
OAuth P. Hunt, Ed.
Internet-Draft Oracle Corporation
Intended status: Standards Track T. Nadalin
Expires: March 31, 2014 Microsoft
 September 27, 2013

OAuth 2.0 Software Statement
draft-hunt-oauth-software-statement-00

Abstract

 This specification defines a JWT authorization assertion known as a
 'software statment' for use in an OAuth protected environment. A
 software statement is a JWT assertion used by an OAuth client to
 provide both informational and OAuth protocol related assertions that
 aid service providers to recognize OAuth client software and its
 expected behaviour within an OAuth Framework protected resource
 environment.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 31, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Hunt & Nadalin Expires March 31, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OAuth-Software-Statement-00 September 2013

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3
1.2. Terminology . 3

2. Software Statement . 4
2.1. Software Statement Lifecycle 4
2.2. Statement Attributes 6
2.2.1. Singular Attributes 7
2.2.2. Multi-valued Attributes 9

 2.2.3. Relationship Between Grant Types and Response Types . 10
2.2.4. Human Readable Client Metadata 11

2.3. Software Statement Requirements 12
3. IANA Considerations . 13
3.1. OAuth Token Endpoint Authentication Methods Registry . . 13
3.1.1. Registration Template 14
3.1.2. Initial Registry Contents 14

4. Security Considerations 14
5. Normative References . 15
Appendix A. Acknowledgments 16
Appendix B. Document History 16

 Authors' Addresses . 17

1. Introduction

 The OAuth 2.0 Authorization Framework [RFC6749] is a framework by
 which client applications use access tokens issued by authorization
 servers to access to a service provider's software API endpoints. As
 a framework, OAuth 2.0 enables many different flows by which a client
 application may obtain an access token including delegated
 authorization from a user.

 This specification defines a JWT authorization assertion
 [I-D.ietf-oauth-jwt-bearer] known as a 'software statment'. An
 software statement is used by an OAuth client to provide both
 informational and OAuth protocol [RFC6749] related assertions that
 aid OAuth infrastructure to both recognize client software and
 determine a client's expected requirements when accessing an OAuth
 protected resource.

 Applications using software statements, may typically go through 3
 phases where:

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Hunt & Nadalin Expires March 31, 2014 [Page 2]

Internet-Draft OAuth-Software-Statement-00 September 2013

 o A software statement is generated and associated with a client
 application.
 o A service provider approves client software for use within its
 domain on the basic of software_id, developer, or software
 statment signing organization.
 o And finally, where a particular instance of a client possessing a
 software statement associates with a particular serivce provider.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

 This specification uses the terms "Access Token", "Refresh Token",
 "Authorization Code", "Authorization Grant", "Authorization Server",
 "Authorization Endpoint", "Client", "Client Identifier", "Client
 Secret", "Protected Resource", "Resource Owner", "Resource Server",
 and "Token Endpoint" defined by OAuth 2.0 [RFC6749].

 This specification uses the following additional terms:

 Deployment Organization An administrative security domain under
 which, a software API is deployed and protected by an OAuth 2.0
 framework. In simple cloud deployments, the software API
 publisher and the deployment organization may be the same. In
 other scenarios, a software publisher may be working with many
 different deployment organizations.

 Software API Deployment A deployment instance of a software API that
 is protected by OAuth 2.0 in a particular deployment organization
 domain. For any particular software API, there may be one or
 more deployments. A software API deployment typically has an
 associated OAuth 2.0 authorization server endpoint as well as a
 client registration endpoint. The means by which endpoints are
 obtained (discovery) are out of scope for this specification.

 Software API Publisher The organization that defines a particular
 web accessible API that may deployed in one or more deployment
 environments. A publisher may be any commercial, public,
 private, or open source organization that is responsible for
 publishing and distributing software that may be protected via
 OAuth 2.0. A software API publisher may issue software

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6749

Hunt & Nadalin Expires March 31, 2014 [Page 3]

Internet-Draft OAuth-Software-Statement-00 September 2013

 assertions which client developers use to distribute with their
 software to facilitate registration. In some cases a software
 API publisher and a client developer may be the same
 organization.

