be able to select the
 appropriate instance. It would probably be preferable to filter out
 the obfuscated instance names, to avoid confusing the user. In our
 example, Alice and Bob have updated their software to understand
 obfuscation, and they could easily filter out the obfuscated strings
 that they do not like. But Carol is not using this system, and we
 could argue that her experience is suboptimal.

3.2. Names of Obfuscated Services

 Instead of publishing the actual service name in the SRV records,
 nodes could publish a randomized name. There are two plausible
 reasons for doing that:

 o Having a different service name for privacy enhanced services will
 ensure that hosts that are not privacy aware are not puzzled by
 obfuscated service names.

 o Using obfuscated service names prevents third parties from
 discovering which service a particular host is providing or
 consuming.

 The first requirement can be met with a simple modification of an
 existing name. For example, instead of publishing:

Huitema & Kaiser Expires December 12, 2016 [Page 8]

Internet-Draft DNS-SD Privacy Extensions June 2016

 QwertyUiopAsdfghjk . _imageStore._tcp . local
 GobbeldygookBlaBla . _presence._tcp . local

 Alice could publish some kind of "translation" of the service name,
 such as:

 QwertyUiopAsdfghjk . _vzntrFgber._tcp . local
 GobbeldygookBlaBla . _cerfrapr._tcp . local

 The previous examples use rot13 translation. It does not provide any
 particular privacy, but it does ensure that obfuscated services are
 named differently from clear text services.

 Making the service name actually private would require some actual
 encryption. The main problem with such solutions is that the client
 needs to know the service name in order to compose the DNS-SD query
 for services. There are several options:

 o The service name is chosen by the client. For example, the client
 could encrypt the original service name and a nonce with a key
 shared between client and server. Upon receiving the queries, the
 server would attempt to decrypt the service name. If that
 succeeds, the server would respond with PTR records created on the
 fly for the new service name.

 o The service name is chosen by the server and cannot be predicted
 in advance by the client. For example, the server could encrypt a
 nonce and the original service name. The client retrieves such
 services by doing a wild card query, then attempting to decrypt
 the received responses.

 o The service name is chosen by the server in a way that can be
 predicted in advance by the client. For example, the server could
 encrypt some version of the data and time and the original service
 name. The data and time are encoded with a coarse precision,
 enabling the client to predict the value that the server is using,
 and to send the corresponding queries.

 None of these solutions is very attractive. Creating records on the
 fly is a burden for the server. If clients must use wildcard
 queries, they will need to process lots of irrelevant data. If
 clients need to predict different instance names for each potential
 server, they will end up sending batches of queries with many
 different names. All of these solutions appear like big departures
 from the simplicity and robustness of the DNS-SD design.

Huitema & Kaiser Expires December 12, 2016 [Page 9]

Internet-Draft DNS-SD Privacy Extensions June 2016

3.3. Scaling Issues with Obfuscation

 In Section 3.1, we assumed that each advertised record contains a
 name obfuscated with a shared key. This approach is easy to
 understand, but it contains hidden assumptions. Let's look at one of
 our examples:

 Abracadabragooklybok (Bob's Notebook) . _presence._tcp . local

 We only see one record for Bob's Notebook, obfuscated using the
 unique shared secret associated with Bob's Notebook. That means that
 every device paired with Bob's Notebook will have a copy of that
 shared secret. This is a possible solution, but there are known
 issues with having a secret shared with multiple entities:

 o If for some reason the secret needs to be changed, every paired
 device will need a copy of the new secret before it can
 participate again in discovery.

 o If one of the previous pairings becomes invalid, the only way to
 block the corresponding devices from discovery is to change the
 secret for all other devices.

 Key management becomes much easier if it is strictly pair-wise. Two
 paired devices, or to pairs of users, can simply renew their pairing
 and get a new secret. If a device ceases to be trusted, the pairing
 data and the corresponding secret can just be deleted and forgotten.
 But using strictly pair-wise keys yields a scaling issue. Let's
 assume that:

 o Each device maintains an average of N pairings.

 o There are on average M devices present during discovery.

