
DICE R. Hummen, Ed.
Internet-Draft COMSYS, RWTH Aachen
Updates: 5077, 5246 (if approved) J. Gilger
Intended status: Experimental IT-Security, RWTH Aachen
Expires: April 21, 2014 H. Shafagh
 ETH Zurich
 October 18, 2013

Extended DTLS Session Resumption for Constrained Network Environments
draft-hummen-dtls-extended-session-resumption-01

Abstract

 This draft defines two extensions for the existing session resumption
 mechanisms of TLS that specifically apply to Datagram TLS (DTLS) in
 constrained network environments. Session resumption type
 negotiation enables the client and the server to explicitly agree on
 the session resumption mechanism for subsequent handshakes, thus
 avoiding unnecessary overheads occurring with the existing
 specifications. Session resumption without client-side state
 additionally enables a constrained DTLS client to resume a session
 without the need to maintain state while the session is inactive.
 The extensions defined in this draft update [RFC5077] and [RFC5246].

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2014.

Hummen, et al. Expires April 21, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DTLS-Extended-Session-Resumption October 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Session Resumption Type Negotiation 5
2.1. Protocol . 6
2.2. ResumptionType Extension 7

3. Session Resumption Without Client-Side State 8
3.1. Protocol . 8

4. Revised Recommended Ticket Construction 10
5. Security Considerations 12
5.1. Session Resumption Type Negotiation 12

6. IANA Considerations . 12
7. Acknowledgements . 13
8. Changelog . 13
8.1. Version 1 . 13
8.2. Version 0 . 13

9. Informative References 13
 Authors' Addresses . 14

1. Introduction

 The complex processing of DTLS handshake packets and the non-
 negligible computational overhead of cryptographic handshake
 operations - especially in case of public-key cryptography - render
 the use of the DTLS protocol in constrained network environments
 challenging. One of the main goals of the DICE WG therefore is to
 reduce computation and transmission overheads by defining a
 lightweight DTLS profile that considers the special characteristics
 of constrained network environments.

 In addition to these efforts that mainly target the properties of the
 base protocol, DTLS extensions afford a further adaptation of the
 protocol to constrained network environments. Session resumption as

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Hummen, et al. Expires April 21, 2014 [Page 2]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 defined in [RFC5077] and [RFC5246] denotes one of these extensions.
 Session resumption is useful in the following scenarios considering
 constrained environments:

 o On-path soft-state middleboxes: Middleboxes such as stateful
 firewalls may require periodic keep-alive messages to allow for a
 bidirectional packet flow. If application data is transmitted in
 significantly larger time intervals than the keep-alive interval,
 session resumption allows to reduce the overall transmission
 overhead throughout the lifetime of a constrained device by
 tearing down a connection and resuming it when required.

 o Short-lived server sessions: Especially large-scale Internet
 services often employ short-lived server sessions at the security
 layer to efficiently handle a multitude of clients in parallel.
 For periodic application data transfers, this implies that
 constrained clients need to perform the full DTLS handshake on a
 regular basis. With session resumption, constrained clients can
 leverage a less complex abbreviated handshake to resume a session
 at decreased computation and transmission cost.

 o Limited server memory: A constrained server, e.g., a constrained
 CoAP server [I-D.ietf-core-coap], may be equipped with
 insufficient memory resources to handle connections for multiple
 clients in parallel. Session resumption allows to efficiently
 manage the limited memory for the per session security context by
 tearing down and resuming a session when required.

 However, not surprisingly, the existing session resumption
 specifications have not specifically been designed with constrained
 devices (client and/or server) and networks in mind. More precisely,
 the abbreviated handshake in [RFC5246] requires both communication
 end-points to store session state across connections
 opportunistically. As a result of this opportunism, a constrained
 device may store its session state without a return on its memory
 investment if the DTLS peer did not maintain session state across
 connections as well. This is due to the lack of explicit session
 resumption signaling during the full handshake.

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Hummen, et al. Expires April 21, 2014 [Page 3]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 [RFC5077] enables a DTLS server to offload its state to the DTLS
 client for safe-keeping while the session is inactive. This
 mechanism largely supports the resource asymmetry when a constrained
 DTLS server communicates with an unconstrained DTLS client. However,
 it falls short for the reverse resource asymmetry, i.e., when a
 constrained DTLS client communicates with an unconstrained DTLS
 server. To leverage the vast resource difference between the DTLS
 client and the DTLS server in constrained network environments, there
 is the additional need for session resumption without client-side
 state.