 Client Developer The person or organization that builds a client
 software package and prepares it for distribution. A client
 developer obtains a software assertion from a software publisher,
 or self-generates one for the purposes of facilitating client
 association.

 Software Statement A signed JWT authorization token
 [I-D.ietf-oauth-jwt-bearer] that asserts information about the
 client software that may be used by registration system to
 qualify clients for eligibility to register. To obtain a
 statement, a client developer may generate a client specific
 assertion, or a client developer may registers with a software
 API publisher to obtain a software assertion. The statement is
 distributed with all copies of a client application and may be
 used during the client-to-service provider association process.

2. Software Statement

 As per the introduction, a software statement is an 'authorization'
 bearer token (as defined in Section 2.1 of
 [I-D.ietf-oauth-jwt-bearer]) that carries assertions about a software
 that MAY be used in one or more deployment organizations and is
 shared by all instances of a client application.

 A software statement IS NOT an authentication assertion. A software
 statement is a signed set of assertions fixing both OAuth related
 protocol values as well as informational assertions as a signed
 assertion from a trusted party. A deployment organization MAY use
 the statement to set access policy and to recognize client software
 during registration or association processes.

2.1. Software Statement Lifecycle

 Software statements are used in 3 stages in the lifecycle of an OAuth
 enabled client application. A typical lifecycle flow is illustrated
 in Figure 1 describing when a developer obtains a software statement
 and how it is used within a deployment organization.

 Client App
 Developer
 O (A) Obtain Software Statement ****************
 \|/ <-------------------------------------- * Software API *

Hunt & Nadalin Expires March 31, 2014 [Page 4]

Internet-Draft OAuth-Software-Statement-00 September 2013

 | * Publisher *
 / \ ****************
 |
 | |
 | |
 |D S | A
 |i o | p
 |s f | p
 |t t | r (B)
 A |r w | o
 p |i a | v
 p |b r | a
 |u e | l
 |t |
 |i |
 |o |
 |n *************|********
 v * v *
 +------------+ * +---------------+ *
 | Client App | (C) Present Software Statement * | OAuth 2.0 | *
 | Instance | --------------------------------->| Authorization | *
 +------------+ * | Server | *
 * +---------------+ *
 * OAuth 2.0 aware *
 * Service Provider *

 Legend:
 O
 \|/ - Developer
 |
 / \

 +----+
 | | - Piece of software
 | |
 +----+

 * * - Organization
 * *

 Figure 1: Client Statement Lifecycle

 (A) A client developer registers a clent application with a software
 API publisher. The software publisher, upon approval, generates
 a signed software statement that is returned to the developer.
 Alternatively, a developer may self-sign a software statement. A

Hunt & Nadalin Expires March 31, 2014 [Page 5]

Internet-Draft OAuth-Software-Statement-00 September 2013

 self-signed statement, while weaker from a trust perspective,
 allows the provider to recognize and approve software (step B).
 A statement ensures that all registration parameters for a client
 are the same for every instance of a client deployed. The
 advantage of having the software API publisher is that deploying
 organizations MAY choose to pre-approve (step B) all software
 signed by a common trusted organization.

 This protocol and procedure for issuing a software statement to
 the client app developer is out-of-scope of this document. This
 document assumes that the client app developer has obtained such
 a software statement already.

 (B) When an administrator at a service provider obtains a software
 statement, the administrator configures policies to accept or
 reject a particular client software statement for use within a
 deploying organization. An administrator may also configure
 broader pre-approval policy that accepts software by name,
 author, or signing organization, or other category that can be
 derived from a software statement.

 (C) A client instance conveys the software statement to the service
 provider, as described in
 [I-D.draft-hunt-oauth-client-association].

