
Workgroup: IPv6 Operations

Internet-Draft: draft-hunek-v6ops-nat64-srv-04

Published: 11 December 2022

Intended Status: Standards Track

Expires: 14 June 2023

Authors: M. Hunek

Technical University of Liberec

NAT64/DNS64 detection via SRV Records

Abstract

This document specifies how to discover the NAT64 pools in use and

DNS servers providing DNS64 service to the local Nodes. The

discovery made via SRV records allows the assignment of priorities

to the NAT64 pools and DNS64 servers. It also allows Nodes to have

different DNS providers than NAT64 providers while providing a

secure way via DNSSEC validation of provided SRV records. This way,

it provides DNS64 service regardless of DNS operator and DNS

transport protocol.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 June 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Terminology

3. Problems with Current Solutions

3.1. DNS-based method

3.2. Methods based on other protocols

4. Local domain detection

5. NAT64 service SRV record

6. DNS64 service SRV record

7. Node Behavior

7.1. Interaction with other methods

8. Example

8.1. Example of negative records

9. Acknowledgements

10. IANA Considerations

11. Security Considerations

12. References

12.1. Normative References

12.2. Informative References

Author's Address

1. Introduction

The slower than expected adoption of the IPv6 resulted in the need

for reliable transition mechanisms that shut down legacy protocols

in the early adopters' network without waiting for latecomers. The

transition mechanisms like NAT64/DNS64 or 464XLAT [RFC6877] are

essential in the transition between dual-stack networks and IPv6-

only networks while not sacrificing the accessibility of the IPv4-

only services. It is essential for these transition mechanisms to

reliably and securely detect prefixes used for translation. Failing

to do so, the IPv4-only services would not be accessible, or the

traffic for these services could be kidnapped.

There are multiple solutions for detecting NAT64 prefixes, but none

of those are without problems and can fit different applications'

needs. This document describes a new DNS-based method that could

replace the method standardized by [RFC7050] and lately updated by

[RFC8880], as this method is incompatible with DNSSEC and does have

unrealistic prerequisites.

This document is not proposing where the DNS64 synthesis should take

place. It only provides a secure way to transmit information about

Pref64::/n and inform a Node about the DNS recursive resolvers

¶

¶

¶

providing the DNS64 service. A Node can use such information to

perform DNS64 synthesis locally, set up the CLAT portion of the

464XLAT [RFC6877], or redirect DNS queries for non-existing AAAA

records to the resolver providing the DNS64 service.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Terminology

CLAT: Customer-side translator as defined in [RFC6877].

Node: Either physical device or an application capable of performing

DNS queries.

NAT64 FQDN: a fully qualified domain name (FQDN) for a NAT64

protocol translator.

Pref64::/n: a IPv6 prefix used for IPv6 address synthesis [RFC6146].

Pref64::WKA: an IPv6 address consisting of Pref64::/n and WKA at any

of the locations allowed by RFC 6052 [RFC6052].

Secure Channel: a communication channel a Node has between itself

and a DNS64 server protecting DNS protocol-related messages from

interception and tampering. The Channel can be, for example, IPsec-

based virtual private network (VPN) tunnel or a link-layer utilizing

data encryption technologies.

Well-Known IPv4 Address (WKA): an IPv4 address that is well-known

and present in an A record for the well-known name as defined in

[RFC7050].

3. Problems with Current Solutions

For means of comparison, current solutions are split into two

groups. The first one is the DNS-based solutions and the second one

are solutions based on other protocols.

3.1. DNS-based method

The DNS based method is represented by the current method of

[RFC7050] updated by the [RFC8880]. This method uses the Well-Known

Name 'ipv4only.arpa.' with only an A record to detect DNS64 service.

As this method depends on a specific DNS64 capable resolver with a

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

specific Pref64::/n, a Node has to use the resolver provided by the

NAT64 service provider - at least for the Pref64::/n detection.

Furthermore, information about the Pref64::/n in use is distributed

only locally, so the third-party resolvers have no information about

it, so they cannot provide DNS64 service for them.