 Moreover, the roles of a DTLS client and a DTLS server may not always
 be readily apparent. For example, a CoAP server may not be
 restricted to the single role of a DTLS server, but may need to re-
 establish connections to other nodes due to asynchronous
 communication as provided by the CoAP Observe extension
 [I-D.ietf-core-observe]. In such situations, the CoAP server would
 act as a DTLS client. Hence, session resumption with state
 offloading also has to cover this interchangeability in roles at the
 DTLS layer. However, this is currently not possible when purely
 relying on session resumption as defined in [RFC5077].

 Finally, the recommended ticket structure for stored session state as
 defined in [RFC5077] does not yet fully consider constrained network
 environments. As a result, especially certificate-based
 authentication leads to large ticket structures if the
 recommendations are followed. This in turn considerably increases
 transmission and memory overhead, thus requiring revised
 recommendations for constrained network environments.

 To overcome the above shortcomings in constrained network
 environments, this document proposes two extensions for the existing
 session resumption mechanisms:

 1. session resumption type negotiation, and

 2. session resumption without client-side state.

 Session resumption type negotiation enables the DTLS peers to
 explicitly negotiate the use and the type of the session resumption
 mechanism for the subsequent DTLS handshakes. As a result,
 opportunistic storing of session state is no longer required and an
 agreement for a specific state offloading type becomes possible.
 Moreover, this document specifies the required handshake signaling
 for session resumption without client-side state. This enables
 unconstrained DTLS servers to store session state on behalf of
 constrained DTLS clients. In combination with the existing session
 resumption extension specified in [RFC5077], this also allows for

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

Hummen, et al. Expires April 21, 2014 [Page 4]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 session resumption when the client and server roles change at the
 DTLS layer.

 Regarding the proposed protocol extensions, this document aims at
 keeping the changes to [RFC5077] minimal. To this end, the existing
 SessionTicket extension and the NewSessionTicket message are reused.
 Moreover, while this document only refers to the DTLS protocol, the
 defined extensions are similarly applicable to the TLS protocol.

2. Session Resumption Type Negotiation

 Regarding session resumption with an abbreviated DTLS handshake as
 defined in [RFC5246], i.e., when both peers maintain session state
 across connections, DTLS currently neither provides a guarantee to
 the client nor to the server during the full handshake that the peer
 is in fact willing to store session state beyond the lifetime of the
 current connection. Specifically, the DTLS peers only discover
 during the subsequent handshake if both of them kept their session
 state for session resumption. However, this delayed signaling may
 lead to a constrained device needlessly occupying its constrained
 memory resources with state information while the session is
 inactive.

 In case of session resumption without server-side state [RFC5077],
 the client already signals its support for this extension early
 during the initial full handshake by including the SessionTicket
 extension in the ClientHello message. The server acknowledges its
 own support by including the SessionTicket in the ServerHello
 message. Towards the end of the full handshake, the server then
 offloads its state to the client by means of the NewSessionTicket
 message. Due to this explicit negotiation in the current handshake,
 the client and the server do not store session state unnecessarily.

 With the introduction of a third session resumption type in this
 document, i.e., session resumption without client-side state (see

Section 3), this simple signaling mechanism introduced in [RFC5077]
 no longer suffices to clearly differentiate between the available
 session resumption types early during the Hello-phase of the DTLS
 handshake. Hence, additional signaling is required when reusing the
 SessionTicket extension for the signaling of session resumption
 without client-side state.

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

Hummen, et al. Expires April 21, 2014 [Page 5]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 To explicitly signal the use of session resumption and to
 differentiate between the different state offloading types, this
 document defines a new session resumption type negotiation extension
 for the ClientHello and ServerHello messages, i.e., the
 ResumptionType extension. This ResumptionType extension enables the
 DTLS peers to clearly indicate which of the three available
 resumption types they support:

 1. The regular abbreviated handshake (with client & server state),

 2. session resumption without client-side state, and

 3. session resumption without server-side state.

 The integration of this extension in the DTLS handshake and the
 extension structure are defined in the following sections.

2.1. Protocol

 The DTLS client and server use the ResumptionType extension in order
 to negotiate the session resumption type for the subsequent
 handshakes. The remaining handshake concludes as originally
 specified for the negotiated session resumption type. Hence, the
 session resumption type negotiation extends, but does not modify
 existing DTLS session resumption mechanisms.

 Client Server
 ------ ------

 ClientHello
 (ResumptionType extension) -------->

 <-------- HelloVerifyRequest

 ClientHello
 (ResumptionType extension) -------->

 ServerHello
 (ResumptionType extension)
 <-------- ...