2.2. Statement Attributes

 The following are attributes that may be included in a software
 statement. For each attribute defined, a qualifier (OPTIONAL,
 RECOMMENDED, REQUIRED) is included that indicates the usage
 requirement for the client. Unless otherwise stated, all client
 schema attributes are String based values. For example, URIs, email
 addresses, identifiers, are all defined as Strings.

 Authorization servers MUST reject statements if it does not
 understand the values of any of the following singular or multi-
 valued attributes. An authorization server MAY override any value
 (including any omitted values) provided in a statement or separately
 during the association process and replace the requested value with a
 default at the server's discretion.

 Extensions and profiles of this specification MAY expand this list,
 and authorization servers MUST accept all fields in this list. The
 authorization server MUST ignore any additional parameters sent by
 the Client that it does not understand.

https://datatracker.ietf.org/doc/html/draft-hunt-oauth-client-association

Hunt & Nadalin Expires March 31, 2014 [Page 6]

Internet-Draft OAuth-Software-Statement-00 September 2013

2.2.1. Singular Attributes

 The following is a list of attributes that MUST have only a SINGLE
 value in a software statement.

 software_id
 REQUIRED. A unique identifier that identifies the software such
 as a UUID. The identifier SHOULD NOT change when software
 version changes or when a new installation instance is detected.
 "software_id" is intended to help a registration endpoint
 recognize a client's assertion that it is a prticular piece of
 software. Because of this, software identifier is usually
 associated with a particular client name. While the
 OAuth"client_id"is linked to a client software deployment
 instance, the "software_id" is an identifier shared between all
 copies of the client software. Registration servers MAY use the
 supplied software identifier to determine whether a particular
 client software is approved or supported for use in the
 deployment domain.

 software_version
 RECOMMENDED. A version identifier such as a UUID or a number.
 Servers MAY use equality match to determine if a particular
 client is a particular version. "software_version" SHOULD change
 on any update to the client software. Registration servers MAY
 use the software version and identity to determine whether a
 particular client version is authorized for use in the deployment
 domain.

 client_name
 RECOMMENDED. A human-readable name of the client to be presented
 to the user. If omitted, the authorization server MAY display
 the raw "software_id" value to the user instead. It is
 RECOMMENDED that clients always send this field. The value of
 this field MAY be internationalized as described in Human
 Readable Client Metadata (Section 2.2.4).

 client_uri
 RECOMMENDED. A URL of the homepage of the client software. If
 present, the server SHOULD display this URL to the end user in a
 clickable fashion. It is RECOMMENDED that clients always send
 this field. The value of this field MUST point to a valid Web
 page. The value of this field MAY be internationalized as
 described in Human Readable Client Metadata (Section 2.2.4).

 jwks_uri
 OPTIONAL. A URL for the client's JSON Web Key Set
 [I-D.ietf-jose-json-web-key] document representing the client's

Hunt & Nadalin Expires March 31, 2014 [Page 7]

Internet-Draft OAuth-Software-Statement-00 September 2013

 public keys. The value of this field MUST point to a valid JWK
 Set. These keys MAY also be used for higher level protocols that
 require signing or encryption.

 logo_uri
 OPTIONAL. A URL that references a logo image for the client. If
 present, the server SHOULD display this image to the end user
 during approval. The value of this field MUST point to a valid
 image file. The value of this field MAY be internationalized as
 described in Human Readable Client Metadata (Section 2.2.4).

 policy_uri
 OPTIONAL. A URL that points to a human-readable policy document
 for the client. The authorization server SHOULD display this URL
 to the End-User if it is given. The Policy usually describes how
 an End-User's data will be used by the client. The value of this
 field MUST point to a valid Web page. The value of this field
 MAY be internationalized as described in Human Readable Client
 Metadata (Section 2.2.4).

 scope
 OPTIONAL. A space separated list of scope values (as described
 in Section 3.3 [RFC6749]) that the client can use when requesting
 access tokens. The semantics of values in this list is service
 specific. If omitted, an authorization server MAY register a
 client with a default set of scopes.

 targetEndpoint
 RECOMMENDED. A generic URI of the service API the client is
 registering for (often set by the software API publisher).
 Clients requesting access to more than one target endpoint SHOULD
 use a separate statement for each target.

 token_endpoint_auth_method
 OPTIONAL. Value containing the requested authentication method
 for the Token Endpoint. The server MAY override the requested
 value. Clients MUST check for a change in value in the
 registration response. Values defined by this specification are:

 * "none": The client is a public client as defined in OAuth 2.0
 and does not have a client secret.
 * "bearer": The client is will use a bearer assertion as defined
 in Section 4.2 of [I-D.ietf-oauth-assertions].

