
Network Working Group C. Huitema
Internet-Draft Microsoft
Intended status: Informational E. Rescorla
Expires: September 6, 2015 Mozilla
 J. Iyengar
 Google
 March 5, 2015

DTLS as Subtransport protocol
draft-huitema-tls-dtls-as-subtransport-00.txt

Abstract

 The developers of "user level" transports will benefit from a
 standard implementation of authentication and encryption. This can
 be achieved using DTLS as a sub-transport. Using DTLS enables
 developers to benefit from the investment in TLS, and removes the
 burden and the risks of re-creating similar technology.

 There are several requirements to ensure that DTLS is a suitable sub-
 transport: zero RTT setup, low overhead, and DOS prevention. The IAB
 SEMI workshop outlined other potential requirements: start/stop
 indication, and ability to accept indications from the network. The
 draft presents guidelines for meeting these requirements in a new
 version of DTLS.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2015.

Huitema, et al. Expires September 6, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DTLS as Subtransport March 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements . 3

2. DTLS as a sub transport 3
3. Efficient retransmissions 4
4. Zero-RTT with TLS/1.3 . 5
5. Overhead reduction . 5
6. DOS resilience . 6
7. Connection-id option . 7
8. Start/stop indication . 7
9. Indication verification 8
10. Security Considerations 9
11. IANA Considerations . 10
12. Acknowledgments . 10
13. References . 10
13.1. Normative References 10
13.2. Informative References 10

 Authors' Addresses . 11

1. Introduction

 There is a growing demand to develop "user level" transport,
 motivated by "innovation" and "deployment." The innovation part is
 the desire to get better performance than TCP, or especially the
 combination of TCP and TLS, addressing such issues as zero-RTT setup
 or head of queue blocking. The deployment part is motivated by
 observation that platform upgrades are slow, and typically only reach
 a fraction of the deployed systems. The proposed solution is to
 execute the transport functions in user space, so the transport
 innovation can be distributed with application updates.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Huitema, et al. Expires September 6, 2015 [Page 2]

Internet-Draft DTLS as Subtransport March 2015

 Any transport innovation has to work on top of an encryption layer.
 This is good security practice, and it also prevent middleboxes from
 interfering with the transport functions. This interference with TCP
 is widespread and effectively blocks innovation, making it hard to
 deploy even something as simple as ECN. Encryption prevents the
 middle boxes from twiddling bits in the header. For example,
 Google's QUIC [QUICBLOG]. protocol uses an encryption system that is
 tightly integrated with the transport layer in order to optimize
 performance and reduce the protocol's accessibility to middleboxes.

 QUIC uses a specially designed security layer, but there was a
 consensus in the IAB SEMI workshop [IABSEMI] that we don't want
 multiple applications each designing their specific key exchange and
 encryption algorithms. The natural solution is to base the end-to-
 end transports on a standard security layer, allowing transport
 specialists can worry about efficient retransmission, congestion and
 multiplexing, while security specialists can implement the security
 layer.

 The obvious candidate is DTLS [RFC6347], as the general idea of "TLS
 over UDP" allows us to reuse the TLS experience and the TLS
 implementations. Of course, we may need to work on a new features to
 meet transport requirements.

1.1. Requirements

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2026].

2. DTLS as a sub transport

 Examination of DTLS to the requirements for a subtransport layer
 reveals some areas for improvement.

 Efficient retransmissions: Part of the rationale for doing new
 transports is to explore efficient retransmission strategies, but
 this conflicts with the existing retransmission procedures that
 are embedded in standard DTLS.

 Zero-RTT setup: DTLS/1.2's minimum connection setup requires 1-RTT.
 One of the major performance targets for new transports is low-
 latency, motivating a 0-RTT connection setup.

 Low overhead: DTLS/1.2 record headers include elements like version
 number, epoch, sequence number or clear text length that cause a
 fair bit of overhead in a small UDP datagram. Using some form of
 header compression would reduce that overhead.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc2026

Huitema, et al. Expires September 6, 2015 [Page 3]

Internet-Draft DTLS as Subtransport March 2015

 DOS prevention: TLS over UDP offers a big surface area for DOS
 attacks, as unauthenticated clients can ask a server to perform
 expensive crypto or produce large responses. This is especially
 true if we support 0-RTT. While DTLS has some defenses against
 DoS attacks, they may need to be strengthened.

 connection-id: DTLS/1.2 identifies connections using the 5 tuple.
 Having an independent ID would allow for functionalities similar
 to "TCP multipath." It would also facilitate the work of load
 balancers in front of a server farm.