 In the single key scenario, after issuing a broadcast query, the
 querier will receive a series of responses, each of which may well be
 obfuscated with a different key. If the receiver has N pre-existing
 pairings and receives M obfuscated responses, the cost will scale as
 O(M*N), i.e. try all N pairing keys for each of the M responses to
 see what matches. But if the keys are specific to each pair of
 devices, the obfuscation becomes complicated. When receiving a
 request, the publisher does not know which of its N keys the querier
 can decrypt. One simple solution would be to send N responses, but
 then the load on the querier will scale as O(M*N^2). That can go out
 of hand very quickly.

 To solve the scaling issue, we consider a two-stage solution that
 uses an optimized discovery procedure to discover privacy-compatible

Huitema & Kaiser Expires December 12, 2016 [Page 10]

Internet-Draft DNS-SD Privacy Extensions June 2016

 devices; and uses point to point encrypted exchanges to privately
 discover the available services.

4. Design of the Private DNS-SD Discovery Service

 In this section, we present the design of a two-stage solution that
 enables private use of DNS-SD, without affecting existing users, and
 with better scalability than the simple solution presented in

Section 3. The solution is largely based on the architecture
 proposed in [KW14b], which separates the general private discovery
 problems in three components: Pairing, discovery of a private
 discovery service, and actual service discovery through this private
 service. Pairing has to provide the private discovery servers with
 means for mutual authentication, e.g. with an authenticated shared
 secret. The private discovery servers provide actual service
 discovery with an authenticated connection. Our solution applies
 this architecture in the context of DNS-SD. It is based on the
 following components:

 o Adding a pairing system to DNS-SD, described in Section 4.1,
 through which authorized peers can establish shared secrets;

 o Defining the Private Discovery Service through which other
 services can be advertised in a private manner;

 o And, publishing availability of the Private Discovery Service
 using DNS-SD, so that peers can discover their services without
 compromising their privacy.

 These are independent with respect to means used for transmitting the
 necessary data.

4.1. Device Pairing

 Any private discovery solution needs to differentiate between
 authorized devices, which are allowed to get information about
 discoverable entities, and other devices, which should not be aware
 of the availability of private entities. The commonly used solution
 to this problem is establishing a "device pairing". In our discovery
 scenarios, we envisage two kinds of pairings:

 1. Inter-user pairing is a pairing between devices of "friends".
 Since it has to be performed manually, e.g. by the means
 described above, it is important to limit it to once per pair of
 friends.

 2. Intra-user pairing is a pairing of devices of the same user. It
 can be performed without any configuration by a meta-service

Huitema & Kaiser Expires December 12, 2016 [Page 11]

Internet-Draft DNS-SD Privacy Extensions June 2016

 (pairing data synchronization service) in a trusted (home)
 network.

 The result of the pairing will be a shared secret, and optionally
 mutually authenticated public keys added to a local web of trust.
 Public key technology has many advantages, but shared secrets are
 typically easier to handle on small devices. We offer both a simple
 pairing just exchanging a shared secret, and an authenticated pairing
 using public key technology.

4.1.1. Shared Secret

 Goal of the pairing process is establishing pairwise shared secrets.
 If two users can leverage a secure private off-channel, it suffices
 for one user to generate the shared secret and transmit it over this
 off-channel. It would be possible for the users to meet and orally
 agree on a password that both users enter in their devices. This has
 the disadvantage of user-chosen passwords to have low entropy and the
 inconvenience of having to type the password. Leveraging QR-codes
 can overcome these disadvantages: one user generates a shared secret,
 displays it in form of a QR-code, and the other user scans this code.
 Strictly speaking, displaying and scanning QR-codes does not
 establish a secure private channel, as others could also photograph
 this code; but it is reasonable secure for the application area of
 private service discovery. Using Bluetooth LE might also be
 considered satisfactory as a compromise between convenience and
 security.

4.1.2. Secure Authenticated Pairing Channel

 Optionally, various versions of authenticated DH can be used to
 exchange a mutually authenticated shared secret (which among other
 possibilities can leverage QR-codes for key fingerprint
 verification). Using DH gives the benefit of provable security and
 the possibility to perform a pairing when not being able to meet in
 person. Further, using DH to generate the shared secret has the
 advantage of both parties contributing to the shared secret
 (multiparty computation).