 Additional values can be defined via the IANA OAuth Token
 Endpoint Authentication Methods registry Section 3.1. Absolute
 URIs can also be used as values for this parameter. If
 unspecified or omitted, the default is "bearer".

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Hunt & Nadalin Expires March 31, 2014 [Page 8]

Internet-Draft OAuth-Software-Statement-00 September 2013

 tos_uri
 OPTIONAL. A URL that points to a human-readable "Terms of
 Service" document for the client. The authorization server
 SHOULD display this URL to the End-User if it is given. The
 Terms of Service usually describe a contractual relationship
 between the End-User and the client that the End-User accepts
 when authorizing the client. The value of this field MUST point
 to a valid Web page. The value of this field MAY be
 internationalized as described in Human Readable Client Metadata
 (Section 2.2.4).

2.2.2. Multi-valued Attributes

 The following is a list of multi-valued attributes that may be used
 in a software statement.

 contacts
 OPTIONAL. One or more email addresses for people responsible for
 this client. The authorization server MAY make these addresses
 available to end users for support requests for the client. An
 authorization server MAY use these email addresses as identifiers
 for an administrative page for this client.

 redirect_uris
 RECOMMENDED. One or more redirect URI values for use in
 redirect-based flows such as the Authorization Code and Implicit
 grant types. authorization servers SHOULD require registration
 of valid redirect URIs for all clients that use these grant types
 to protect against token and credential theft attacks.

 grant_types
 OPTIONAL. One or more OAuth 2.0 grant types that the client may
 use. These grant types are defined as follows:

 * "authorization_code": The Authorization Code Grant described
 in OAuth 2.0 Section 4.1
 * "implicit": The Implicit Grant described in OAuth 2.0

Section 4.2
 * "password": The Resource Owner Password Credentials Grant
 described in OAuth 2.0 Section 4.3
 * "client_credentials": The "Client credentials Grant" described
 in OAuth 2.0 Section 4.4
 * "refresh_token": The Refresh Token Grant described in OAuth
 2.0 Section 6.
 * "urn:ietf:params:oauth:grant-type:jwt-bearer": The JWT Bearer
 grant type defined in OAuth JWT Bearer Token Profiles
 [I-D.ietf-oauth-jwt-bearer].

Hunt & Nadalin Expires March 31, 2014 [Page 9]

Internet-Draft OAuth-Software-Statement-00 September 2013

 * "urn:ietf:params:oauth:grant-type:saml2-bearer": The SAML 2
 Bearer grant type defined in OAuth SAML 2 Bearer Token
 Profiles [I-D.ietf-oauth-saml2-bearer].

 Authorization servers MAY allow for other values as defined in
 grant type extensions to OAuth 2.0. The extension process is
 described in OAuth 2.0 Section 2.5, and the value of this
 parameter MUST be the same as the value of the "grant_type"
 parameter passed to the Token Endpoint defined in the extension.

 response_types
 OPTIONAL. One or more OAuth 2.0 response types that the client
 may use. These response types are defined as follows:

 * "code": The Authorization Code response described in OAuth 2.0
Section 4.1.

 * "token": The Implicit response described in OAuth 2.0
Section 4.2.

 Authorization servers MAY allow for other values as defined in
 response type extensions to OAuth 2.0. The extension process is
 described in OAuth 2.0 Section 2.5, and the value of this
 parameter MUST be the same as the value of the "response_type"
 parameter passed to the Authorization Endpoint defined in the
 extension.

