
OAuth P. Hunt, Ed.
Internet-Draft Oracle Corporation
Intended status: Standards Track T. Nadalin
Expires: March 31, 2014 Microsoft
 September 27, 2013

OAuth Client Association
draft-hunt-oauth-client-association-00

Abstract

 This specification defines methods that OAuth clients may use to
 associate (register) with service providers for the purposes of
 accessing OAuth protected resources. The document describes
 different classifications of OAuth clients and the process to
 directly access or associate for access with a particular OAuth
 Framework protected service provider.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 31, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Hunt & Nadalin Expires March 31, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OAuth-Client-Association-00 September 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3
1.2. Terminology . 4

2. Client Association Lifecycle 4
3. Client Association . 6
3.1. Static Association Clients 6
3.2. Dynamic Association Clients 7
3.2.1. Registration Request 7
3.2.2. Association Processing 9
3.2.3. Successful Association Response 9
3.2.4. Error Responses 11

3.3. Transient Association 12
3.4. Client Disassociation 13

4. IANA Considerations . 13
5. Security Considerations 13
6. Normative References . 14
Appendix A. Acknowledgments 16
Appendix B. Document History 16

 Authors' Addresses . 16

1. Introduction

 The OAuth 2.0 Authorization Framework [RFC6749] is a framework by
 which client applications use access tokens issued by authorization
 servers to access to a service provider's software API endpoints. As
 a framework, OAuth 2.0 enables many different flows by which a client
 application may obtain an access token including delegated
 authorization from a user.

 The OAuth Authorization Framework defines only two types of clients:
 public and confidential. Public clients have client_id's issued once
 where each instance shares the same client_id and are usually native
 applications. Confidential clients typically have a unique client_id
 per instance and typically deployed in secure environments on web
 application platforms. In both cases, OAuth has limited support for
 building applications that are intended to work with multiple
 deployments that are not known at compilation or software packaging
 time.

https://datatracker.ietf.org/doc/html/rfc6749

Hunt & Nadalin Expires March 31, 2014 [Page 2]

Internet-Draft OAuth-Client-Association-00 September 2013

 This specification defines a taxonomy of clients, and the methods by
 which a client instance may either register with, or directly request
 tokens from, an OAuth endpoint. The generic term for how client
 instances work with a new OAuth endpoint is "association". This
 specification defines 3 types of association:

 Static Are clients that are built to work with one or more
 endpoint(s) that are known at the time the client
 applicaiton is built. A "client_id" and any associated
 credentials are typically issued to the developer.
 Multiple instances of the same client share the same
 client_id. The determination for "public" vs.
 "confidential" client is as per Section 2.1 [RFC6749].

 Dynamic Are clients that associate with one or more endpoints
 triggered by application based workflows, configuration or
 installation events. Associations may be temporary or be
 extended over a long period of time. A "client_id" is
 issued at association time along with a token based client
 credential and an optional client referesh token that
 enables registration updates and client token rotation.
 Clients that associate dynamically and are issued
 individual "client_id" are considered "confidential" as
 defined in Section 2.1 [RFC6749].

 Transient Are clients that associate with one or more endpoints
 triggered by application based events or workflows. These
 clients typically use the OAuth "Implicit" grant per

Section 4.2 of [RFC6749] and as such do not require an
 instance specific "client_id" or a client credential.
 These associations typically exist for the life of an
 access token and may only last for seconds or minutes.
 These clients use a client asserted client_id and are
 considered public as defined in Section 2.1 [RFC6749].

 This draft defines how software statements
 [I-D.draft-hunt-oauth-software-statement] can be used to associate
 dynamic and transient clients with OAuth protected service providers.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

https://datatracker.ietf.org/doc/html/rfc6749#section-2.1
https://datatracker.ietf.org/doc/html/rfc6749#section-2.1
https://datatracker.ietf.org/doc/html/rfc6749#section-4.2
https://datatracker.ietf.org/doc/html/rfc6749#section-2.1
https://datatracker.ietf.org/doc/html/draft-hunt-oauth-software-statement
https://datatracker.ietf.org/doc/html/rfc2119

Hunt & Nadalin Expires March 31, 2014 [Page 3]

Internet-Draft OAuth-Client-Association-00 September 2013

1.2. Terminology

 This specification uses the terms "Access Token", "Refresh Token",
 "Authorization Code", "Authorization Grant", "Authorization Server",
 "Authorization Endpoint", "Client", "Public Client", "Confidential
 Client", "Client Identifier", "Client Secret", "Protected Resource",
 "Resource Owner", "Resource Server", and "Token Endpoint" defined by
 OAuth 2.0 [RFC6749].