4.1.3. Public Authentication Keys

 The public/private key pair - if at all - is just used for the
 aforementioned authenticated DH to grant a mutually authenticated
 shared secret. Obtaining and verifying a friend's public key can be
 achieved by different means. For obtaining the keys, we can either
 leverage an existing PKI, e.g. the PGP web of trust, or generate our
 own key pairs (and exchange them right before verifying). For
 authenticating the keys, which boils down to comparing fingerprints

Huitema & Kaiser Expires December 12, 2016 [Page 12]

Internet-Draft DNS-SD Privacy Extensions June 2016

 on an off-channel, we distinguish between means that demand users to
 be in close proximity of each other, and means where users do not
 have to meet in person. The former can e.g. be realized by verifying
 a fingerprint leveraging QR-Codes, the latter by reading a
 fingerprint during a phone call or using the socialist millionaires
 protocol.

4.2. Discovery of the Private Discovery Service

 The first stage of service discovery is to check whether instances of
 compatible Private Discovery Services are available in the local
 scope. The goal of that stage is to identify devices that share a
 pairing with the querier, and are available locally. The service
 instances can be discovered using regular DNS-SD procedures, but the
 list of discovered services will have to be filtered so only paired
 devices are retained.

 We have demonstrated in Section 3.3 that simple obfuscation would
 require publishing as many records per publisher as there are
 pairings, which ends up scaling as O(M*N^2) in which M is the number
 of devices present and N is the number of pairings per device. We
 can mitigate this problem by using a special encoding of the instance
 name. Suppose that the publisher manages N pairings with the
 associated keys K1, K2, ... Kn. The instance name will be set to an
 encoding of N "proofs" of the N keys, where each proof is computed as
 function of the key and a nonce:

 instance name = <nonce><F1><F2>..<Fn>

 Fi = hash (nonce, Ki), where hash is a cryptographic hash
 function.

 The querier can test the instance name by computing the same "proof"
 for each of its own keys. Suppose that the receiver manages P
 pairings, with the corresponding keys X1, X2, .. Xp. The receiver
 verification procedure will be:

 for each received instance name:
 retrieve nonce from instance name
 for (j = 1 to P)
 retrieve the key Xj of pairing number j
 compute F = hash(nonce, Xj)
 for (i=1 to N)
 retrieve the proof Fi
 if F is equal to Fi
 mark the pairing number j as available

Huitema & Kaiser Expires December 12, 2016 [Page 13]

Internet-Draft DNS-SD Privacy Extensions June 2016

 The procedure presented here requires on average O(M*N) iterations of
 the hash function, which is the same scaling as the "shared secret"
 variant. It requires O(M*N^2) comparison operations, but these are
 less onerous than cryptographic operations. Further, when setting
 the nonce to a timestamp, the Fi have to be calculated only once per
 time interval.

 The number of pairing proofs that can be encoded in a single record
 is limited by the maximum size of a DNS label, which is 63 bytes.
 Since this are characters and not pure binary values, nonce and
 proofs will have to be encoded using BASE64 ([RFC2045] section 6.8),
 resulting in at most 378 bits. The nonce should not be repeated, and
 the simplest way to achieve that is to set the nonce to a 32 bit
 timestamp value. The remaining 346 bits could encode up to 10 proofs
 of 32 bits each, which would be sufficient for many practical
 scenarios.

 In practice, a 32 bit proof should be sufficient to distinguish
 between available devices. However, there is clearly a risk of
 collision. The Private Discovery Service as described here will find
 the available pairings, but it might also find a spurious number of
 "false positives." The chances of that happening are however quite
 small: less than 0.02% for a device managing 10 pairings and
 processing 10000 responses.

4.3. Private Discovery Service

 The Private Discovery Service discovery allows discovering a list of
 available paired devices, and verifying that either party knows the
 corresponding shared secret. At that point, the querier can engage
 in a series of directed discoveries.

 We have considered defining an ad-hoc protocol for the private
 discovery service, but found that just using TLS would be much
 simpler. The Directed Private Discovery service is just a regular
 DNS-SD service, accessed over TLS, using the encapsulation of DNS
 over TLS defined in [RFC7858]. The main difference with simple DNS
 over TLS is the need for authentication.

 We assume that the pairing process has provided each pair of
 authorized client and server with a shared secret. We can use that
 shared secret to provide mutual authentication of clients and servers
 using "Pre Shared Key" authentication, as defined in [RFC4279] and
 incorporated in the latest version of TLS [I-D.ietf-tls-tls13].