2.2.3. Relationship Between Grant Types and Response Types

 The "grant_types" and "response_types" values described above are
 partially orthogonal, as they refer to arguments passed to different
 endpoints in the OAuth protocol. However, they are related in that
 the "grant_types" available to a client influence the
 "response_types" that the client is allowed to use, and vice versa.
 For instance, a "grant_types" value that includes
 "authorization_code" implies a "response_types" value that includes
 code, as both values are defined as part of the OAuth 2.0
 Authorization Code Grant. As such, a server supporting these fields
 SHOULD take steps to ensure that a client cannot register itself into
 an inconsistent state.

 The correlation between the two fields is listed in the table below.

 +---+-----------------+
 | grant_types value includes: | response_types |
 | | value includes: |
 +---+-----------------+
 | authorization_code | code |
 | | |

Hunt & Nadalin Expires March 31, 2014 [Page 10]

Internet-Draft OAuth-Software-Statement-00 September 2013

implicit	token
password	(none)
client_credentials	(none)
refresh_token	(none)
urn:ietf:params:oauth:grant-type:jwt-bearer	(none)
urn:ietf:params:oauth:grant-type:saml2-bearer	(none)
 +---+-----------------+

 Extensions and profiles of this document that introduce new values to
 either the "grant_types" or "response_types" parameter MUST document
 all correspondences between these two parameter types.

2.2.4. Human Readable Client Metadata

 [[This needs to be updated to be compatible with SCIM. There is a
 also a problem with how to limit the amount of localization data
 exchange for an instance registration. Note that mobile clients tend
 to only need one preferred language while web clients represent many
 clients and may have more than 20 languages to support.]]

 Human-readable Client Metadata values and client Metadata values that
 reference human-readable values MAY be represented in multiple
 languages and scripts. For example, the values of fields such as
 "client_name", "tos_uri", "policy_uri", "logo_uri", and "client_uri"
 might have multiple locale-specific values in some client
 registrations.

 To specify the languages and scripts, BCP47 [RFC5646] language tags
 are added to client Metadata member names, delimited by a #
 character. Since JSON member names are case sensitive, it is
 RECOMMENDED that language tag values used in Claim Names be spelled
 using the character case with which they are registered in the IANA
 Language Subtag Registry [IANA.Language]. In particular, normally
 language names are spelled with lowercase characters, region names
 are spelled with uppercase characters, and languages are spelled with
 mixed case characters. However, since BCP47 language tag values are
 case insensitive, implementations SHOULD interpret the language tag
 values supplied in a case insensitive manner. Per the
 recommendations in BCP47, language tag values used in Metadata member
 names should only be as specific as necessary. For instance, using
 "fr" might be sufficient in many contexts, rather than "fr-CA" or
 "fr-FR".

https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/bcp47

Hunt & Nadalin Expires March 31, 2014 [Page 11]

Internet-Draft OAuth-Software-Statement-00 September 2013

 For example, a client could represent its name in English as
 ""client_name#en": "My Client"" and its name in Japanese as
 ""client_name#ja-Jpan-JP":
 "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D"" within the same
 registration request. The authorization server MAY display any or
 all of these names to the Resource Owner during the authorization
 step, choosing which name to display based on system configuration,
 user preferences or other factors.

 If any human-readable field is sent without a language tag, parties
 using it MUST NOT make any assumptions about the language, character
 set, or script of the string value, and the string value MUST be used
 as-is wherever it is presented in a user interface. To facilitate
 interoperability, it is RECOMMENDED that clients and servers use a
 human-readable field without any language tags in addition to any
 language-specific fields, and it is RECOMMENDED that any human-
 readable fields sent without language tags contain values suitable
 for display on a wide variety of systems.

 Implementer's Note: Many JSON libraries make it possible to reference
 members of a JSON object as members of an Object construct in the
 native programming environment of the library. However, while the
 "#" character is a valid character inside of a JSON object's member
 names, it is not a valid character for use in an object member name
 in many programming environments. Therefore, implementations will
 need to use alternative access forms for these claims. For instance,
 in JavaScript, if one parses the JSON as follows, "var j =
 JSON.parse(json);", then the member "client_name#en-us" can be
 accessed using the JavaScript syntax "j["client_name#en-us"]".