 This specification uses the terms "Deployment Organization",
 "Software API Deployment", "Software API Publisher", "Client
 Developer", and "Software Statement" as defined in
 [I-D.draft-hunt-oauth-software-statement].

 This specification defines the following additional terms:

 Client Resource Endpoint An optional OAuth 2.0 protected resource
 endpoint through which registration information for a registered
 client can be accessed and optionally managed. The API
 definition is out of scope of this specification.

 Initial Access Token An OAuth 2.0 access token is typically issued
 by a software API deployment's security domain and used by a
 dynamic client a to associate a client for use with a particular
 software API deployment. The token is usually issued by the same
 security domain as the Service API the client is registering for.
 The content, structure, generation, and validation of this token
 are out of scope for this specification.

 Client Refresh Credential A client refresh token is an optional
 credential token a client may use for the purpose of supporting
 server or client initiated rotation of client credentials. If
 client credentials are revoked or expired, the registered client
 may use the client refresh token to refresh its registration and
 obtain new client credentials.

2. Client Association Lifecycle

 This specification defines an association lifecycle that registers a
 client for one target resource API per "association". Clients that
 need to register for more than one resource API should typically make
 a separate registration request for each API being registered.

 The abstract association flow illustrated in Figure 1 describes the
 relationship and interaction between a software API publisher, a
 client developer, a deployed client software instance and the
 software API deployment registration services in this specification.
 This figure does not demonstrate error conditions.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/draft-hunt-oauth-software-statement

Hunt & Nadalin Expires March 31, 2014 [Page 4]

Internet-Draft OAuth-Client-Association-00 September 2013

 Client App
 Developer
 O (A) Obtain Software Statement ****************
 \|/ <-------------------------------------- * Software API *
 | * Publisher *
 / \ ****************
 |
 | |
 | |
 |D S | A
 |i o | p
 |s f | p
 |t t | r (B)
 A |r w | o
 p |i a | v
 p |b r | a
 |u e | l
 |t |
 |i |
 |o |
 |n *************|********
 v * v *
 +------------+ * +---------------+ *
 | Client App | (C) Client Association & Authz * | OAuth 2.0 | *
 | Instance | --------------------------------->| Authorization | *
 +------------+ * | Server | *
 * +---------------+ *
 * OAuth 2.0 aware *
 * Service Provider *

 Legend:
 O
 \|/ - Developer
 |
 / \

 +----+
 | | - Piece of software
 | |
 +----+

 * * - Organization
 * *

 Figure 1: Client Lifecycle

Hunt & Nadalin Expires March 31, 2014 [Page 5]

Internet-Draft OAuth-Client-Association-00 September 2013

 (A) The client developer packages the client software with the signed
 software statement and distributes the client application. Local
 distributions may also be produced that include an initial
 registration token designed for use within a specific deployment
 domain. The method for doing this is out-of-scope of this
 specification.

 (B) Upon receiving, or becoming aware of, a client application
 software distribution, an administrator configures administrative
 policy to accept or reject a particular client software statement
 within a deploying organization. Additionally an administrator
 may configure broader policy that accepts software by name,
 author, or signing organization. An administrator might also
 pre-approve client software by automatically accepting software
 statements from a particular signer or other category that can be
 derived from a software statement. As part of the approval, an
 initial registration token may be generated for use with a local
 distribution of the client software (step A).

 (C) To associate with a new OAuth provider, dynamic clients present a
 software statement, deployment specific parameters, and an
 optional initial registration token with a "grant_type" of
 "urn:ietf:params:oauth:grant-type:client-assoc". The
 authorization server MAY provide a client resource endpoint URL
 that Clients MAY use to access or update their registration.
 Clients wishing to rotate client credentials follow the same
 process except they use the client refresh token as their
 registration token.

