
Workgroup: Network Working Group

Internet-Draft: draft-hurst-sip-quic-00

Published: 25 October 2022

Intended Status: Experimental

Expires: 28 April 2023

Authors: S. Hurst

BBC Research & Development

SIP-over-QUIC: Session Initiation Protocol over QUIC Transport

Abstract

This document describes a mapping of Session Initiation Protocol

(SIP) semantics over QUIC Transport. It allows the creation,

modification and termination of media sessions with one or more

participants, possibly carried over the same QUIC transport

connection, using RTP/AVP directly, or some mixture of both.

SIP-over-QUIC enables a more efficient use of network resources by

introducing field compression to the header fields carried in SIP

transactions.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://probable-

train-1d24d093.pages.github.io/draft-hurst-sip-quic.html. Status

information for this document may be found at https://

datatracker.ietf.org/doc/draft-hurst-sip-quic/.

Source for this draft and an issue tracker can be found at https://

github.com/bbc/draft-hurst-sip-quic.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2023.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://probable-train-1d24d093.pages.github.io/draft-hurst-sip-quic.html
https://probable-train-1d24d093.pages.github.io/draft-hurst-sip-quic.html
https://datatracker.ietf.org/doc/draft-hurst-sip-quic/
https://datatracker.ietf.org/doc/draft-hurst-sip-quic/
https://github.com/bbc/draft-hurst-sip-quic
https://github.com/bbc/draft-hurst-sip-quic
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions

1.2. Definitions

2. SIP-over-QUIC Protocol Overview

2.1. QUIC Transport

2.1.1. Draft Version Identification

2.2. Connection Reuse

3. Expressing SIP Semantics Over QUIC Transport

3.1. QUIC Clients and Servers

3.2. SIP Transaction Framing

3.2.1. Request Cancellation and Rejection

3.2.2. Malformed Requests And Responses

3.3. SIP Header Fields

3.3.1. SIP-over-QUIC Header Compression

3.3.2. SIP Control Data

3.3.3. Via Transport Parameter

3.3.4. SIP URI Transport Parameter

3.3.5. Transaction Sequence Number

3.4. Connection Keep-Alive

4. Compatibility With Earlier SIP Versions

4.1. Transactions

4.2. Dialogs

5. Stream Mapping and Usage

5.1. Bidirectional Streams

5.2. Unidirectional Streams

5.2.1. Control Streams

6. SIP Methods

7. SIP Framing Layer

7.1. Frame Layout

7.2. Frame Definitions

7.2.1. DATA

7.2.2. HEADERS

¶

¶

https://trustee.ietf.org/license-info

7.2.3. CANCEL

7.2.4. SETTINGS

8. Error Handling

8.1. SIP-over-QUIC Error Codes

9. Extensions to SIP-over-QUIC

10. Future Carriage of Media Sessions

10.1. Carriage Of RTP In A QUIC Transport Session

10.2. Carriage Of Non-RTP Media Streaming Protocols In A QUIC

Transport Session

11. Security Considerations

12. IANA Considerations

12.1. Registration Of SIP Identification Strings

12.2. New Registries

12.2.1. Frame Types

12.2.2. Settings Parameters

12.2.3. Error Codes

12.2.4. Stream Types

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Acknowledgments

Appendix B. QPACK Static Table

Index

Author's Address

1. Introduction

The Session Initiation Protocol (SIP) [RFC3261] is widely used for

managing media sessions over the Internet. Examples of these media

sessions include Internet telephony services, video conferencing and

live streaming of media.

[SIP2.0] uses whitespace-delimited text fields to convey SIP

messages in a similar format to HTTP/1.1 [HTTP1.1], and may

optionally be transported over TLS (so-called "SIPS"). SIP-over-

QUIC, as defined by this document, uses a binary framing layer

carried over QUIC streams and is protected by the mandatory TLS

encryption afforded by the QUIC transport connection.

Author's Note: A future optional extension may introduce the

ability to carry SIP messages in QUIC Datagrams [QUIC-DATAGRAMS].

1.1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

abort:

endpoint:

connection:

connection error:

frame:

peer:

receiver:

sender:

SIP/2.0:

SIP-over-QUIC connection:

stream:

This document uses the variable-length integer encoding from

Section 16 of [QUIC-TRANSPORT].

Packet and frame diagrams in this document use the format described

in Section 1.3 of [QUIC-TRANSPORT].

1.2. Definitions

The following terms are used:

An abrupt termination of a connection or stream, possibly

due to an error condition.

Either the client or server of the connection.

A transport-layer connection between two endpoints

using QUIC as the transport protocol.

An error that affects the entire SIP-over-QUIC

connection.

The smallest unit of communication on a stream in SIP-over-

QUIC, consisting of a header and a variable-length sequence of

bytes structured according to the frame type.

Protocol elements called "frames" exist in both this document and

[QUIC-TRANSPORT]. Where frames from [QUIC-TRANSPORT] are

referenced, the frame name will be prefaced with "QUIC". For

example, "QUIC CONNECTION_CLOSE frames". References without this

preface refer to frames defined in Section 7.2.