With the introduction of the DNS-over-HTTPS (DoH) [RFC8484], the

introduction of the third-party resolver made the [RFC7050] unusable

for Nodes using DoH. There is a quick fix provided by the [RFC8880]

that the Well-Known name should be treated differently - resolved by

autoconfigured resolver on a specific outbound interface only.

However, this would mean that the application/system stub resolver

has to keep track of the source of configured DNS resolvers, which

may be an unrealistic expectation.

Another design property of the [RFC7050] is its incompatibility with

the DNSSEC. In order for [RFC7050] to work, the DNSSEC has to be

turned off, and even the detection phase of this method could not

use it to verify the provided information. As the network operator

does not own the 'arpa.' domain, it cannot properly sign the AAAA

record for the Well-Known Name. Because of it, the first step of the

Pref64::/n detection is always insecure.

A Node can still do the DNS64 synthesis locally and verify the A

records by the DNSSEC, but it is performing the synthesis based on

information obtained via the insecure method ([RFC7050]/[RFC8880]) -

the Pref64::/n is not and cannot be secured by the DNSSEC.

In order for [RFC7050] method to be secure, this method requires

these prerequisites:

DNSSEC signed NAT64 FQDN

Corresponding PTR

Secure Channel between Node and resolver

Trusted domain list

No user input

The [RFC8880] adds another set of prerequisites:

Stub resolver must distinguish between configuration sources of

recursive DNS

Only autoconfiguration sources can provide recursive DNS to

resolve Well-Known Name

Recursive DNS resolver is interface specific

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

*

¶

* ¶

Some of these listed prerequisites cannot be achieved in certain

networks without prior provisioning of the Node. This includes

recommended secure channel between a Node and DNS64 recursive

resolver on shared network segments and the Trusted Domain List

mandatory requirement that implicitly cannot be entered by a user.

As not every Node is provisioned by a network operator, especially

in smaller networks, and the generation process of the Trusted

Domain List is not defined. The implementations of the [RFC7050]

seems to ignore this requirement. However, without it, these

implementations are insecure. This is due to the fact that the path

between a Node and a resolver cannot be secured by the DNSSEC, and

without Trusted Domain List, any arbitrary data can be injected into

a Node configuration.

Requirements of the [RFC8880] are also hard to implement strictly

according to standard. The user-space application vendor that

implements its own stub resolver would like to implement [RFC8880]

it would require access to the information about network

configuration to keep track of which recursive DNS server has been

received from which interface and from which protocol. Presenting

such information to the user-space is not typical and requires

system-level changes. Furthermore, when strictly following the

[RFC8880], the network cannot use static configuration to have NAT64

functionality autoconfigured from the DNS.

3.2. Methods based on other protocols

There are other solutions for detecting Pref64::/n based on various

protocols. Namely [RFC7225], [RFC8115] and [RFC8781]. Regardless of

the protocol used, these solutions have some common properties that

limit their user-space use. If an application vendor would like to

implement any of these methods, it would need to include a client

implementation of an underlying protocol, or the system would need

to provide an interface to obtain Pref64::/n detected by these

methods to the user-space application. This is much harder than

making a DNS query inside an application.

Another common property of these methods is an expectation of local

DNS64 synthesis or CLAT presence on a Node. This may be the case for

some Nodes, but others may depend on this functionality from the

DNS64 resolver. For such Nodes, the DNS-based detection mechanism

could be the preferred solution.

It is fair to say that these methods are viable solutions for

system-level Pref64::/n detection - implementations of a system DNS

stub resolver or CLAT daemon. These methods are not so easy to

implement for user-space applications and daemons that are not so

tightly integrated into an operating system.

¶

¶

¶

¶

¶

4. Local domain detection

The Node should perform detection of the domain used by the network

operator. A Node MAY use any source of such information, but a Node

implementing the method described in this document MUST be able to

use the PTR record for Node's unicast address as one of such source.

A network operator that uses the method described in this document

to distribute NAT64 configuration to Nodes connected to its network

MUST provide a PTR record for every IPv6 address handed to the Node.

The PTR record MUST have valid DNSSEC signature and MUST point to

securely delegated zone with DNSSEC signed NAT64 SRV record. The SRV

record itself MUST point to DNSSEC signed AAAA record and MAY also

point to DNSSEC signed A record.

