
Network Working Group C. Huitema
Internet-Draft Private Octopus Inc.
Intended status: Standards Track D. Kaiser
Expires: September 11, 2019 University of Konstanz
 March 10, 2019

Private Discovery with TLS-ESNI
draft-huitema-dnssd-tls-privacy-00

Abstract

 DNS-SD (DNS Service Discovery) normally discloses information about
 both the devices offering services and the devices requesting
 services. This information includes host names, network parameters,
 and possibly a further description of the corresponding service
 instance. Especially when mobile devices engage in DNS Service
 Discovery over Multicast DNS at a public hotspot, a serious privacy
 problem arises.

 We propose to solve this problem by developing a private discovery
 profile for UDP based transports using TLS, such as DTLS and QUIC.
 The profile is based on using the Encrypted SNI extension. We also
 define a standalone private discovery service, that can be combined
 with arbitrary applications in the same way as DNS-SD.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 11, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Huitema & Kaiser Expires September 11, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft TLS/ESNI Based Private Discovery March 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements . 3

2. Discovery Service Using TLS and ESNI 3
2.1. Discovery Key . 4
2.2. ESNI extension for discovery 5
2.3. Integration with DTLS 5
2.4. Integration with QUIC 7

3. Private Discovery DNS Service 8
4. Security Considerations 8
4.1. Denial of service by spoofed response 9
4.2. Discovery Key compromise 9
4.3. Private Discovery Key compromise 9

5. IANA Considerations . 10
5.1. Experimental use . 10

6. Acknowledgments . 10
7. References . 10
7.1. Normative References 10
7.2. Informative References 11

 Authors' Addresses . 12

1. Introduction

 DNS-SD [RFC6763] over mDNS [RFC6762] enables configurationless
 service discovery in local networks. It is very convenient for
 users, but it requires the public exposure of the offering and
 requesting identities along with information about the offered and
 requested services. Parts of the published information can seriously
 breach the user's privacy. These privacy issues and potential
 solutions are discussed in [KW14a] and [KW14b].

 When analyzing these scenarios in [I-D.ietf-dnssd-prireq], we find
 that the DNS-SD messages leak identifying information such as the
 instance name, the host name or service properties.

 We propose here a discovery solution that can replace DNS-SD in
 simple deployment scenarios, with the following characteristics:

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/rfc6762

Huitema & Kaiser Expires September 11, 2019 [Page 2]

Internet-Draft TLS/ESNI Based Private Discovery March 2019

 1. We only target discovery of peers on the same local network,
 using multicast. We make no attempt at compatibility with the
 server based solutions such as DNSSD over Unicast DNS [RFC6763].

 2. We do not attempt to keep the same formats as mDNS [RFC6762].

 3. We assume a solution that can be integrated in an application,
 without dependency on system support.

 The proposed solution aligns with TLS 1.3 [RFC8446], and specifically
 with transports of TLS over UDP, such as DTLS [I-D.ietf-tls-dtls13]
 or QUIC [I-D.ietf-quic-transport]. The solution uses SNI encryption
 [I-D.ietf-tls-esni].

 The solution assumes that entities who want to be privately
 discovered maintain an asymmetric discovery key pair. The public
 component of that discovery key pair and the service name of the
 entity are provisioned to authorized discovery clients. In this
 document, we will refer to this public component as the "Discovery
 Key" of the server. When needed, we will refer to the private
 component of the key pair as the "Discovery Private Key".

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Discovery Service Using TLS and ESNI

 In the proposed solution, the first packet of a TLS-based UDP
 transport is broadcast or multicast over the local network. These
 packet carry the TLS 1.3 ClientHello message, including an Encrypted
 SNI (ESNI) extension. The ESNI is encrypted with the Discovery Key
 of the requested service.

 The services who are ready to be discovered listend on the broadcast
 or multicast address and check whether the received packets contain a
 TLS 1.3 ClientHello Message and an ESNI extension. If the extension
 can be decrypted with the Private Discovery Key of the local service,
 they set up a connection.

 This mechanism only works with TLS based protocols operating over
 UDP, such as DTLS or QUIC.

https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/rfc6762
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc2119

Huitema & Kaiser Expires September 11, 2019 [Page 3]

Internet-Draft TLS/ESNI Based Private Discovery March 2019

2.1. Discovery Key

 Private discovery relies on the privacy of the server Discovery Key,
 which is used to encrypt the target server name carried in the ESNI
 extension. Clients can only discover a server if they know the
 server's Discovery Key. Servers receiving a properly encrypted
 discovery request do not know the identity of the client issuing the
 request, but they know that the client belongs to a group authorized
 to perform the discovery.