 One difficulty is the reliance on a key identifier in the protocol.
 For example, in TLS 1.3 the PSK extension is defined as:

https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc4279

Huitema & Kaiser Expires December 12, 2016 [Page 14]

Internet-Draft DNS-SD Privacy Extensions June 2016

 opaque psk_identity<0..2^16-1>;

 struct {
 select (Role) {
 case client:
 psk_identity identities<2..2^16-1>;

 case server:
 uint16 selected_identity;
 }
 } PreSharedKeyExtension

 According to the protocol, the PSK identity is passed in clear text
 at the beginning of the key exchange. This is logical, since server
 and clients need to identify the secret that will be used to protect
 the connection. But if we used a static identifier for the key,
 adversaries could use that identifier to track server and clients.
 The solution is to use a time-varying identifier, constructed exactly
 like the "hint" described in Section 4.2, by concatenating a nonce
 and the hash of the nonce with the shared secret.

4.3.1. A Note on Private DNS Services

 Our solution uses a variant of the DNS over TLS protocol [RFC7858]
 defined by the DNS Private Exchange working group (DPRIVE). DPRIVE
 is also working on an UDP variant, DNS over DTLS
 [I-D.ietf-dprive-dnsodtls], which would also be a candidate.

 DPRIVE and Private Discovery solve however two somewhat different
 problems. DPRIVE is concerned with the confidentiality to DNS
 transactions, addressing the problems outlined in [RFC7626].
 However, DPRIVE does not address the confidentiality or privacy
 issues with publication of services, and is not a direct solution to
 DNS-SD privacy:

 o Discovery queries are scoped by the domain name within which
 services are published. As nodes move and visit arbitrary
 networks, there is no guarantee that the domain services for these
 networks will be accessible using DNS over TLS or DNS over DTLS.

 o Information placed in the DNS is considered public. Even if the
 server does support DNS over TLS, third parties will still be able
 to discover the content of PTR, SRV and TXT records.

 o Neither DNS over TLS nor DNS over DTLS applies to MDNS.

https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc7626

Huitema & Kaiser Expires December 12, 2016 [Page 15]

Internet-Draft DNS-SD Privacy Extensions June 2016

 In contrast, we propose using mutual authentication of the client and
 server as part of the TLS solution, to ensure that only authorized
 parties learn the presence of a service.

4.4. Randomized Host Names

 Instead of publishing their actual name in the SRV records, nodes
 could publish a randomized name. That is the solution argued for in
 [I-D.ietf-intarea-hostname-practice].

 Randomized host names will prevent some of the tracking. Host names
 are typically not visible by the users, and randomizing host names
 will probably not cause much usability issues.

4.5. Timing of Obfuscation and Randomization

 It is important that the obfuscation of instance names is performed
 at the right time, and that the obfuscated names change in synchrony
 with other identifiers, such as MAC Addresses, IP Addresses or host
 names. If the randomized host name changed but the instance name
 remained constant, an adversary would have no difficulty linking the
 old and new host names. Similarly, if IP or MAC addresses changed
 but host names remained constant, the adversary could link the new
 addresses to the old ones using the published name.

 The problem is handled in [I-D.ietf-intarea-hostname-practice], which
 recommends to pick a new random host name at the time of connecting
 to a new network. New instance names for the Private Discovery
 Services should be composed at the same time.

5. Private Discovery Service Specification

 The proposed solution uses the following components:

 o Host name randomization to prevent tracking.

 o Device pairing yielding pairwise shared secrets.

 o A Private Discovery Server (PDS) running on each host.

 o Discovery of the PDS instances using DNS-SD.

 These components are detailed in the following subsections.

Huitema & Kaiser Expires December 12, 2016 [Page 16]

Internet-Draft DNS-SD Privacy Extensions June 2016

5.1. Host Name Randomization

 Nodes publishing services with DNS-SD and concerned about their
 privacy MUST use a randomized host name. The randomized name MUST be
 changed when network connectivity changes, to avoid the correlation
 issues described in Section 4.5. The randomized host name MUST be
 used in the SRV records describing the service instance, and the
 corresponding A or AAAA records MUST be made available through DNS or
 MDNS, within the same scope as the PTR, SRV and TXT records used by
 DNS-SD.

 If the link-layer address of the network connection is properly
 obfuscated (e.g. using MAC Address Randomization), The Randomized
 Host Name MAY be computed using the algorithm described in section

3.7 of [RFC7844]. If this is not possible, the randomized host name
 SHOULD be constructed by simply picking a 48 bit random number
 meeting the Randomness Requirements for Security expressed in
 [RFC4075], and then use the hexadecimal representation of this number
 as the obfuscated host name.