An endpoint. When discussing a particular endpoint, "peer"

refers to the endpoint that is remote to the primary subject of

discussion.

An endpoint that is receiving frames.

An endpoint that is transmitting frames.

The SIP/2.0 specification as described in RFC3261

[SIP2.0].

A QUIC connection where the negotiated

application protocol is SIP-over-QUIC.

A bidirectional or unidirectional bytestream provided by

the QUIC transport. All streams within an SIP-over-QUIC

connection can be considered "SIP-over-QUIC streams", but

multiple stream types are defined within SIP-over-QUIC.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-16
https://rfc-editor.org/rfc/rfc9000#section-1.3

stream error:

transport client:

transport server:

An application-level error on the individual stream.

The endpoint that initiates a SIP-over-QUIC

connection.

The endpoint that accepts a SIP-over-QUIC

connection.

The terms "call", "dialog", "header", "header field", "header field

value", "initiator", "invitee", "message", "method", "proxy server",

"request", "(SIP) transaction", "user agent client" and "user agent

server" are defined in Section 6 of [SIP2.0].

2. SIP-over-QUIC Protocol Overview

SIP-over-QUIC provides a transport for SIP semantics using the QUIC

transport protocol and an internal framing layer inspired by

[HTTP3].

Once a user agent client knows that a user agent server supports

SIP-over-QUIC, it opens a QUIC connection. QUIC provides protocol

negotiation, stream-based multiplexing, and flow control services to

the SIP-over-QUIC transaction layer above. SIP transactions are

multiplexed across QUIC streams as described in Section 2 of

[QUIC-TRANSPORT]. Each request and response message pair in a SIP-

over-QUIC transaction consumes a single QUIC stream.

Within each QUIC stream, the basic unit of SIP-over-QUIC

communication is a frame as described in Section 7. Each frame type

serves a different purpose. The HEADERS and DATA frames form the

basis of the offer/answer transaction model described in [RFC3264]

and are described in Section 3.2.

In [SIP2.0], some header fields may be compressed by using

abbreviated versions. In SIP-over-QUIC, all request and response

header fields are compressed for transmission using [QPACK], in

which header fields may be mapped to indexed values, or literal

values may be encoded using a codepoint in a Huffman table. [QPACK]

uses two tables for its indexed values: the static table is

predefined with common SIP header fields and values, and the dynamic

table can be used to encode frequently used header fields in a SIP-

over-QUIC connection to reduce repetition. Because [QPACK]'s static

table is designed to work with [HTTP3], this specification replaces

the default static table defined in Appendix A of [QPACK] with the

one in Appendix B.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3261#section-6
https://rfc-editor.org/rfc/rfc9000#section-2
https://rfc-editor.org/rfc/rfc9204#appendix-A

2.1. QUIC Transport

SIP-over-QUIC relies on QUIC version 1 as the underlying transport.

The use of other QUIC transport versions with SIP-over-QUIC MAY be

defined by future specifications.

QUIC connections are established as described in [RFC9000]. During

connection establishment, SIP-over-QUIC support is indicated by

selecting the ALPN token "sips/quic" in the TLS handshake. Support

for other application-layer protocols MAY be offered in the same

handshake.

Author's Note: The original intention of this document was to

define the next major version of SIP, i.e. SIPv3. Therefore, the

future ALPN token could be sips/3 or s3 (similarly to h2/h3).

QUIC version 1 uses TLS version 1.3 or greater as its handshake

protocol. SIP-over-QUIC user agents MUST support a mechanism to

indicate the target host to the server during the TLS handshake. If

the target destination user agent server is identified by a domain

name [RFC8499], clients MUST send the Server Name Indication ([SNI])

TLS extension unless an alternative mechanism to indicate the target

host is used.

SIP-over-QUIC messages are carried in reliable QUIC streams;

therefore, the SIP-over-QUIC protocol defined by this document is a

reliable SIP transport. Thus, client and server transactions using

SIP-over-QUIC for transport MUST follow the procedures and timer

values for reliable transports as defined in [SIP2.0].

2.1.1. Draft Version Identification

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

Only implementations of the final, published RFC can identify

themselves as "sips/quic". Until such an RFC exists, implementations

MUST NOT identify themselves using this string. Implementations of

draft versions of the protocol MUST add the string "-h" and the

corresponding draft number to the identifier. For example, draft-

hurst-sip-quic-00 is identified using the string "sips/quic-h00".

Non-compatible experiments that are based on these draft versions

MUST append the string "-" and an experiment name to the identifier.

For example, an experimental implementation based on draft-hurst-

sip-quic-00 which uses QUIC datagrams instead of QUIC streams to

carry SIP messages might identify itself as "sips/quic-h00-

datagrams". Note that any label MUST conform to the "token" syntax

defined in Section 5.6.2 of [HTTP-SEMANTICS]. Experimenters are

encouraged to coordinate their experiments.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-5.6.2

2.2. Connection Reuse

SIP-over-QUIC connections are persistent across multiple request-

response transactions. A SIP-over-QUIC connection MAY also be shared

by multiple concurrent dialogs, with each dialog individually

identified by the Call-ID header and tag= parameters on the To and

From headers.