 Transient clients MAY perform implicit authorization requests
 (per section 4.2 of [RFC6749]) by submitting their software
 statement as the client identifier ("client_id"). Upon receiving
 an access token, transient client MAY then make normal resource
 requests.

3. Client Association

 This section defines 3 types of client association and the process by
 which each client type associates with a software API deployment.

3.1. Static Association Clients

 Clients that are written for a specific set of endpoints and do not
 require installation or runtime association are known as 'static
 clients'. These clients typically have a "client_id"(s) and client
 credential(s) acceptable to the deployment endpoint(s) that are
 integrated with the application at compilation or packaging time.
 The process for how this is performed is out of scope of this

https://datatracker.ietf.org/doc/html/rfc6749#section-4.2

Hunt & Nadalin Expires March 31, 2014 [Page 6]

Internet-Draft OAuth-Client-Association-00 September 2013

 specification. These clients SHOULD work using the normal OAuth2
 Framework calls [RFC6749].

3.2. Dynamic Association Clients

 Dynamic association defines 3 types of transactions to support the
 life-cycle of clients that associate on-the-fly with deployment
 endpoints.

 o The first time a client associates, it presents its software
 statement, and any optional registration parameters, to the token
 endpoint and receives a client credential token, an optional
 client refresh token, and an optional client association resource
 endpoint URL. Clients MAY also present an initial access token in
 the authoirzation header as an indication of prior authorization
 with the authorization server.

 o A client MAY update its association after a configuration change,
 software update, or expiration or revocation of its client
 credential, MAY present its client refresh token as its
 authorization plus the client's software statement and optional
 configuration parameters to receive a new client credentaial token
 and an optional client refresh token.

 Dynamic clients association clients use the OAuth token endpoint with
 "grant_type" of "urn:ietf:params:oauth:grant-type:client-assoc" to
 submit a software statement and any per instance registration
 parameters. In response the registration endpoint confirms the
 registration by issuing a client token and an optional client refresh
 token. Additionally, the registration endpoint MAY provide a client
 resource endpoint which can be used to retrieve additional
 information about the client. The use and function of the client
 resource endpoint is out of scope of this specification.

3.2.1. Registration Request

 The value of "grant_type" MUST be "urn:ietf:params:oauth:grant-type
 :client-assoc".

 The value of the "assertion" parameter MUST contain a software
 statement [I-D.draft-hunt-oauth-software-statement].

 The authorization header MAY be ONE OF three values:

 o Omitted to indicate a new association.

 o An initial access token to indicate a new assocation that has been
 pre-authorized.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/draft-hunt-oauth-software-statement

Hunt & Nadalin Expires March 31, 2014 [Page 7]

Internet-Draft OAuth-Client-Association-00 September 2013

 o A client refresh token to update an existing association and to
 rotate the client access token and optional client refresh token.

 A non-normative, JSON encoded example of a new association request is
 as follows:

 POST /token.oauth2 HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Host: as.example.com

 {
 "grant_type"=
 "urn:ietf:params:oauth:grant-type:client-assoc"
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/callback2"
],
 "software_statement":"eyJhbGciOiJFUzI1NiJ9.
 eyJpc3Mi[...omitted for brevity...].
 J9l-ZhwP[...omitted for brevity...]",
 "extension_parameter":"foo"
 }

 The update association is similar to a new association. In the
 update, the main difference is the client supplies the client refresh
 token in the "Authorization" header. In a software update (e.g. a
 new verson of the client software), the client MAY provide an updated
 or revised software statement (not shown). A non-normative, JSON
 encoded example of an association update request is as follows:

 POST /token.oauth2 HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Bearer ey23f2.adfj230.af32-developer321
 Host: as.example.com

 {
 "grant_type"=
 "urn:ietf:params:oauth:grant-type:client-assoc"
 "redirect_uris":[
 "https://client.example.org/callback",
 "https://client.example.org/callback2"
],
 "software_statement":"eyJhbGciOiJFUzI1NiJ9.
 eyJpc3Mi[...omitted for brevity...].
 J9l-ZhwP[...omitted for brevity...]",

Hunt & Nadalin Expires March 31, 2014 [Page 8]

Internet-Draft OAuth-Client-Association-00 September 2013

 "extension_parameter":"foo"
 }

 The client MAY include additional instance specific parameters
 defined in Section 2.2 [I-D.draft-hunt-oauth-software-statement]. If
 a "software_statement" is enclosed, the token server MUST ignore any
 attribute in the JSON request that is specified in the statement.