 Discussions in the IAB SEMI workshop also pointed out that
 middleboxes interaction would be easier to manage if the UDP
 transport had some specific properties:

 Start/stop: Many middleboxes need to assign state to UDP flows. For
 example, NATs need to assign and maintain port mappings. UDP
 flows do not have explicit beginning and end markers similar to
 TCP SYN/FIN/RST flags. In the absence of such flags middleboxes
 have to resort to timer based management. This in turn forces
 applications to use periodic "keep alive" traffic, which is
 inefficient.

 Indication verification: Middleboxes may wish to send informative
 messages similar to ICMP, providing for example indications about
 MTU size or congestion state. Application that receive these
 messages need to differentiate between legitimate data coming from
 network elements "on the path" and fake signals coming from
 attackers. This is easier if the messages coming from the network
 can copy hard to predict header elements like connection-id or
 sequence numbers.

 It is not yet clear whether these features are feasible or
 deployable, but we document them here as an outcome of the IAB SEMI
 discussion.

3. Efficient retransmissions

 Protocols like QUIC implement innovative retransmission strategies,
 combining Forward Error Correction with selective acknowledgements
 and selective retransmissions. DTLS implements a minimalist
 retransmission strategy for the messages that are part of the
 handshake protocol, as explained in section 3.2 of [RFC6347]. This
 creates a tension between adhering to the standard and efficient
 retransmission:

 o One could keep the QUIC retransmission for the handshake packets
 and switch to an innovative transport for the reminder of the

https://datatracker.ietf.org/doc/html/rfc6347#section-3.2

Huitema, et al. Expires September 6, 2015 [Page 4]

Internet-Draft DTLS as Subtransport March 2015

 connection. The downside is that using less efficient transport
 during the handshake risk can cause additional latency, which is
 contrary to the objective of transport innovation.

 o One could design an innovative transmission as a layer under the
 TLS framing, effectively redesign the layering of DTLS. This
 solves the efficiency issues, but expose the clear-text
 transmission controls to interference by middle-boxes, which may
 ultimately prevent innovation.

 o One could consider a hybrid design that allows clear text
 innovation for the initial handshake and encrypted innovation for
 data retransmissions, but no such design is available yet.

 To put it simply, there is no consensus yet on a good solution to
 this problem.

4. Zero-RTT with TLS/1.3

 Probably the biggest requirement is to have a 0-RTT connection setup,
 meaning that the initiator (typically the "client") can start sending
 protected upper-level data in its initial flight of datagrams. In
 general, a 0-RTT handshake requires that both the client and server
 retain state:

 o The client must retain the server's parameters, including a long-
 term cryptographic key.

 o The server must retain enough state to detect replays of the
 client's initial flight.

 In DTLS 1.2 and before, the client and server are both assumed to be
 naive and so the first round-trip is used to establish this state.
 This is still necessary for situations where the client and server
 have never talked before and have no out-of-band communications
 channel, but if both sides are primed, it is possible to define a
 0-RTT handshake as well. Such a mode will be part of (D)TLS 1.3 and
 is currently under development in the TLS WG.

5. Overhead reduction

 DTLS is not generally very aggressive about conserving per-packet
 overhead. The minimum DTLS record adds 13 bytes of header to the
 packet and the common AES-GCM cipher suites add another 8 bytes or a
 total of 21 bytes of header overhead (plus the authentication tag,
 which is required). While these header bytes are not entirely
 redundant (for instance, the sequence number allows the receiver to
 deal with reordered packets) they are largely redundant in the common

Huitema, et al. Expires September 6, 2015 [Page 5]

Internet-Draft DTLS as Subtransport March 2015

 case where the network mostly delivers packets in order essentially
 every record is application data.

 For maximum efficiency, it is desirable to have a mechanism for
 compressing this data. [I-D.modadugu-dtls-short] describes one set
 of techniques for doing so, though research into the optimal method
 is still required.

6. DOS resilience

 Our principal DoS concerns are:

 o Preventing resource over-consumption on the server.

 o Preventing the server from being used as a traffic amplifier.

 Because TLS runs over TCP, it inherits TCP's DoS resistance
 properties: an attacker must first establish a TCP connection before
 he can talk to the TLS implementation. This generally means
 demonstrating that he can receive traffic at the IP address he is
 sending from. This significantly reduces the risk of amplification
 and allows the server to differentially throttle traffic from clients
 which appear to be sending bogus handshakes. The result is partial
 protection against resource consumption attacks, but an attacker can
 still mount such attacks if they control a large number of IP
 addresses.