Both Node and a network operator MAY use other sources of

information about a local domain. If they decide to do so, the

channel to provide such information MUST be secured against

undetected data manipulation, as these sources may not provide the

same level of security as the DNSSEC signed PTR record.

Other sources of information about local domain MAY include (but are

not limited to):

Node's FQDN

Router Advertisement DNSSL option [RFC8106]

DHCPv6 options: 57, 24, 39, 74 or 118

At least when detection of the local domain is done by the PTR

record, a Node MUST consider not only its FQDN as the detected local

domain. When there is no SRV record associated with the detected

domain name, a Node MUST disregard the lowest level domain (part of

the domain name until the first dot) and repeat the detection

process. This MUST be repeated until there is an SRV record

associated with the domain name (even the empty "." one) or until

the top level domain for the respective FQDN is reached. This might

be the second level domain, but it can also be the third level.

Implementers MAY use tools like the Mozilla public suffix list

([PubSuffix]) to achieve that. The same process MAY be deployed for

other domain detection sources as well.

If a Node has more than one global IPv6 address, it MUST run PTR

resolution for every address with a stable suffix. If a Node uses

temporary address suffixes, a Node SHOULD perform just one PTR

resolution for every network prefix. If a Node is using both stable

suffixes and temporary suffixes in a single network prefix, only the

stable ones MUST be used for PTR resolution.

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

5. NAT64 service SRV record

This document specifies two new well-known SRV records. The one for

Pref64::/n which Node MUST implement:

_nat64._ipv6.Name TTL Class SRV Priority Weight Port Target

The TTL, Class, Priority, and Weight follow the same scheme as

defined in [RFC2782] and have their standard meaning. The service

name follows the naming convention defined in [RFC6763].

Port: IPv6 as L3 protocol does not use port numbers. Because of

that, this field SHOULD be either set to zero or SHOULD be used to

indicate the length of network prefix length in both IPv6 and IPv4

protocol, used for NAT64. In such a case, the port 16b integer MUST

be constructed by directly appending IPv4 pool prefix length after

the IPv6 prefix length decimally. Usually, this would mean 9632,

stating that the IPv6 prefix with a length of /96 is translated into

a single IPv4 address (/32).

Target: MUST point to AAAA record formed from Pref64::/n prefix and

WKA same way as in [RFC7050] (Pref64::WKA). The target MAY also

point to A record, in which case it SHOULD point to the IPv4 address

used for NAT64 (or base address of the NAT64 IPv4 prefix). A network

operator MAY indicate to Node that NAT64 service is not provided by

putting root domain target (".") into the SRV record. The Port field

value should be set to zero for such a record, and Node MUST stop

further Pref64::/n detection for a given domain.

Note: The target MAY also point to AAAA record of Any-Source

Multicast prefix or Source-Specific Multicast prefix, similarly to

[RFC8115] this MAY be used to indicate a Node prefix used for

multicast translation. For this reason, a Node MUST check address

type before its use. One SRV record MUST NOT combine unicast and

multicast targets, and in the case of a multicast target, the Port

field value MUST be set to a value of 9600, and A record target MUST

be ignored by a Node.

6. DNS64 service SRV record

The second SRV record is for the discovery of the DNS64 service.

Support of this record is OPTIONAL, but Node SHOULD implement it.

_dns64.Protocol.Name TTL Class SRV Priority Weight Port Target

Record informs about location of DNS64 service. This record might be

used if the network operator does not want to deploy DNS64 in their

main DNS infrastructure. A DNS64 SRV record follows the rules

specified by [RFC2782] and does not modify the meaning of any field.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Server provided by this record SHOULD only be used for domain names

which have returned NODATA for AAAA record and for A record queries

when a Node is not performing DNS64 function and is not using CLAT.

7. Node Behavior

In the initial stage of the Node connected to the network - after

the Node is configured with an IP address; the Node MUST get local

domains used in the network. The method of obtaining such

information is described in the section Local domain detection. When

no local domain can be discovered, the Node SHOULD continue NAT64/

DNS64 detection by other means.