3.2.2. Association Processing

 If an initial access token or client referesh token is presented as
 an authentication credential, the server MUST process the token as
 per section 3.2.1 of [RFC6749].

 The received software statement MUST have be validated per
Section 2.3 of [I-D.draft-hunt-oauth-software-statement]

 If the software statement includes values for "redirect_url" and the
 request includes a "redirect_url" value, the request MUST be
 rejected. [[should this be a SHOULD?]]

 Unless otherwise stated, the server SHOULD ignore any request
 parameter that duplicates values provided in the software statement.

 For each new association, the server SHOULD generate a new
 "client_id" and client token. In dynamic associations, a single
 "software_id" will have one or more "client_id" values associated
 with it.

 The server SHOULD NOT change the value of "client_id" if the client
 updates the association by presenting a client refresh token. In
 such a case, the "software_id" value contained in the software
 statement SHOULD NOT change. When an association is updated, the
 server MAY invalidate outstanding OAuth authorizations and access
 tokens issued to the client. [[OR, should the server maintain
 authorizations and access tokens?]]

3.2.3. Successful Association Response

 After successfully processing the association request, the token
 server SHALL respond with the following:

 client_id REQUIRED. A unique client identifier assigned to the
 client software instance.

https://datatracker.ietf.org/doc/html/draft-hunt-oauth-software-statement
https://datatracker.ietf.org/doc/html/rfc6749#section-3.2.1
https://datatracker.ietf.org/doc/html/draft-hunt-oauth-software-statement

Hunt & Nadalin Expires March 31, 2014 [Page 9]

Internet-Draft OAuth-Client-Association-00 September 2013

 token_type REQUIRED. The type of token issued by the authorization
 server in parameter client_token for the purpose of client
 authentication as described in Section 7.1 [RFC6749].

 client_token REQUIRED. The client credential token issued by the
 authorization server. The type and usage is indicated by the
 parameter token_type.

 expires_in RECOMMENDED. The lifetime in seconds of the access
 token. For example, the value "3600" denotes that the access
 token will expire in one hour from the time the response was
 generated. If omitted, the authorization server SHOULD
 provide the expiration time via other means or document the
 default value.

 refresh_token OPTIONAL. A client refresh token of type "bearer"
 which can be used to refresh a client association. The token
 MAY be used to update association via the token grant request
 and MAY be used to access the client association resource
 endpoint indicated in "location".

 location OPTIONAL. A URI specifying the location of a resource
 endpoint representing the clients association with the
 endpoint. The type of endpoint and usage is out of scope of
 this specification. [[should there be a location type? e.g.
 SCIM Dynamic Management?]

 A non-normative JSON formated response (some values clipped for
 readability):

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "client_id":"s6BhdRkqt3",
 "token_type":"bearer",
 "client_token":"eyJhbGciOiJFUzI1NiJ9.
 eyJpc3Mi[...omitted for brevity...].
 J9l-ZhwP[...omitted for brevity...]",
 "client_id_issued_at":2893256800,
 "expires_at":2893276800,
 "refresh_token":"mF_9.B5f-4.1JqM",
 "location":"https://scim.example.com/Clients/s6BhdRkqt3",
 "extension_parameter": "foo"
 }

https://datatracker.ietf.org/doc/html/rfc6749#section-7.1

Hunt & Nadalin Expires March 31, 2014 [Page 10]

Internet-Draft OAuth-Client-Association-00 September 2013

 An non-normative HoK token example (some values clipped for
 readability):

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "client_id":"s6BhdRkqt3",
 "token_type":"hok",
 "client_token":"eyJhbGciOiJFUzI1NiJ9.
 eyJpc3Mi[...omitted for brevity...].
 J9l-ZhwP[...omitted for brevity...]",
 "secret"="somesymetrickey",
 "client_id_issued_at":2893256800,
 "expires_at":2893276800,
 "refresh_token":"mF_9.B5f-4.1JqM",
 "location":"https://scim.example.com/Clients/s6BhdRkqt3"
 }

3.2.4. Error Responses

 When an OAuth 2.0 error condition occurs, such as the client
 presenting an invalid initial access token or client refresh token,
 the authorization server returns an error response appropriate to the
 OAuth 2.0 token type. This error response is defined in

Section 3.2.1 of [RFC6750].