5.2. Device Pairing

 Nodes that want to leverage the Private Directory Service for private
 service discovery among peers MUST share a secret with each of these
 peers. The shared secret MUST be a 256 bit randomly chosen number.
 The secret SHOULD be exchanged via device Pairing. The pairing
 process SHALL establish a mutually authenticated secure channel to
 perform the shared secret exchange. It is RECOMMENDED for both
 parties to contribute to the shared secret, e.g. by using a Diffie-
 Hellman key exchange.

 TODO: need to define the pairing service, or API. The API approach
 assumes that pairing is outside our scope, and is done using BT-LE,
 or any other existing mechanism. This is a bit of a cope-out. We
 could also define a pairing system that just sets the pairing with
 equivalent security as the "push button" or "PIN" solutions used for
 BT or Wi-Fi. And we could at this stage leverage a pre-existing
 security association, e.g. PGP identities or other certificates. If
 we do that, we should probably dedicate a top level section to
 specifying the minimal pairing service. Using a pre-existing
 asymmetric security association, we can use a key exchange similar to
 IKEv2 (RFC 7296). IKEv2 leverages the SIGMA protocols, which provide
 various methods of authenticated DH. It would also be possible to
 authenticate DH using symmetric passwords (e.g. Bellovin-Merritt).

https://datatracker.ietf.org/doc/html/rfc7844#section-3.7
https://datatracker.ietf.org/doc/html/rfc7844#section-3.7
https://datatracker.ietf.org/doc/html/rfc4075
https://datatracker.ietf.org/doc/html/rfc7296

Huitema & Kaiser Expires December 12, 2016 [Page 17]

Internet-Draft DNS-SD Privacy Extensions June 2016

5.3. Private Discovery Server

 A Private Discovery Server (PDS) is a minimal DNS server running on
 each host. Its task is to offer resource records corresponding to
 private services only to authorized peers. These peers MUST share a
 secret with the host (see Section 5.2). To ensure privacy of the
 requests, the service is only available over TLS [RFC5246], and the
 shared secrets are used to mutually authenticate peers and servers.

 The Private Name Server SHOULD support DNS push notifications
 [I-D.ietf-dnssd-push], e.g. to facilitate an up-to-date contact list
 in a chat application without polling.

5.3.1. Establishing TLS Connections

 The PDS MUST only answer queries via DNS over TLS [RFC7858] and MUST
 use a PSK authenticated TLS handshake [RFC4279]. The client and
 server should negotiate a forward secure cypher suite such as DHE-PSK
 or ECDHE-PSK when available. The shared secret exchanged during
 pairing MUST be used as PSK.

 When using the PSK based authentication, the "psk_identity" parameter
 identifying the pre-shared key MUST be composed as follow, using the
 conventions of TLS [RFC7858]:

 struct {

 uint32 gmt_unix_time;

 opaque random_bytes[4];

 } nonce;

 long_proof = HASH(nonce | pairing_key)
 proof = first 12 bytes of long_proof
 psk_identity = BASE64(nonce) "." BASE64(proof)

 In this formula, HASH SHOULD be the function SHA256 defined in
 [RFC4055]. Implementers MAY eventually replace SHA256 with a
 stronger algorithm, in which cases both clients and servers will have
 to agree on that algorithm during the pairing process. The first 32
 bits of the nonce are set to the current time and date in standard
 UNIX 32-bit format (seconds since the midnight starting Jan 1, 1970,
 UTC, ignoring leap seconds) according to the client's internal clock.
 The next 32 bits of the nonce are set to a value generated by a
 secure random generator.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc4055

Huitema & Kaiser Expires December 12, 2016 [Page 18]

Internet-Draft DNS-SD Privacy Extensions June 2016

 In this formula, the identity is finally set to a character string,
 using BASE64 ([RFC2045] section 6.8). This transformation is meant
 to comply with the PSK identity encoding rules specified in section

5.1 of [RFC4279].

 The server will check the received key identity, trying the key
 against the valid keys established through pairing. If one of the
 key matches, the TLS connection is accepted, otherwise it is
 declined.