2.3. Software Statement Requirements

 In order to create and validate a software assertion, the following
 requirements apply in addition to those stated in Section 3
 [I-D.ietf-oauth-jwt-bearer].

 1. The JWT MAY contain any claim specified in Section 2.2.
 2. The JWT MUST contain an "iss" (issuer) claim that contains a
 unique identifier for the entity that issued and signed the JWT.
 The value MAY be the client developer, a software API publisher,
 or a third-party organization (e.g. a consortium) that would be
 trusted by deploying organizations.
 3. The JWT MUST contain a "sub" (subject) claim that contains a
 unique value corresponding to the "software_id". This number is
 MAY be assigned by the software API publisher.
 4. The JWT MUST contain an "aud" (audience) claim containing a value
 that is ONE of the following:

Hunt & Nadalin Expires March 31, 2014 [Page 12]

Internet-Draft OAuth-Software-Statement-00 September 2013

 * A value that identifies one or more software API deployments,
 where the client software MAY be registered.
 * A value "urn:oauth:scim:reg:generic" which indicates the
 assertion MAY be used with any software API deployment
 environment.
 5. The JWT MUST contain an "exp" (expiration) claim that limits the
 time window during which the JWT can be used to register clients.
 When registering clients, the registration server MUST verify
 that the expiration time has not passed, subject to allowable
 clock skew between systems, and reject expired JWTs. The
 authorization server SHOULD NOT use this value to revoke an
 existing client registration.

3. IANA Considerations

3.1. OAuth Token Endpoint Authentication Methods Registry

 This specification establishes the OAuth Token Endpoint
 Authentication Methods registry.

 Additional values for use as "token_endpoint_auth_method" metadata
 values are registered with a Specification Required ([RFC5226]) after
 a two-week review period on the oauth-ext-review@ietf.org mailing
 list, on the advice of one or more Designated Experts. However, to
 allow for the allocation of values prior to publication, the
 Designated Expert(s) may approve registration once they are satisfied
 that such a specification will be published.

 Registration requests must be sent to the oauth-ext-review@ietf.org
 mailing list for review and comment, with an appropriate subject
 (e.g., "Request to register token_endpoint_auth_method value:
 example").

 Within the review period, the Designated Expert(s) will either
 approve or deny the registration request, communicating this decision
 to the review list and IANA. Denials should include an explanation
 and, if applicable, suggestions as to how to make the request
 successful.

 IANA must only accept registry updates from the Designated Expert(s)
 and should direct all requests for registration to the review mailing
 list.

https://datatracker.ietf.org/doc/html/rfc5226

Hunt & Nadalin Expires March 31, 2014 [Page 13]

Internet-Draft OAuth-Software-Statement-00 September 2013

3.1.1. Registration Template

 Token Endpoint Authorization Method name:
 The name requested (e.g., "example"). This name is case
 sensitive. Names that match other registered names in a case
 insensitive manner SHOULD NOT be accepted.

 Change controller:
 For Standards Track RFCs, state "IETF". For others, give the name
 of the responsible party. Other details (e.g., postal address,
 email address, home page URI) may also be included.

 Specification document(s):
 Reference to the document(s) that specify the token endpoint
 authorization method, preferably including a URI that can be used
 to retrieve a copy of the document(s). An indication of the
 relevant sections may also be included but is not required.