 When a registration error condition occurs, the authorization server
 returns an HTTP 400 status code (unless otherwise specified) with
 content type "application/json" consisting of a JSON object [RFC4627]
 describing the error in the response body.

 The JSON object contains two members:

 error
 The error code, a single ASCII string.

 error_description
 A human-readable text description of the error for debugging.

 This specification defines the following error codes:

 invalid_statement The software statement presented is not a valid
 assertion according to [I-D.draft-hunt-oauth-software-statement].

https://datatracker.ietf.org/doc/html/rfc6750#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/draft-hunt-oauth-software-statement

Hunt & Nadalin Expires March 31, 2014 [Page 11]

Internet-Draft OAuth-Client-Association-00 September 2013

 unapproved_software The software statement presented IS NOT approved
 or IS NOT registered for use with the current endpoint.

 invalid_redirect_uri
 The value of one or more "redirect_uris" is invalid.

 invalid_client_metadata
 The value of one of the request parameters is invalid or is in
 conflict with a value in the software statement.

 Following is a non-normative example of an error response (with line
 wraps for display purposes only):

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "error":"invalid_redirect_uri",
 "error_description":"The redirect URI of http://sketchy.example.com
 is not allowed for this server."
 }

3.3. Transient Association

 Transient association clients access service providers for a limited
 relationship usually defined by the life of any access token issued.
 These clients are characterized by having no deployment organization
 issued client tokens or identifiers. Transient clients MAY use their
 "software_id" as the "client_id" and use their software statement as
 their client token according to according to section 2.2 of
 [I-D.ietf-oauth-jwt-bearer].

 Per section 4.2 of [RFC6749], implicit flow clients SHALL provide
 their "software_id" as the "client_id" when making implicit
 authorization requests.

 Per section 2.1.2 of [I-D.draft-hunt-oauth-software-statement], it is
 expected that the software_id SHOULD be known to the service provider
 as part of its software approval process and is out of scope of this
 specification. If the software_id is not known, the server SHOULD
 respond with error code "unapproved_software" per Section 3.2.4.

 Transient clients SHOULD be considered as 'public clients' as defined
 in [RFC6749].

https://datatracker.ietf.org/doc/html/rfc6749#section-4.2
https://datatracker.ietf.org/doc/html/draft-hunt-oauth-software-statement
https://datatracker.ietf.org/doc/html/rfc6749

Hunt & Nadalin Expires March 31, 2014 [Page 12]

Internet-Draft OAuth-Client-Association-00 September 2013

3.4. Client Disassociation

 [[TBD - should this be supported?]]

4. IANA Considerations

 The following is a parameter registration request, as defined
Section 11.2, the OAuth parameters registry, of OAuth 2.0 [RFC6749].

 [[NEED TO REGISTER: software_statement, redirect_uri, etc]]

5. Security Considerations

 [[TO BE REVISED]]

 For clients that use redirect-based grant types such as Authorization
 Code and Implicit, authorization servers SHOULD require clients to
 register their "redirect_uris"if not specified in their software
 statement. Requiring clients to do so can help mitigate attacks
 where rogue actors inject and impersonate a validly registered client
 and intercept its authorization code or tokens through an invalid
 redirect URI.

 Clients with software statements containing "redirect_uris" MUST NOT
 specify a new redirect_uri during registration.

 The authorization server MUST treat all client metadata, including
 software statements, as self-asserted. A rogue client might use the
 name and logo for the legitimate client, which it is trying to
 impersonate. For instance, an authorization server could warn if the
 domain/site of the logo doesn't match the domain/site of redirect
 URIs. An authorization server can also present warning messages to
 end users about untrusted clients in all cases, especially if such
 clients have not been associated by the authorization server before.