 In the ESNI based specification, the server's Discovery Key plays the
 same role as the ESNI Encryption Key of the client facing server, but
 a major difference is that the Discovery Key is kept private.
 According to standard ESNI, the client facing server publish an ESNI
 encryption key in the DNS. In contrast, the Discovery Key MUST NOT
 be publicly available in the DNS.

 The discovery key is passed to the peer in exactly the same format as
 ESNI:

 struct {
 uint8 checksum[4];
 KeyShareEntry keys<4..2^16-1>;
 CipherSuite cipher_suites<2..2^16-2>;
 uint16 padded_length;
 uint64 not_before;
 uint64 not_after;
 Extension extensions<0..2^16-1>;
 } ESNIKeys;

 This document does not discuss how the Discovery Key is provisioned
 to authorized discovery clients.

 The ESNI extension design assumes that several services are available
 through a single client facing server. These different services have
 different SNI values and length. ESNI pads these SNI to a padded
 length specified for the client facing server, ensuring that third
 parties cannot infer the identity of the service from the length of
 the extension. In our design, requests for multiple services are
 sent over multicast. If different services used different padding
 length, third parties could infer the service identity from the ESNI
 length. To provent this information leakage, services participating
 in private discovery MUST set the padded length to exactly 128 bytes.

Huitema & Kaiser Expires September 11, 2019 [Page 4]

Internet-Draft TLS/ESNI Based Private Discovery March 2019

2.2. ESNI extension for discovery

 The ESNI extension is defined in [I-D.ietf-tls-esni] as:

 struct {
 CipherSuite suite;
 KeyShareEntry key_share;
 opaque record_digest<0..2^16-1>;
 opaque encrypted_sni<0..2^16-1>;
 } ClientEncryptedSNI;

 In standard ESNI usage, the "record_digest" identifies the ESNI
 Encryption Key. Clients using private discovery MUST leave the
 "record_digest" empty, and encode it as a zero-length binary string.
 The ESNI Encryption Key will be the Discovery Key of the target
 server.

 The KeyShareEntry is set in accordance with the ESNI specification.
 It is combined with the server Discovery Key to encrypt the SNI.
 According to the ESNI specification, the encrypted structure
 contains:

 struct {
 ServerNameList sni;
 opaque zeros[ESNIKeys.padded_length - length(sni)];
 } PaddedServerNameList;

 struct {
 uint8 nonce[16];
 PaddedServerNameList realSNI;
 } ClientESNIInner;

 Servers that receive the extension as part of private discovery
 attempt to decrypt the value using their Private Discovery Key. If
 the decryption succeeds, and if the decrypted SNI corresponds to the
 expected value, the server will accept the discovery request.

2.3. Integration with DTLS

 The message flows of DTLS 1.3 [I-D.ietf-tls-dtls13] all start with
 the client sending a TLS ClientHello message. The following figure
 presents a simple DTLS flow using the ESNI extension for private
 discovery:

Huitema & Kaiser Expires September 11, 2019 [Page 5]

Internet-Draft TLS/ESNI Based Private Discovery March 2019

 Client Server

 ClientHello +----------+
 + key_share* | Flight 1 |
 + ESNI --------> +----------+

 ServerHello
 + key_share* +----------+
 {EncryptedExtensions} | Flight 2 |
 {ESNI} +----------+
 {Certificate*}
 <-------- {Finished}
 [Application Data*]

 +----------+
 | Flight 3 |
 {Finished} --------> +----------+
 [Application Data]

 +----------+
 <-------- [Ack] | Flight 4 |
 [Application Data*] +----------+

 [Application Data] <-------> [Application Data]

 The first flight consists of a single UDP packet. In classic DTLS,
 this would be sent to the IP address and UDP port chosen for the
 application. Instead, the client using private discovery MUST sent
 this to the "private discovery" multicast address defined in

Section 5 and to the UDP port chosen for the application.

 The multicast message sent by the client will be received by many
 servers. The servers using private discovery MUST verify that the
 ESNI extension is present. If it is present, each server attempts to
 decrypt the ESNI extension using the local private discovery key, as
 specified in Section 2.2. If the verification succeeds, the server
 proceeds with the connection, and sends the second flight of DTLS
 packets to the IP address and UDP port from which it received the
 client's first flight.

 The client receiving the second flight of messages processe them as
 specified in DTLS 1.3 [I-D.ietf-tls-dtls13]. The client MUST verify
 that the ESNI extension is present, and matches the expected value as
 specified in Section 2.2. If the ESNI extension is absent or does
 not pass verification, the entire flight MUST be ignored. If the
 verification succeeds, the client remembers the IP address and UDP
 port of the server, and uses it for the reminder of the session.