3.1.2. Initial Registry Contents

 The OAuth Token Endpoint Authentication Methods registry's initial
 contents are:

 o Token Endpoint Authorization Method name: "none"
 o Change controller: IETF
 o Specification document(s): [[this document]]

 o Token Endpoint Authorization Method name: "bearer"
 o Change controller: IETF
 o Specification document(s): [[this document]]

 o Token Endpoint Authorization Method name: "client_secret_post"
 o Change controller: IETF
 o Specification document(s): [[this document]]

 o Token Endpoint Authorization Method name: "client_secret_basic"
 o Change controller: IETF
 o Specification document(s): [[this document]]

4. Security Considerations

 The authorization server MUST treat the overall software statements,
 as self-asserted since there is no way to prove a client is the
 software it asserts to be. A rogue client might use the name and
 logo for the legitimate client, which it is trying to impersonate.
 An authorization server needs to take steps to mitigate this phishing
 risk, since the logo could confuse users into thinking they're
 logging in to the legitimate client. For instance, an authorization

Hunt & Nadalin Expires March 31, 2014 [Page 14]

Internet-Draft OAuth-Software-Statement-00 September 2013

 server could warn if the domain/site of the logo doesn't match the
 domain/site of redirect URIs. An authorization server can also
 present warning messages to end users about untrusted clients in all
 cases, especially if such clients have been dynamically registered
 and have not been trusted by any users at the authorization server
 before.

 Authorization servers MAY assume that registered client software
 sharing the same software assertion, software_id, and other metadata
 SHOULD have similar operational behaviour metrics. Similarly,
 Authorization server administrators MAY use software_id and
 software_version to facilitate normal change control and approval
 management of client software including:

 o Approval of specific clients software for use with specific
 protected resources.
 o Lifecycle management and support of specific software versions as
 indicated by software_version.
 o Revocation of groups of client credentials and associated access
 tokens when support issues or security risks identified with a
 particular client software as identified by software_id and
 software_version.

5. Normative References

 [I-D.draft-hunt-oauth-client-association]
 Hunt, P., Ed. and T. Nadalin, "OAuth Client Association",
 .

 [I-D.ietf-jose-json-web-key]
 Jones, M., "JSON Web Key (JWK)", draft-ietf-jose-json-web-

key-16 (work in progress), September 2013.

 [I-D.ietf-oauth-assertions]
 Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", draft-ietf-oauth-assertions-12
 (work in progress), July 2013.

 [I-D.ietf-oauth-jwt-bearer]
 Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", draft-ietf-oauth-jwt-bearer-06
 (work in progress), July 2013.

 [I-D.ietf-oauth-saml2-bearer]
 Campbell, B., Mortimore, C., and M. Jones, "SAML 2.0
 Profile for OAuth 2.0 Client Authentication and

https://datatracker.ietf.org/doc/html/draft-hunt-oauth-client-association
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-16
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-key-16
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-assertions-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwt-bearer-06

Hunt & Nadalin Expires March 31, 2014 [Page 15]

Internet-Draft OAuth-Software-Statement-00 September 2013

 Authorization Grants", draft-ietf-oauth-saml2-bearer-17
 (work in progress), July 2013.

 [IANA.Language]
 Internet Assigned Numbers Authority (IANA), "Language
 Subtag Registry", 2005.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

Appendix A. Acknowledgments

 This draft was based upon in large part upon the work in draft-ietf-
oauth-dyn-reg-14, draft-richer-oauth-dyn-reg-core-00 and draft-
richer-oauth-dyn-reg-12 and WG discussions. The authors would like

 to thank Justin Richer and the members of the OAuth Working Group.

Appendix B. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-saml2-bearer-17
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg-14
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dyn-reg-14
https://datatracker.ietf.org/doc/html/draft-richer-oauth-dyn-reg-core-00
https://datatracker.ietf.org/doc/html/draft-richer-oauth-dyn-reg-12
https://datatracker.ietf.org/doc/html/draft-richer-oauth-dyn-reg-12

Hunt & Nadalin Expires March 31, 2014 [Page 16]

Internet-Draft OAuth-Software-Statement-00 September 2013

 -00

 o First draft.

Authors' Addresses

 Phil Hunt (editor)
 Oracle Corporation

 Email: phil.hunt@yahoo.com

 Tony Nadalin
 Microsoft

 Email: tonynad@microsoft.com

Hunt & Nadalin Expires March 31, 2014 [Page 17]