 ...

 Figure 1: Message Flow for Negotiating the Session Resumption Type
 during a DTLS Handshake

 The client adds the ResumptionType extension to its ClientHello
 message and indicates its supported session resumption types in the

Hummen, et al. Expires April 21, 2014 [Page 6]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 order of preference. The server concludes the negotiation by
 selecting its preferred session resumption type considering the
 preference of the client. It signals the chosen session resumption
 type in the ResumptionType extension of the ServerHello message.

 Each ResumptionType negotiation refers to the subsequent session
 resumptions. Hence, a session resumption handshake MAY omit the
 session resumption type negotiation. In this case, both client and
 server simply keep using the previously negotiated session resumption
 type, as long as the client and server roles have not changed.
 However, it is important to note that both, client and server, can
 resume the same DTLS session. Hence, if the roles of the client and
 the server have changed when the session is resumed, the
 ResumptionType implicitly adapts accordingly in order to keep storing
 session state at the same communication end-point as negotiated
 before. More precisely, in case of a negotiated session resumption
 without client-side state, state offloading follows the specified
 signaling of session resumption without server-side state. A
 negotiated session resumption without server-side state adapts vice
 versa. If both peers maintain session state with the regular
 abbreviated handshake, the change in roles does not impact this
 resumption type.

2.2. ResumptionType Extension

 The ResumptionType extension is based on [RFC6066]. The
 "extension_data" field of this extension SHALL contain
 "ResumptionTypeList" where:

 enum {
 abbreviated(0),
 without_client_state(1),
 without_server_state(2), (255)
 } ResumptionType;

 struct {
 ResumptionType resumption_type_list<1..3>
 } ResumptionTypeList;

 The ResumptionType extension may be sent in the ClientHello and
 ServerHello messages. The client adds the ResumptionType extension
 to the ClientHello message. It thereby orders the resumption types
 by preference. When receiving the ResumptionType extension, the
 server select its preferred session resumption type considering the
 indicated preference of the client. The server then signals the
 chosen session resumption type in the ResumptionType extension of the
 ServerHello message. Thus, the ResumptionType extension in the

https://datatracker.ietf.org/doc/html/rfc6066

Hummen, et al. Expires April 21, 2014 [Page 7]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 ServerHello message MUST only contain a single session resumption
 type.

 The ResumptionType extension has been assigned the number of "TBD".

3. Session Resumption Without Client-Side State

 Traditional client-server communication protocols and architectures
 typically make the assumption of a number of clients opening
 connections to a single more powerful server. Scaling the system
 means to ensure that the server can handle the load of additional
 clients. With this mindset, [RFC5077] enables a DTLS server to
 remain stateless while the session is inactive by offloading its
 session state to the DTLS client.

 However, in the domain of constrained network environments, not only
 do some devices have vastly different capabilities and resources,
 they regularly take the role of both client and server. In terms of
 higher-layer protocols such as CoAP, the distinction between client
 and server may still be intact while on the lower layers a device
 will have to accept inbound as well as establish outbound
 connections. This fact blurs the distinction between client and
 server roles at the DTLS layer.

 For the communication of two devices with highly differing
 capabilities and resources, e.g., an unconstrained Internet host and
 a constrained device, enabling the constrained device to save scarce
 memory resources may actually help the overall system, regardless of
 whether it is acting as a server or a client. For example, a memory-
 constrained client may be able to maintain several connections
 sequentially, but not in parallel. Likewise, a CoAP server may take
 the role of a DTLS server during the initial session establishment,
 but re-establish the session as a DTLS client due to the asynchronous
 communication with CoAP Observe. To support these and other
 scenarios, this document introduces session resumption without
 client-side state in addition to the session resumption mechanisms
 defined in [RFC5077] and [RFC5246].

3.1. Protocol

 For session resumption without client-side state, the DTLS client and
 server first agree on this session resumption type with a mandatory
 session resumption type negotiation in the full handshake. The
 client then sends its encrypted session state to the server.