Huitema & Kaiser Expires September 11, 2019 [Page 6]

Internet-Draft TLS/ESNI Based Private Discovery March 2019

 A successful ESNI exchange demonstrtes to the server that the client
 has knowledge of the server discovery key, and to the client that the
 server is in possession of the corresponding private discovery key.
 This is meant to restrict access to a subset of the client and server
 population, but does not replace the need for server authenttication
 and optional client authentication as specified in TLS 1.3.

2.4. Integration with QUIC

 The QUIC Transport uses TLS to negotiate encryption keys. The use of
 TLS in QUIC is specified in [I-D.ietf-quic-tls], and can be
 summarized as follow:

 1. The QUIC connection starts with the client sending an Initial
 message, carrying a TLS ClientHello and its extensions.

 2. The server replies with its own Initial message, carrying the
 server hello and establishing the "handshake" keys used to
 protect the reminder of the TLS 1.3 exchange.

 3. Server and client exchange encrypted Handshake messages to verify
 that the session is properly established and to negotiate the
 encryption keys of the application data.

 4. Server and Client exchange encrypted application messages until
 they decide to close the connection.

 All messages are sent over UDP.

 When using Private Discovery, the client adds an ESNI extension to
 the ClientHello sent in the Initial message. The ESNI extension is
 formated a specified in Section 2.2. In classic QUIC, the Initial
 message would be sent in a UDP packet to the IP address and UDP port
 of the server. Instead, the client using private discovery MUST sent
 this to the "private discovery" multicast address defined in

Section 5 and to the UDP port chosen for the application.

 The multicast message sent by the client will be received by many
 servers. The servers using private discovery MUST verify that the
 ESNI extension is present. If it is present, each server attempts to
 decrypt the ESNI extension using the local private discovery key, as
 specified in Section 2.2. If the verification succeeds, the server
 proceeds with the connection, and sends the next QUIC packets to the
 IP address and UDP port from which it received the client's first
 flight.

 The client receiving the second flight of messages processe them as
 specified in DTLS 1.3 [I-D.ietf-tls-dtls13]. The client MUST verify

Huitema & Kaiser Expires September 11, 2019 [Page 7]

Internet-Draft TLS/ESNI Based Private Discovery March 2019

 that the ESNI extension is present, and matches the expected value as
 specified in Section 2.2. If the ESNI extension is absent or does
 not pass verfication, the entire QUIC connection MUST be ignored. If
 the verification succeeds, the client remembers the IP address and
 UDP port of the server, and uses it for the reminder of the QUIC
 connection.

3. Private Discovery DNS Service

 The mechanisms discussed in Section 2 assume that an application
 based on DTLS or QUIC is modified to enable private local discovery.
 This does not cover all services. The other services can be
 supported by a two-phase process in which each application is paired
 with an implementation of the private discovery service.

 The private discovery service is an implementation of DNS over QUIC,
 as specified in [I-D.huitema-quic-dnsoquic], modified to also
 implement the Private Discovery over Quic defined in Section 2.4.
 The DNS implementation is solely for the purpose of providing an
 equivalent service to DNS-SD.

 The Private Discovery DNS Service is run by the service that wants to
 be discovered. The name of the discovery service is the name of the
 service that needs to be discovered. The client are provisioned with
 the associated Discovery Key. The discovers the Private Discovery DNS
 Service, and can then use it to obtain the DNS records associated
 with the application service: SRV, TXT, A or AAAA records.

4. Security Considerations

 The use of TLS 1.3 and the ESNI extension provides robust defenses
 agaisnt attacks. In particular, Private Discovery benefits from the
 defenses against dictionary attacks and replay attacks built in the
 ESNI design. Protections against a residual DOS attack is discussed
 in Section 4.1.

 The privacy of the discovery relies on keeping secret the discovery
 key of the service. The consequences and partial mitigation of
 leaking the discovery key are discussed in Section 4.2.

 Compromising of the server's private discovery key will allow
 attacker to break the privacy of the discovery, as discussed in

Section 4.3.

Huitema & Kaiser Expires September 11, 2019 [Page 8]

Internet-Draft TLS/ESNI Based Private Discovery March 2019

4.1. Denial of service by spoofed response

 Attackers may try to disrupt a private discovery handshake by sending
 a spoofed Server Hello (DTLS) or a spoofed Server Initial packet
 (QUIC). The client will reject these attempts after noticing that
 the encrypted extensions do not include a proper ESNI extension,
 containing the expected copy of the ESNI nonce.