After the list of local domains has been established, the Node MUST

query for a NAT64 SRV record for every domain in the list. The

result of such queries SHOULD be ordered by following the rules of

[RFC2782]. When multiple records have equal values of both priority

and weight, the records SHOULD maintain the same order as its domain

in the discovered domain list.

If a Node is not configured to perform DNS64 address synthesis and

is not using CLAT, it SHOULD perform a query for DNS64 SRV record

for every discovered domain with NAT64 SRV record. If such a record

is obtained, the Node SHOULD use preferred target of DNS64 SRV

record to query for FQDNs without AAAA record - when Node received

NODATA response for its query. Similarly, such Node SHOULD prefer

target of DNS64 SRV record for any A record query (like caused by

Happy Eye-Balls).

If the Node can validate DNS records via DNSSEC, the Node MUST

perform validation of NAT64/DNS64 SRV record. The default behavior

of Node SHOULD be to ignore any NAT64/DNS64 SRV records which cannot

be validated or did not pass the validation.

Any information received from DNS MUST respect TTL of received

records. The Node MUST perform a new detection before currently used

information expires. This also applies to information received from

other sources that include expiration.

7.1. Interaction with other methods

Proposed method does not aim to replace all other Pref64::/n

detection methods. In fact, it should be the network operator who

should decide which detection method should be used in the network

and which should have a preference. One advantage of using SRV

records for NAT64 detection is their Priority and Weight fields that

allows to communicate such preference to a Node.

¶

¶

¶

¶

¶

¶

¶

In accordance with the latest detection method the [RFC8781], other

detection method should be treated equally to SRV method with

following Priority and Weight fields:

Method Priority Weight

RFC8115 100 0

RFC7225 150 0

RFC8781 200 0

RFC7050 250 0

Table 1: Default priorities

of other methods

If a network operator prefers another method than the SRV method and

wants to provide the SRV method as a fallback, it should set the

priority field of the NAT64 SRV record to a higher value than

specified for a method that should be used as a primary. For

example, when a network operator uses Router Advertisement to

distribute Pref64::/n information to its network and also wants to

use the SRV method as a fallback; it should set Priority field to

number higher than 200.

It is RECOMMENDED that network operators SHOULD NOT use values

higher than 249 in the Priority field of the NAT64 SRV record unless

they want to use [RFC7050] as a primary source of Pref64::/n

configuration, and they have all Nodes connected in their network

properly configured for this. In order for this configuration to be

safe, the Nodes MUST follow all the mandatory and optional

requirements of both [RFC7050] and [RFC8880]. Otherwise, the

[RFC7050] SHOULD NOT be used as a primary configuration source.

Default priority values on Node SHOULD be user-configurable.

A Node MAY start the NAT64 detection process by performing the SRV

method. If it is successful and the SRV record Priority field value

is lower than configured values for other methods, the Node MUST NOT

use other detection methods (or utilize information received by

them). If the Priority value is higher than configured Priority

value of any other methods, the Node SHOULD also perform detection

methods with the lower priority values. Detection SHOULD be done

starting from the lowest configured Priority value to the highest.

The successful completion of any detection method MUST stop further

detection.

Similarly, the DNS64 function of the recursive resolver in use

SHOULD be treated equally to the DNS64 SRV record with the Priority

field value of 250. If the Node supports the DNS64 SRV record, Node

is not performing DNS64 function, it is not using CLAT and the DNS64

SRV record has a lower Priority field value; the A record queries

¶

¶

¶

¶

¶

MUST be sent to the target of such SRV record instead of Node's

default recursive resolver.

If the network configuration time for NAT64 is more important than

prefix stability, a Node MAY perform other detection methods

simultaneously with this SRV method. When a Node receives Pref64::/n

by method with a higher priority (lower Priority field value), a

Node MUST respect the method Priority field, and it MUST stop using

configuration information received by a method with a lower priority

(a higher Priority field value). However, by doing so, it can

resolve several NAT64 prefix configuration changes as methods with

higher priorities would override those with lower ones. This may

result in several prefixes being used in a short time. For this

reason, it is NOT RECOMMENDED to act upon any detection method that

can be overwritten by a method with a higher priority unless the

configuration of the Pref64::/n is time-critical.