 Any protocol which runs directly over UDP -- as DTLS does -- not
 inherit these properties. DTLS already has anti-DoS measures in the
 form of a cookie exchange which allows the server to force the client
 to prove reachability at a given address. This is the standard
 technique for addressing resource consumption attacks with such
 protocols and can be deployed differentially (i.e., only when under
 attack) to reduce the latency impact at normal times. Other
 techniques which have been proposed for (D)TLS include computational
 puzzles.

 The DTLS cookie exchange also prevents amplification attacks but
 because the server does not generally know when it is being used in
 this fashion, it is harder to know where to set the protection/
 latency tradeoff. It is currently unclear how important
 amplification protection is (DNS already has significant
 amplification vectors) but if so, possible techniques include longer-
 term cookies and forcing the client to pad its initial flight, thus
 reducing the impact of amplification.

Huitema, et al. Expires September 6, 2015 [Page 6]

Internet-Draft DTLS as Subtransport March 2015

7. Connection-id option

 Many UDP applications identify the application connection implicitly
 from the "five tuple" of source and destination addresses and ports,
 and payload type. There are however several potential advantages to
 having an explicit "connection-id:"

 o Enabling applications to use several ports and path in parallel,
 for performance or resiliency,

 o Enabling seamless continuation of an application over a new port
 if the preceding port becomes unusable.

 The latter problem, ports becoming unusable, is often caused by NAT
 traversal. NAT are known to forget UDP mappings if they don't see
 traffic for some period, or for some other reason such as for example
 hash table collision. Applications must be ready to quickly
 reestablish their connectivity. Using an explicit connection-id
 makes this reestablishment straighforward.

 The connection-id could be encoded as a header parameter, and its use
 negotiated during the initial handshake, using techniques similar to
 the parameters negotiation proposed in [I-D.modadugu-dtls-short].

8. Start/stop indication

 Middleboxes like NAT or firewall assign some state to the UDP flows,
 such as for example a port mapping in a NAT or an explicit port
 opening in a firewall. For TCP flows, middleboxes can examine TCP
 flags and deduce when they see FIN or RST flags that the connection
 is getting closed. They can then free the state associated with the
 TCP flow. There are no such flags in UDP packets. The start of a
 flow can be deduced implicitly from the arrival of a first packet for
 that flow, but the end cannot. Middleboxes have to resort to timer
 based management. The timers have to be short, and this drives
 applications to send frequent keep-alive packets to make sure that
 port mappings and port opening persists. An explicit indication
 would enable more efficient management of resource.

 TLS and DTLS include an explicit close mechanism, in which the
 parties use the TLS Alert protocol and exchange "close notify"
 messages. Sending such an alert message indicates that the sending
 party is done, and will not send any more messages in the TLS
 session. When both parties have sent a "close notify" message, the
 session is effectively terminated.

 If a middlebox could monitor the transmission of "close notify"
 messages, it could effectively decide when resource can be disposed.

Huitema, et al. Expires September 6, 2015 [Page 7]

Internet-Draft DTLS as Subtransport March 2015

 However, the alert protocol is part of the encrypted payload, and the
 only visible indication in the clear text header is a "Content type"
 indication set to "Alert", indicating that the encrypted payload
 contains an Alert message. Closure indication is only one of the
 usages of the Alert protocol, the other usages being error indication
 and warning indication. A middlebox that monitors Alert messages
 will only get an imperfect indication of the connection state:

 o A closure message indicates that one party has finished sending,
 and waits until a similar closure message from the other end to
 terminate the session,

 o An error message indicates that one party detected an error, will
 not send any more data, and will not accept any more data from the
 other party,

 o A warning message indicates that one party detected an anomaly,
 but that the session can continue.

 The middlebox can gain information about the state of a DTLS
 connection by monitoring the Alert messages, even if that information
 is imperfect. Alternatively, we could consider adding an explicit
 FIN bit in a revised clear-text header.

 We should note here that there is a potential tension between the
 management of resource and the identification of sessions discussed
 in Section 7. The use of the context identifier allows sessions to
 spread over multiple addresses and ports, and also allows multiple
 sessions to share the same addresses and ports. If such multiplexing
 is in place, the middleboxes would have to allocate resources per
 context rather than per address and port tuples, but would have no
 guarantee to see all the alert messages for a specific session.

9. Indication verification

 Middleboxes could send messages to applications, using ICMP or
 perhaps simply sending UDP messages using the same five-tuple as the
 application. Assuming that such messages can be delivered, the
 application will have to verify that they come from a legitimate
 source, for example a middlebox on the path providing an indication
 about acceptable MTU.

 There is always a risk that such indications will be misused, and
 that malevolent third parties would try to provide false indications
 in order to disrupt the application. The application must thus be
 able to distinguish between legitimate and spurious indication.