 Attackers will not succeed spoofing the server, but they could
 succeed in denying the connection if the fake response arrives before
 the response from the actual server, and if the implementation just
 gave up the attempt after failing to validate the first response that
 it received.

 To defend against this attack, implementations SHOULD keep listening
 for responses and attempting validation until they receive at least
 one valid response from the expected server.

4.2. Discovery Key compromise

 The Discovery Key is known by all the authorized clients. If one of
 these clients is compromised, the privacy of the server will be
 compromised: attackers will be able to spoof the authorized client
 and discover whether the server is present on a local network.
 However, the leak can only be exploited in an active attack: the
 attacker must actively set up a connection with the target server.

 The attack is mitigated when the server migrates to a different
 discovery key and restricts the availability of that key to non-
 compromised clients.

 Exploiting a compromized discovery key normally requires that the
 attacker be present on the same link as the target. Attackers might
 try to work around that limitation by sending unicast packet targeted
 at plausible server locations. Servers participating in private
 discovery MUST NOT accept discovery requests arriving from off-link
 sources.

4.3. Private Discovery Key compromise

 The private component of the asymmetric key pair used for discovery
 MUST be kept secret by the server. If it is compromised, attackers
 can process discovery requests and verify that they can be decrypted
 with the server's private discovery key. They could also process
 logs of of old discovery attempts.

 The design provides two mitigations against the consequences of this
 failure:

Huitema & Kaiser Expires September 11, 2019 [Page 9]

Internet-Draft TLS/ESNI Based Private Discovery March 2019

 o The discovery requests do not uniquely identify the client, and
 the attacker will only know that an attempt came from one of the
 authorized clients.

 o The actual communications are protected by TLS, and inherit from
 the forward secrecy properties of TLS 1.3.

5. IANA Considerations

 IANA is required to allocate the IPv6 multicast address FF02::<TBD>
 for use as "Private Discovery Multicast Address" described in this
 document.

5.1. Experimental use

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

 Early experiments MAY use the address FF02::60DB:F6C5. This address
 is marked in the IANA registry as unassigned.

6. Acknowledgments

 [[TODO]]

7. References

7.1. Normative References

 [I-D.huitema-quic-dnsoquic]
 Huitema, C., Shore, M., Mankin, A., Dickinson, S., and J.
 Iyengar, "Specification of DNS over Dedicated QUIC
 Connections", draft-huitema-quic-dnsoquic-06 (work in
 progress), March 2019.

 [I-D.ietf-quic-tls]
 Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

draft-ietf-quic-tls-18 (work in progress), January 2019.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-18 (work
 in progress), January 2019.

https://datatracker.ietf.org/doc/html/draft-huitema-quic-dnsoquic-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-18
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-18

Huitema & Kaiser Expires September 11, 2019 [Page 10]

Internet-Draft TLS/ESNI Based Private Discovery March 2019

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-30 (work in progress),
 November 2018.

 [I-D.ietf-tls-esni]
 Rescorla, E., Oku, K., Sullivan, N., and C. Wood,
 "Encrypted Server Name Indication for TLS 1.3", draft-

ietf-tls-esni-02 (work in progress), October 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

7.2. Informative References

 [I-D.ietf-dnssd-prireq]
 Huitema, C., "DNS-SD Privacy and Security Requirements",

draft-ietf-dnssd-prireq-00 (work in progress), September
 2018.

 [KW14a] Kaiser, D. and M. Waldvogel, "Adding Privacy to Multicast
 DNS Service Discovery", DOI 10.1109/TrustCom.2014.107,
 2014, <http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=7011331>.

 [KW14b] Kaiser, D. and M. Waldvogel, "Efficient Privacy Preserving
 Multicast DNS Service Discovery",
 DOI 10.1109/HPCC.2014.141, 2014,
 <http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=7056899>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-30
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-02
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-02
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6763
https://www.rfc-editor.org/info/rfc6763
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-dnssd-prireq-00
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7011331
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7011331
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7056899
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7056899
https://datatracker.ietf.org/doc/html/rfc6762
https://www.rfc-editor.org/info/rfc6762

Huitema & Kaiser Expires September 11, 2019 [Page 11]

Internet-Draft TLS/ESNI Based Private Discovery March 2019

Authors' Addresses

 Christian Huitema
 Private Octopus Inc.
 Friday Harbor, WA 98250
 U.S.A.

 Email: huitema@huitema.net
 URI: http://privateoctopus.com/

 Daniel Kaiser
 University of Konstanz
 Konstanz 78457
 Germany

 Email: daniel.kaiser@uni-konstanz.de

http://privateoctopus.com/

Huitema & Kaiser Expires September 11, 2019 [Page 12]