Regardless of the detection method used for DNS64 discovery, the

Node MUST NOT accept any DNS64 synthesized AAAA record outside

detected NAT64 prefixes.

8. Example

The Node is a home router connected to the ISP network in which the

NAT64/DNS64 is used, and the ISP has the following SRV records in

their zones:

_nat64._ipv6.example.com. IN SRV 5 10 9632 nat64-

pool-1.example.com.

nat64-pool-1.example.com. IN AAAA 2001:db8:64:ff9b:1::c000:aa

nat64-pool-1.example.com. IN A 192.0.2.64

_nat64._ipv6.example.com. IN SRV 10 10 9632 nat64-

pool-2.example.com.

nat64-pool-2.example.com. IN AAAA 2001:db8:64:ff9b:2::c000:aa

nat64-pool-2.example.com. IN A 192.0.2.164

_nat64._ipv6.example.net. IN SRV 10 10 9624 nat64-

pool.example.net.

nat64-pool.example.net. IN AAAA 2001:db8:64:ff9b:abc::c000:aa

nat64-pool.example.net. IN A 198.51.100.0

_nat64._ipv6.example.invalid. IN SRV 10 10 9624 nat64-

pool.example.org.

¶

¶

¶

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

1.

2.

3.

4.

nat64-pool.example.org. IN AAAA 2001:db8:64:ff9b:def::c000:aa

nat64-pool.example.org. IN A 203.0.113.0

In addition, the zones "example.net" and "example.invalid" has got

DNS64 SRV records:

_dns64._tcp.example.net. IN SRV 5 10 53 dns64.example.net.

_dns64._udp.example.net. IN SRV 10 10 53 dns64.example.net.

dns64.example.net. IN AAAA 2001:db8::53

_dns64._udp.example.invalid. IN SRV 10 10 53 dns64.example.org.

dns64.example.org. IN AAAA 2001:db8:123::53

The Node has detected the following list of domains:

example.net

example.invalid

example.com

example.org

The Node would fetch all available SRV records and their A and AAAA

counterparts and sort them in the following order:

Pool DNSSEC Priority Reason

nat64-pool-1.example.com. yes 5 lowest priority field

nat64-pool.example.net. yes 10 discovered first

nat64-pool-2.example.net. yes 10 higher priority field

nat64-pool.example.org. no 10 no valid DNSSEC chain

Table 2: Detectected Prefixes

After sorting, the DNSSEC validating Node SHOULD graylist any record

which cannot be validated by the DNSSEC. This example would be

"nat64-pool.example.org." because it has been obtained from insecure

domain "example.invalid". Such pool SHOULD NOT be used if it is not

confirmed by other DNSSEC secured record.

If the Node can act as a recursive or caching DNS server and it is

configured to provide the DNS64 service, it MUST provide this

service using a sorted list of NAT64 pools. For such Node, the

process of the NAT64/DNS64 ends here.

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

However, when the Node is not capable of performing AAAA record

synthesis or it is not configured to provide DNS64 service, and it

is not using CLAT, it MUST perform detection of DNS64.

When the Node supports the DNS64 SRV record, it MUST make a sorted

list of DNS64 servers from the DNS64 SRV records. If the Priority

field of the corresponding DNS64 record is higher than 250, and when

the Node does not support the DNS64 SRV record; the Node MUST

perform DNS64 detection for specified NAT64 pool by the [RFC7050]

method.

The detection, according to [RFC7050], should be done by querying

for "ipv4only.arpa". If the reply contains a pool listed in the

NAT64 pool list, the corresponding entry is marked as having DNS64

provided by recursive DNS.

The DNS64 sorted list would look like this:

Server Proto DNSSEC Priority Reason

dns64.example.net. tcp yes 5 lowest priority field

dns64.example.net. udp yes 10 higher priority field

dns64.example.org. udp no 10 no valid DNSSEC chain

Table 3: Detectected DNS64 Servers

Sorting is done in the same fashion as any other SRV record with the

same exception of graylisting records without a valid DNSSEC chain.