 Client Server
 ------ ------

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5246

Hummen, et al. Expires April 21, 2014 [Page 8]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 ClientHello
 (ResumptionType extension)
 (empty SessionTicket extension) -------->

 <-------- HelloVerifyRequest

 ClientHello
 (ResumptionType extension)
 (empty SessionTicket extension) -------->

 ServerHello
 (ResumptionType extension)
 (empty SessionTicket extension)
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone

 Certificate*
 ClientKeyExchange
 CertificateVerify*
 NewSessionTicket
 [ChangeCipherSpec]
 Finished -------->

 [ChangeCipherSpec]
 <-------- Finished

 Application Data <-------> Application Data

 Figure 2: Message Flow for Full Handshake Issuing New Session Ticket

 In the full DTLS handshake, the ClientHello message contains a
 ResumptionType extension indicating the willingness of the client to
 perform session resumption without client-side state. The
 ClientHello message additionally contains an empty SessionTicket
 extension. This extension is defined in Section 3.2 of [RFC5077].

 If supported and preferred by the server, the server echoes back this
 type in the ResumptionType extension of the ServerHello reply. The
 client then sends its encrypted session state to the server in the
 NewSessionTicket message of the fifth message flight. The ticket
 contains the necessary information for the client to resume the
 session at a later point in time. The NewSessionTicket message is
 defined in Section 3.3 of [RFC5077].

 Client Server
 ------ ------

https://datatracker.ietf.org/doc/html/rfc5077#section-3.2
https://datatracker.ietf.org/doc/html/rfc5077#section-3.3

Hummen, et al. Expires April 21, 2014 [Page 9]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 ClientHello
 (ResumptionType extension)
 (empty SessionTicket extension) -------->

 ServerHello
 (ResumptionType extension)
 (SessionTicket extension)
 [ChangeCipherSpec]
 <-------- Finished

 NewSessionTicket
 [ChangeCipherSpec]
 Finished -------->

 Application Data <-------> Application Data

 Figure 3: Message Flow for Abbreviated Handshake Using New Session
 Ticket

 When the stateless client subsequently connects to the same server,
 it is oblivious of the previous full handshake. Hence, the
 ClientHello message in the abbreviated handshake is equal to the full
 handshake. On receipt of the ClientHello message, the server tries
 to re-identify the client (e.g. based on the source IP address or
 other identifying information) and searches for a matching session
 ticket. If it finds a matching ticket, it sends the stored session
 ticket to the client. To this end, the server adds the SessionTicket
 extension with the corresponding session ticket to its ServerHello
 reply.

 If the client is able to authenticate and to decrypt the
 SessionTicket received by the server, it resumes the previous
 session. The client can additionally send its new session state in
 the NewSessionTicket message for the subsequent handshake.

4. Revised Recommended Ticket Construction

Section 4 of [RFC5077] recommends a ticket construction that may lead
 to an excessive ticket size for constrained network environments.
 This recommended ticket construction, for example, includes an entire
 certificate chain as the client identity in case of certificate-based
 authentication. The aim of this section is to provide revised
 recommendations for the ticket construction that take device and
 network constraints into account.

 As defined in [RFC5077], the NewSessionTicket handshake message
 contains a lifetime value and a session ticket. The lifetime
 indicates the number of seconds until the ticket expires relative to

https://datatracker.ietf.org/doc/html/rfc5077#section-4
https://datatracker.ietf.org/doc/html/rfc5077

Hummen, et al. Expires April 21, 2014 [Page 10]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 the time of ticket issuing. The ticket structure is opaque to the
 peer storing the ticket while the session is active. Only the ticket
 issuer needs to access the session ticket information. Hence, the
 specific structure of the ticket is not subject to interoperability
 concerns.

 The revised session ticket has the following structure:

 struct {
 opaque key_name[8];
 opaque iv[16];
 opaque encrypted_state<0..2^16-1>;
 opaque ccm_auth_tag[8];
 } ticket;

 Regarding the above structure, key_name refers to the key used by the
 ticket issuer to protect the confidentiality and integrity of the
 offloaded session state information. To allow for early detection of
 forged session tickets during the session resumption handshake, the
 key_name SHOULD be generated randomly. The ticket issuer MUST take
 care that it does not use the same key_name for different keys.

 The session state information of the revised ticket is protected by
 AES CCM with an 8 byte authentication tag (see [RFC3610]). The
 integrity protection includes the key_name and the encrypted_state.
 The key_name and iv are transmitted in plain. The shorter
 authentication tag compared to the recommendation in [RFC5077]
 denotes a trade-off between a lower ticket expansion and a higher
 probability of forgery. Moreover, with AES CCM, the stateless peer
 only needs to maintain a single 128-bit key instead of one 128-bit
 key for encryption and one 256-bit key for authentication purposes.