5.4. Publishing Private Discovery Service Instances

 Nodes that provide the Private Discovery Service SHOULD advertise
 their availability by publishing instances of the service through
 DNS-SD.

 The DNS-SD service type for the Private Discovery Service is
 "_pds._tls".

 Each published instance describes one server and up to 10 pairings.
 In the case where a node manages more than 10 pairings, it should
 publish as many instances as necessary to advertise all available
 pairings.

 Each instance name is composed as follows:

 pick a 32 bit nonce, e.g. using the Unix GMT time.
 set the binary identifier to the nonce.

 for each of up to 10 pairings
 hint = first 32 bits of HASH(<nonce>|<pairing key>)
 concatenate the hint to the binary identifier

 set instance-ID = BASE64(binary identifier)

 In this formula, HASH SHOULD be the function SHA256 defined in
 [RFC4055], and BASE64 is defined in section 6.8 of [RFC2045]. The
 concatenation of a 32 bit nonce and up to 10 pairing hints result a
 bit string at most 332 bit long. The BASE64 conversion will produce
 a string that is up to 59 characters long, which fits within the 63
 characters limit defined in [RFC6763].

5.5. Discovering Private Discovery Service Instances

 Nodes that wish to discover Private Discovery Service Instances will
 issue a DNS-SD discovery request for the service type. These request
 will return a series of PTR records, providing the names of the
 instances present in the scope.

https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc4279#section-5.1
https://datatracker.ietf.org/doc/html/rfc4279#section-5.1
https://datatracker.ietf.org/doc/html/rfc4055
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc6763

Huitema & Kaiser Expires December 12, 2016 [Page 19]

Internet-Draft DNS-SD Privacy Extensions June 2016

 The querier SHOULD examine each instance to see whether it hints at
 one of its available pairings, according to the following conceptual
 algorithm:

 for each received instance name:
 convert the instance name to binary using BASE64
 if the conversion fails,
 discard the instance.
 if the binary instance length is a not multiple of 32 bits,
 discard the instance.

 nonce = first 32 bits of binary.
 for each 32 bit hint after the nonce
 for each available pairing
 retrieve the key Xj of pairing number j
 compute F = hash(nonce, Xj)
 if F is equal to the 32 bit hint
 mark the pairing number j as available

 Once a pairing has been marked available, the querier SHOULD try
 connecting to the corresponding instance, using the selected key.
 The connection is likely to succeed, but it MAY fail for a variety of
 reasons. One of these reasons is the probabilistic nature of the
 hint, which entails a small chance of "false positive" match. This
 will occur if the hash of the nonce with two different keys produces
 the same result. In that case, the TLS connection will fail with an
 authentication error or a decryption error.

5.6. Using the Private Discovery Service

 Once instances of the Private Discovery Service have been discovered,
 peers can establish TLS connections and send DNS requests over these
 connections, as specified in DNS-SD.

6. Security Considerations

 This document specifies a method to protect the privacy of service
 publishing nodes. This is especially useful when operating in a
 public space. Hiding the identity of the publishing nodes prevents
 some forms of "targeting" of high value nodes. However, adversaries
 can attempt various attacks to break the anonymity of the service, or
 to deny it. A list of these attacks and their mitigations are
 described in the following sections.

Huitema & Kaiser Expires December 12, 2016 [Page 20]

Internet-Draft DNS-SD Privacy Extensions June 2016

6.1. Attacks Against the Pairing System

 There are a variety of attacks against pairing systems. They may
 result in compromised pairing keys. If an adversary manages to
 acquire a compromised key, the adversary will be able to perform
 private service discovery according to Section 5.5. This will allow
 tracking of the service. The adversary will also be able to discover
 which private services are available for the compromised pairing.

 To mitigate such attacks, nodes MUST be able to quickly revoke a
 compromised pairing. This is however not sufficient, as the
 compromise of the pairing key could remain undetected for a long
 time. For further safety, nodes SHOULD assign a time limit to the
 validity of pairings, discard the corresponding keys when the time
 has passed, and establish new pairings.

 This later requirement of limiting the Time-To-Live can raise doubts
 about the usability of the protocol. The usability issues would be
 mitigated if the initial pairing provided both a shared secret and
 the means to renew that secret over time, e.g. using authenticated
 public keys.