Those SHOULD NOT be used when not confirmed by DNSSEC validated

record and SHOULD be kept at the end of the list.

For example, when ISP is providing DNS64 service in their main DNS

infrastructure only for pools in the domains "example.com" and

"example.org" and the pool "nat64-pool.example.net" is used only

with corresponding DNS64 server. The final sorted list of NAT64

prefixes used by the Node in the ISP network would be:

Pool State Priority Reason

nat64-

pool-1.example.com.
active 5 lowest priority field

nat64-

pool-2.example.net.
backup 10 higher priority field

nat64-pool.example.net. active* 10
only DNS64 SRV capable

Node

nat64-pool.example.org. inactive 10 no valid DNSSEC chain

Table 4: Used Prefixes

As the pool "nat64-pool.example.net" is used only with the server

"dns64.example.net", this would effectively make it usable only for

¶

¶

¶

¶

¶

¶

Nodes supporting DNS64 SRV and not running DNS64 locally or not

using CLAT. For such Nodes, this pool would have priority over

others because lower Priority field value of the DNS64 SRV record.

Now, the Node has successfully identified NAT64 pools and the DNS64

servers in the ISP infrastructure. The discovered prefixes SHOULD be

considered safe, and DNSSEC validation of answers in these prefixes,

when a remote recursive resolver does the DNS64 synthesis, it MUST

be either disabled or performed by validating only the suffix.

8.1. Example of negative records

The proposed method allows specifying negative records for the

Pref64::/n. This can be used to specify that a single Node should

not use the Pref64::/n, that the whole subdomain is not allowed to

use NAT64, that the whole domain/operator is not using NAT64, or as

a last resort indication that non-specified Nodes/subdomains are not

allowed to use NAT64. The meaning of a negative record is given by

its placement in the zone and other positive replies (pointing to a

valid AAAA record).

_nat64._ipv6.example.com. IN SRV 5 10 0 .

_nat64._ipv6.clients.example.com. IN SRV 5 10 9632 nat64-

pool-1.example.com.

_nat64._ipv6.bad-host1.clients.example.com. IN SRV 5 10 0 .

_nat64._ipv6.bad-host2.clients.example.com. IN SRV 255 10 0 .

The list shows a possible use of negative records. Every Node in the

"clients" subdomain is given a Pref64::/n provided by the "nat64-

pool-1" AAAA record, except for the "bad-host1" and "bad-host2"

Nodes that are given negative records. This indicates to those Nodes

that there is no Pref64::/n, so no NAT64 service is provided to

them. This way, an operator is able to disable the NAT64 service to

individual Nodes.

The difference between "bad-host1" and "bad-host2" is in the

Priority field. Because of that, the "bad-host1" Node MUST NOT use

other detection methods for NAT64 detection, while "bad-host2" MAY

utilize any other method.

By placing the negative answer to the root of the operator's domain,

the operator specifies that only listed Nodes or subdomains are

allowed to use NAT64. Similarly, if the operator specified a

positive record, non-listed Nodes would default to using such

prefix. Basically, this allows to form policies like allowlists and

blocklists and combine them.

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

¶

[RFC2119]

[RFC2782]

[RFC6146]

[RFC6763]

[RFC7050]

9. Acknowledgements

The author of this document would like to thank Lee Howard, Gert

Doering, Fred Baker, Philip Homburg, Mikael Abrahamsson, Jordi Palet

Martinez, Gabor Lencse, Dan Wing, Ralf Weber, Ted Lemon, David

Schinazi for their valuable comments.

10. IANA Considerations

This document proposes two services, "_nat64" and "_dns64" in

Service field of SRV RR ([RFC2782]).

11. Security Considerations

The method proposed by this document relies on security principles

based on DNSSEC and secure discovery of local domain. In order to be

secure, the network operator MUST deploy DNSSEC on at least one

domain (advertised to the Node), establish a secure channel to this

advertisement, or provide every IPv6 address given to a Node with

DNSSEC secured PTR record.

12. References

12.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for

specifying the location of services (DNS SRV)", RFC 2782,

DOI 10.17487/RFC2782, February 2000, <https://www.rfc-

editor.org/info/rfc2782>.

Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful

NAT64: Network Address and Protocol Translation from IPv6

Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,

April 2011, <https://www.rfc-editor.org/info/rfc6146>.

Cheshire, S. and M. Krochmal, "DNS-Based Service

Discovery", RFC 6763, DOI 10.17487/RFC6763, February

2013, <https://www.rfc-editor.org/info/rfc6763>.

Savolainen, T., Korhonen, J., and D. Wing, "Discovery of

the IPv6 Prefix Used for IPv6 Address Synthesis", RFC

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc6146
https://www.rfc-editor.org/info/rfc6763

[RFC8174]

[PubSuffix]

[RFC6052]

[RFC6877]

[RFC7225]

[RFC8106]

[RFC8115]

[RFC8484]

[RFC8781]

[RFC8880]

7050, DOI 10.17487/RFC7050, November 2013, <https://

www.rfc-editor.org/info/rfc7050>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

Mozilla, "Public Suffix List", April 2022, <https://

publicsuffix.org/>.

Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.

Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,

DOI 10.17487/RFC6052, October 2010, <https://www.rfc-

editor.org/info/rfc6052>.

Mawatari, M., Kawashima, M., and C. Byrne, "464XLAT:

Combination of Stateful and Stateless Translation", RFC

6877, DOI 10.17487/RFC6877, April 2013, <https://www.rfc-

editor.org/info/rfc6877>.

Boucadair, M., "Discovering NAT64 IPv6 Prefixes Using the

Port Control Protocol (PCP)", RFC 7225, DOI 10.17487/

RFC7225, May 2014, <https://www.rfc-editor.org/info/

rfc7225>.

Jeong, J., Park, S., Beloeil, L., and S. Madanapalli,

"IPv6 Router Advertisement Options for DNS

Configuration", RFC 8106, DOI 10.17487/RFC8106, March

2017, <https://www.rfc-editor.org/info/rfc8106>.

Boucadair, M., Qin, J., Tsou, T., and X. Deng, "DHCPv6

Option for IPv4-Embedded Multicast and Unicast IPv6

Prefixes", RFC 8115, DOI 10.17487/RFC8115, March 2017,

<https://www.rfc-editor.org/info/rfc8115>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS

(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,

<https://www.rfc-editor.org/info/rfc8484>.

Colitti, L. and J. Linkova, "Discovering PREF64 in Router

Advertisements", RFC 8781, DOI 10.17487/RFC8781, April

2020, <https://www.rfc-editor.org/info/rfc8781>.

Cheshire, S. and D. Schinazi, "Special Use Domain Name

'ipv4only.arpa'", RFC 8880, DOI 10.17487/RFC8880, August

2020, <https://www.rfc-editor.org/info/rfc8880>.

https://www.rfc-editor.org/info/rfc7050
https://www.rfc-editor.org/info/rfc7050
https://www.rfc-editor.org/info/rfc8174
https://publicsuffix.org/
https://publicsuffix.org/
https://www.rfc-editor.org/info/rfc6052
https://www.rfc-editor.org/info/rfc6052
https://www.rfc-editor.org/info/rfc6877
https://www.rfc-editor.org/info/rfc6877
https://www.rfc-editor.org/info/rfc7225
https://www.rfc-editor.org/info/rfc7225
https://www.rfc-editor.org/info/rfc8106
https://www.rfc-editor.org/info/rfc8115
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8781
https://www.rfc-editor.org/info/rfc8880

Author's Address

Martin Hunek

Technical University of Liberec

Studentska 1402/2

46017 Liberec

Czechia

Email: martin.hunek@tul.cz

mailto:martin.hunek@tul.cz

	NAT64/DNS64 detection via SRV Records
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Terminology
	3. Problems with Current Solutions
	3.1. DNS-based method
	3.2. Methods based on other protocols

	4. Local domain detection
	5. NAT64 service SRV record
	6. DNS64 service SRV record
	7. Node Behavior
	7.1. Interaction with other methods

	8. Example
	8.1. Example of negative records

	9. Acknowledgements
	10. IANA Considerations
	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Author's Address