Huitema, et al. Expires September 6, 2015 [Page 8]

Internet-Draft DTLS as Subtransport March 2015

 The middlebox could echo some parameters of the clear text header in
 order to "prove" that they are on path. Typical parameters would be
 the context ID or the sequence numbers. For this to be effective,
 these parameters should be "hard to guess," which implies for example
 unpredictable assignment of context ID or initial sequence numbers.
 Of course, such desire for unpredictability conflicts with the desire
 for low overhead, as compressed headers are inherently easier to
 predict than long numbers.

 One question for any indication verification scheme is how much of
 the connection the middlebox needs to be able to see. For instance,
 if initial sequence numbers or DTLS handshake nonces are used to
 demonstrate that the middlebox is on-path, then the middlebox needs
 to be on-path for the entire connection and maintain connection
 state.

10. Security Considerations

 This document proposes that user level transports use DTLS as a
 component, instead of inventing their own transport. We believe that
 this componentized approach will avoid many of the pitfalls of
 inventing or implementing special purpose security designs. Instead,
 applications will benefit from the experience accured in the design
 and evolution of TLS [RFC5246] and will be able to reuse already
 developed TLS and DTLS implementations.

 We note that there is a definitive DOS exposure when running a
 cryptographic protocol over UDP, and that this exposure is increased
 when we attempt to enable zero RTT setup. The risk and the
 corresponding mitigations are described in Section 6. Here again, we
 believe that it is beneficial to reuse the DOS mitigations developed
 for DTLS and designed for the zero RTT setup options of TLS/1.3
 [I-D.ietf-tls-tls13].

 Any start/stop mechanism solving the requirement presented in
Section 8 opens the door to an attack is similar to but distinct from

 TCP RST attacks, where injected RST packets terminate connections.
 An on path attacker could inject bogus packets with a "Stop"
 indication, to cause connection state to be torn down at middleboxes,
 potentially causing the connection to be abruptly terminated. The
 middleboxes will not be able to separate these injected packets from
 legitimate "Stop" packets sent by the endpoints, because they cannot
 verify the end-to-end authentication of packets.

 Participants to the SEMI workshop [IABSEMI] envisage a "path to
 application" messaging system in which intermediate relays would
 provide information to the application, such as for example MTU size
 or congestion notification. Such messages would not benefit from the

https://datatracker.ietf.org/doc/html/rfc5246

Huitema, et al. Expires September 6, 2015 [Page 9]

Internet-Draft DTLS as Subtransport March 2015

 end to end authentication and encryption provided by DTLS. Allowing
 such messages exposes the application to denial of service attacks.
 Some potential mitigations are described in Section 9

11. IANA Considerations

 This draft references [I-D.modadugu-dtls-short], which proposed four
 new extensions for DTLS. A future version of this draft will very
 likely propose the registration of similar extensions, using the
 mechanisms defined in [RFC5246] and [RFC6066].

12. Acknowledgments

 The inspiration for this draft came from discussions in the IAB SEMI
 workshop, and from studies of the QUIC protocol.

13. References

13.1. Normative References

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, October 1996.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

13.2. Informative References

 [I-D.ietf-tls-tls13]
 Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.3", draft-ietf-tls-tls13-04 (work
 in progress), January 2015.

 [I-D.modadugu-dtls-short]
 Modadugu, N. and E. Rescorla, "Extensions for Datagram
 Transport Layer Security (TLS) in Low Bandwidth
 Environments", draft-modadugu-dtls-short-00 (work in
 progress), March 2006.

 [IABSEMI] Kuehlewind, M. and B. Trammell, "IAB Workshop on Stack
 Evolution in a Middlebox Internet (SEMI)", Jan 2015,
 <https://www.iab.org/activities/workshops/semi/>.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-04
https://datatracker.ietf.org/doc/html/draft-modadugu-dtls-short-00
https://www.iab.org/activities/workshops/semi/

Huitema, et al. Expires September 6, 2015 [Page 10]

Internet-Draft DTLS as Subtransport March 2015

 [QUICBLOG]
 Roskind, J., "Experimenting with QUIC", June 2013,
 <http://blog.chromium.org/2013/06/

experimenting-with-quic.html>.

Authors' Addresses

 Christian Huitema
 Microsoft

 Email: huitema@microsoft.com

 Eric Rescorla
 Mozilla

 Email: ekr@rtfm.com

 Jana Iyengar
 Google

 Email: jri@google.com

http://blog.chromium.org/2013/06/experimenting-with-quic.html
http://blog.chromium.org/2013/06/experimenting-with-quic.html

Huitema, et al. Expires September 6, 2015 [Page 11]