6.2. Denial of Discovery of the Private Discovery Service

 The algorithm described in Section 5.5 scales as O(M*N), where M is
 the number of pairing per nodes and N is the number of nodes in the
 local scope. Adversaries can attack this service by publishing
 "fake" instances, effectively increasing the number N in that scaling
 equation.

 Similar attacks can be mounted against DNS-SD: creating fake
 instances will generally increase the noise in the system and make
 discovery less usable. Private Discovery Service discovery SHOULD
 use the same mitigations as DNS-SD.

 The attack is amplified because the clients need to compute proofs
 for all the nonces presented in Private Discovery Service Instance
 names. One possible mitigation would be to require that such nonces
 correspond to rounded timestamps. If we assume that timestamps must
 not be too old, there will be a finite number of valid rounded
 timestamps at any time. Even if there are many instances present,
 they would all pick their nonces from this small number of rounded
 timestamps, and a smart client could make sure that proofs are only
 computed once per valid time stamp.

Huitema & Kaiser Expires December 12, 2016 [Page 21]

Internet-Draft DNS-SD Privacy Extensions June 2016

6.3. Replay Attacks Against Discovery of the Private Discovery Service

 Adversaries can record the service instance names published by
 Private Discovery Service instances, and replay them later in
 different contexts. Peers engaging in discovery can be misled into
 believing that a paired server is present. They will attempt to
 connect to the absent peer, and in doing so will disclose their
 presence in a monitored scope.

 The binary instance identifiers defined in Section 5.4 start with 32
 bits encoding the "UNIX" time. In order to protect against replay
 attacks, clients MAY verify that this time is reasonably recent.

 TODO: should we somehow encode the scope in the identifier? Having
 both scope and time would really mitigate that attack.

6.4. Denial of Private Discovery Service

 The Private Discovery Service is only available through a mutually
 authenticated TLS connection, which provides good protections.
 However, adversaries can mount a denial of service attack against the
 service. In the absence of shared secrets, the connections will
 fail, but the servers will expend some CPU cycles defending against
 them.

 To mitigate such attacks, nodes SHOULD restrict the range of network
 addresses from which they accept connections, matching the expected
 scope of the service.

 This mitigation will not prevent denial of service attacks performed
 by locally connected adversaries; but protecting against local denial
 of service attacks is generally very difficult. For example, local
 attackers can also attack mDNS and DNS-SD by generating a large
 number of multicast requests.

6.5. Replay Attacks against the Private Discovery Service

 Adversaries may record the PSK Key Identifiers used in successful
 connections to a private discovery service. They could attempt to
 replay them later against nodes advertising the private service at
 other times or at other locations. If the PSK Identifier is still
 valid, the server will accept the TLS connection, and in doing so
 will reveal being the same server observed at a previous time or
 location.

 The PSK identifiers defined in Section 5.3.1 start with 32 bits
 encoding the "UNIX" time. In order to mitigate replay attacks,
 servers SHOULD verify that this time is reasonably recent, and fail

Huitema & Kaiser Expires December 12, 2016 [Page 22]

Internet-Draft DNS-SD Privacy Extensions June 2016

 the connection if it is too old, or if it occurs too far in the
 future.

 The processing of timestamps is however mitigated by the accuracy of
 computer clocks. If the check is too strict, reasonable connections
 could fail. To further mitigate replay attacks, servers MAY record
 the list of valid PSK identifiers received in a recent past, and fail
 connections if one of these identifiers is replayed.

7. IANA Considerations

 This draft does not require any IANA action. (Or does it? What
 about the _pds tag?)

8. Acknowledgments

 This draft results from initial discussions with Dave Thaler, and
 encouragements from the DNS-SD working group members.

9. References

9.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <http://www.rfc-editor.org/info/rfc2045>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4055] Schaad, J., Kaliski, B., and R. Housley, "Additional
 Algorithms and Identifiers for RSA Cryptography for use in
 the Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile", RFC 4055,
 DOI 10.17487/RFC4055, June 2005,
 <http://www.rfc-editor.org/info/rfc4055>.