 Authorization servers MAY assume that registered client software
 sharing the same software assertion, software_id, and other metadata
 SHOULD have similar operational behaviour metrics. Similarly,
 Authorization server administrators MAY use software_id and
 software_version to facilitate normal change control and approval
 management of client software including:

 o Approval of specific clients software for use with specific
 protected resources.

 o Lifecycle management and support of specific software versions as
 indicated by software_version.

https://datatracker.ietf.org/doc/html/rfc6749

Hunt & Nadalin Expires March 31, 2014 [Page 13]

Internet-Draft OAuth-Client-Association-00 September 2013

 o Revocation of groups of client credentials and associated access
 tokens when support issues or security risks identified with a
 particular client software as identified by software_id and
 software_version.

 In a situation where the authorization server is supporting open
 client registration, it must be extremely careful with any URL
 provided by the client that will be displayed to the user (e.g.
 "logo_uri", "tos_uri", "client_uri", and "policy_uri"). For
 instance, a rogue client could specify a registration request with a
 reference to a drive-by download in the "policy_uri". The
 authorization server SHOULD check to see if the "logo_uri",
 "tos_uri", "client_uri", and "policy_uri" have the same host and
 scheme as the those defined in the array of "redirect_uris" and that
 all of these resolve to valid Web pages.

 Access tokens issued to clients to facilitate update or retrieval of
 client registrations SHOULD be short lived.

 Clients SHOULD rotate their client credentials before they expire by
 obtaining an access token from the authorization server using the
 registration scope. If a client has not successfully rotated its
 credential prior to expiry, the client MUST register as a new client.

 If a client is deprovisioned from a server (due to expiry or de-
 registration), any outstanding Registration Access Token for that
 client MUST be invalidated at the same time. Otherwise, this can
 lead to an inconsistent state wherein a client could make requests to
 the client configuration endpoint where the authentication would
 succeed but the action would fail because the client is no longer
 valid.

 Clients that are unable to retain a client credential for the life of
 the client instance MAY NOT register and should continue to be
 treated as Public clients as defined by OAuth 2.0.

6. Normative References

 [I-D.draft-hunt-oauth-software-statement]
 Hunt, P., Ed. and T. Nadalin, "OAuth Software Statement",
 .

 [I-D.ietf-jose-json-web-key]
 Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-

key-14 (work in progress), July 2013.

 [I-D.ietf-oauth-assertions]

https://datatracker.ietf.org/doc/html/draft-hunt-oauth-software-statement
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-14
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-14

Hunt & Nadalin Expires March 31, 2014 [Page 14]

Internet-Draft OAuth-Client-Association-00 September 2013

 Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", draft-ietf-oauth-assertions-12
 (work in progress), July 2013.

 [I-D.ietf-oauth-jwt-bearer]
 Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", draft-ietf-oauth-jwt-bearer-06
 (work in progress), July 2013.

 [I-D.ietf-oauth-saml2-bearer]
 Campbell, B., Mortimore, C., and M. Jones, "SAML 2.0
 Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", draft-ietf-oauth-saml2-bearer-17
 (work in progress), July 2013.

 [IANA.Language]
 Internet Assigned Numbers Authority (IANA), "Language
 Subtag Registry", 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-assertions-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bearer-06
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-saml2-bearer-17
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Hunt & Nadalin Expires March 31, 2014 [Page 15]

Internet-Draft OAuth-Client-Association-00 September 2013

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

Appendix A. Acknowledgments

 This draft was based upon in large part upon the work in draft-ietf-
oauth-dyn-reg-14, draft-richer-oauth-dyn-reg-core-00 and draft-
richer-oauth-dyn-reg-12 and WG discussions. The authors would like

 to thank Justin Richer and the members of the OAuth Working Group.

Appendix B. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -00

 o First draft.

Authors' Addresses

 Phil Hunt (editor)
 Oracle Corporation

 Email: phil.hunt@yahoo.com

 Tony Nadalin
 Microsoft

 Email: tonynad@microsoft.com

https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg-14
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg-14
https://datatracker.ietf.org/doc/html/draft-richer-oauth-dyn-reg-core-00
https://datatracker.ietf.org/doc/html/draft-richer-oauth-dyn-reg-12
https://datatracker.ietf.org/doc/html/draft-richer-oauth-dyn-reg-12

Hunt & Nadalin Expires March 31, 2014 [Page 16]