 The StatePlaintext structure describes the unencrypted session state
 information carried in a session ticket. In this document, we define
 a new structure for the peer_identity, which is called
 client_identity in [RFC5077]. The renaming was deemed necessary due
 to the fact that a ticket can now be generated by a client as well as
 a server.

 struct {
 ProtocolVersion protocol_version;
 CipherSuite cipher_suite;
 CompressionMethod compression_method;
 opaque master_secret[48];
 PeerIdentity peer_identity;
 uint32 timestamp;
 } StatePlaintext;

https://datatracker.ietf.org/doc/html/rfc3610
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077

Hummen, et al. Expires April 21, 2014 [Page 11]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 enum {
 anonymous(0),
 certificate_based(1),
 psk(2)
 } PeerAuthenticationType;

 struct {
 PeerAuthenticationType peer_authentication_type;
 select (PeerAuthenticationType) {
 case anonymous: struct {};
 case certificate_based:
 uint32 certificate_lifetime_hint;
 case psk:
 opaque psk_identity<0..2^16-1>;
 };
 } PeerIdentity;

 Here, the certificate_lifetime_hint indicates how long the validated
 certificate chain remains valid. To this end, the
 certificate_lifetime_hint holds the minimum lifetime for all
 certificates in a chain in seconds. If the time indicated in the
 lifetime hint is exceeded, a full handshake MUST be performed.
 Additional information may need to be added to the ticket structure
 in future revisions of this document in order to enable a state-
 offloading peer to validate the certificate status via a Certificate
 Revocation List (CRL) or the Online Certificate Status Protocol
 (OCSP) during the session resumption handshake.

5. Security Considerations

 Session resumption without client-side state as defined in this
 document is strongly based on [RFC5077]. As such, the security
 considerations discussed in Section 5 of [RFC5077] apply here as
 well. Additional security considerations stem from the introduction
 of the new ResumptionType extension.

5.1. Session Resumption Type Negotiation

 The ResumptionType extension is part of the regular DTLS handshake
 and thus covered by the hash in the Finished message. Hence, an on-
 path attacker cannot enforce a particular session resumption type
 without the peers noticing.

6. IANA Considerations

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077#section-5

Hummen, et al. Expires April 21, 2014 [Page 12]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 This document specifies the new ResumptionType extension for DTLS.
 The corresponding IANA considerations will be addressed in a future
 version of this document.

7. Acknowledgements

 The authors would like to thank Shahid Raza for the discussion and
 comments regarding the extensions defined in this document. We
 especially acknowledge the prototyping and implementation efforts of
 Hossein Shafagh that confirm the feasibility of the proposed
 extensions in constrained network environments. Finally, the authors
 appreciate the feedback and suggestions of Sandeep Kumar. This work
 is funded by the DFG Cluster of Excellence on Ultra High- Speed
 Mobile Information and Communication (UMIC).

8. Changelog

8.1. Version 1

 - Add scenarios where session resumption is beneficial

 - Add section on ticket construction

 - Minor editorial changes

8.2. Version 0

 - Initial version

9. Informative References

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., and C. Bormann, "Constrained
 Application Protocol (CoAP)", draft-ietf-core-coap-18
 (work in progress), June 2013.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP", draft-ietf-

core-observe-08 (work in progress), February 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with
 CBC-MAC (CCM)", RFC 3610, September 2003.

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-18
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-08
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-08
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3610

Hummen, et al. Expires April 21, 2014 [Page 13]

Internet-Draft DTLS-Extended-Session-Resumption October 2013

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

Authors' Addresses

 Rene Hummen (editor)
 Chair of Communication and Distributed Systems, RWTH Aachen
 Ahornstrasse 55
 Aachen 52074
 Germany

 Email: hummen@comsys.rwth-aachen.de
 URI: http://www.comsys.rwth-aachen.de/team/rene-hummen/

 Johannes Gilger
 Research Group IT-Security, RWTH Aachen
 Mies-van-der-Rohe Strasse 15
 Aachen 52074
 Germany

 Email: gilger@itsec.rwth-aachen.de
 URI: http://itsec.rwth-aachen.de/people/johannes-gilger/

 Hossein Shafagh
 ETH Zurich
 Universitaetstrasse 6
 Zurich 8092
 Switzerland

 Email: shafgah@inf.ethz.ch
 URI: http://www.inf.ethz.ch/~mshafagh/

https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
http://www.comsys.rwth-aachen.de/team/rene-hummen/
http://itsec.rwth-aachen.de/people/johannes-gilger/
http://www.inf.ethz.ch/~mshafagh/

Hummen, et al. Expires April 21, 2014 [Page 14]