 [RFC4075] Kalusivalingam, V., "Simple Network Time Protocol (SNTP)
 Configuration Option for DHCPv6", RFC 4075,
 DOI 10.17487/RFC4075, May 2005,
 <http://www.rfc-editor.org/info/rfc4075>.

https://datatracker.ietf.org/doc/html/rfc2045
http://www.rfc-editor.org/info/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4055
http://www.rfc-editor.org/info/rfc4055
https://datatracker.ietf.org/doc/html/rfc4075
http://www.rfc-editor.org/info/rfc4075

Huitema & Kaiser Expires December 12, 2016 [Page 23]

Internet-Draft DNS-SD Privacy Extensions June 2016

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",

RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <http://www.rfc-editor.org/info/rfc4279>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

9.2. Informative References

 [I-D.ietf-dnssd-push]
 Pusateri, T. and S. Cheshire, "DNS Push Notifications",

draft-ietf-dnssd-push-07 (work in progress), April 2016.

 [I-D.ietf-dprive-dnsodtls]
 Reddy, T., Wing, D., and P. Patil, "DNS over DTLS
 (DNSoD)", draft-ietf-dprive-dnsodtls-06 (work in
 progress), April 2016.

 [I-D.ietf-intarea-hostname-practice]
 Huitema, C., Thaler, D., and R. Winter, "Current Hostname
 Practice Considered Harmful", draft-ietf-intarea-hostname-

practice-02 (work in progress), May 2016.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-13 (work in progress),
 May 2016.

 [KW14a] Kaiser, D. and M. Waldvogel, "Adding Privacy to Multicast
 DNS Service Discovery", DOI 10.1109/TrustCom.2014.107,
 2014, <http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=7011331>.

 [KW14b] Kaiser, D. and M. Waldvogel, "Efficient Privacy Preserving
 Multicast DNS Service Discovery",
 DOI 10.1109/HPCC.2014.141, 2014,
 <http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=7056899>.

https://datatracker.ietf.org/doc/html/rfc4279
http://www.rfc-editor.org/info/rfc4279
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6763
http://www.rfc-editor.org/info/rfc6763
https://datatracker.ietf.org/doc/html/draft-ietf-dnssd-push-07
https://datatracker.ietf.org/doc/html/draft-ietf-dprive-dnsodtls-06
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-hostname-practice-02
https://datatracker.ietf.org/doc/html/draft-ietf-intarea-hostname-practice-02
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-13
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7011331
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7011331
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7056899
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7056899

Huitema & Kaiser Expires December 12, 2016 [Page 24]

Internet-Draft DNS-SD Privacy Extensions June 2016

 [RFC1033] Lottor, M., "Domain Administrators Operations Guide",
RFC 1033, DOI 10.17487/RFC1033, November 1987,

 <http://www.rfc-editor.org/info/rfc1033>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <http://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <http://www.rfc-editor.org/info/rfc2782>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <http://www.rfc-editor.org/info/rfc6762>.

 [RFC7626] Bortzmeyer, S., "DNS Privacy Considerations", RFC 7626,
 DOI 10.17487/RFC7626, August 2015,
 <http://www.rfc-editor.org/info/rfc7626>.

 [RFC7844] Huitema, C., Mrugalski, T., and S. Krishnan, "Anonymity
 Profiles for DHCP Clients", RFC 7844,
 DOI 10.17487/RFC7844, May 2016,
 <http://www.rfc-editor.org/info/rfc7844>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <http://www.rfc-editor.org/info/rfc7858>.

Authors' Addresses

 Christian Huitema
 Microsoft
 Redmond, WA 98052
 U.S.A.

 Email: huitema@microsoft.com

https://datatracker.ietf.org/doc/html/rfc1033
http://www.rfc-editor.org/info/rfc1033
https://datatracker.ietf.org/doc/html/rfc1034
http://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
http://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/rfc2782
http://www.rfc-editor.org/info/rfc2782
https://datatracker.ietf.org/doc/html/rfc6762
http://www.rfc-editor.org/info/rfc6762
https://datatracker.ietf.org/doc/html/rfc7626
http://www.rfc-editor.org/info/rfc7626
https://datatracker.ietf.org/doc/html/rfc7844
http://www.rfc-editor.org/info/rfc7844
https://datatracker.ietf.org/doc/html/rfc7858
http://www.rfc-editor.org/info/rfc7858

Huitema & Kaiser Expires December 12, 2016 [Page 25]

Internet-Draft DNS-SD Privacy Extensions June 2016

 Daniel Kaiser
 University of Konstanz
 Konstanz 78457
 Germany

 Email: daniel.kaiser@uni-konstanz.de

Huitema & Kaiser Expires December 12, 2016 [Page 26]