3. Expressing SIP Semantics Over QUIC Transport

3.1. QUIC Clients and Servers

This specification introduces two new terms: "transport client" to

denote the host that initiates the QUIC transport connection for

exchanging SIP-over-QUIC messages, and "transport server" as its

peer. These terms are orthogonal to SIP's concepts of user agent

client (UAC) and user agent server (UAS): transport clients and

servers may take on either role in the SIP-over-QUIC connection.

3.2. SIP Transaction Framing

SIP-over-QUIC transactions begin with a request message sent by a

UAC on a request stream, which is a bidirectional QUIC stream; see

Section 5. If the user agent client making the request is accessing

the transport connection from the transport client endpoint, then

the request stream is carried on a client-initiated bidirectional

QUIC stream. If the user agent client making the request is

accessing the transport connection from the transport server

endpoint, then the request stream is carried on a server-initiated

bidirectional QUIC stream.

Each SIP-over-QUIC transaction has exclusive use of a request

stream. Only one request is made per request stream. The UAS sends

zero or more provisional responses on the same stream as the

request, followed by one or more final responses. See Section 7.2 of

[SIP2.0] for a description of provisional and final responses.

On a given request stream, receipt of multiple requests MUST be

treated as malformed.

A SIP message (request or response) consists of:

the header section, including message control data, sent in

SIP-over-QUIC as a single HEADERS frame,

optionally, the message body, if present, sent in SIP-over-QUIC

as a series of DATA frames.

Headers are described in Section 7.3 of [SIP2.0]. Message bodies are

described in Section 7.4 of [SIP2.0].

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

¶

https://rfc-editor.org/rfc/rfc3261#section-7.2
https://rfc-editor.org/rfc/rfc3261#section-7.3
https://rfc-editor.org/rfc/rfc3261#section-7.4

Receipt of an invalid sequence of frames MUST be treated as a

connection error of type SIP_FRAME_UNEXPECTED. In particular, a DATA

frame received before any HEADERS frame is considered invalid. Other

frame types, especially unknown frame types, MAY be permitted,

subject to their own rules, see Section 9.

The HEADERS frame might reference updates to the QPACK dynamic

table. While these updates are not directly part of the message

exchange, they MUST be received and processed before the message can

be consumed.

After sending a request, the UAC MUST close the stream for sending

(see Section 3.4 of [QUIC-TRANSPORT]). After sending the last final

response, the UAS MUST close the stream for sending. At this point,

the QUIC stream is fully closed.

When a stream is closed, this indicates the completion of the SIP-

over-QUIC transaction. If a stream terminates without enough of the

request to provide a complete response, the UAS SHOULD abort the

stream with the error code SIP_REQUEST_INCOMPLETE.

3.2.1. Request Cancellation and Rejection

Once a request stream has been opened, the request MAY be cancelled

by either endpoint for the reasons given in Section 9 of [SIP2.0].

Cancellations are categorised as either graceful or abrupt. An

endpoint MAY abruptly cancel any request by resetting the stream

using a RESET_STREAM frame and aborting the reception of further

data on that stream using a STOP_SENDING frame as described in

Section 2.4 of [QUIC-TRANSPORT].

The UAC SHOULD gracefully cancel requests if the response is no

longer of interest by using the CANCEL frame. For example, where a

UAC is attempting to reach a user at multiple endpoints, and has

already received a final response from one endpoint that it is

satisfied with.

UACs MAY use the error code SIP_REQUEST_CANCELLED to abruptly cancel

requests. Upon receipt of this error code, a UAS MAY abruptly

terminate the response using the error code SIP_REQUEST_REJECTED if

no processing was performed. A UAC MUST NOT use the

SIP_REQUEST_REJECTED error code, except when the corresponding UAS

has requested closure of the request stream with this error code.

A UAS receiving a CANCEL request (not frame) MUST respond to the

request immediately with a 405 Method Not Allowed error as described

in Section 21.4.6 of [SIP2.0]. A user agent server receiving a

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-3.4
https://rfc-editor.org/rfc/rfc3261#section-9
https://rfc-editor.org/rfc/rfc9000#section-2.4

CANCEL frame for a stream that has not been opened MUST be treated

as a connection error of type SIP_CANCEL_FRAME_CLOSED.

Author's Note: This is because the CSeq header has been removed,

so the CANCEL request method cannot be used.

The UAS cancels requests if they are unable or choose not to

respond. UAS cancellations are always abrupt cancellations. When a

UAS abruptly cancels a request without performing any application

processing, the request is considered "rejected". In this case, the

UAS SHOULD abort its response stream with the error code

SIP_REQUEST_REJECTED. (In this context, "processed" means that some

data from the request stream was passed to some higher layer of

software that might have taken some action as a result.) The UAC MAY

treat a request rejected by the UAS as though it had never been sent

at all, and may retry the request later.

A UAS MUST NOT use the SIP_REQUEST_REJECTED error code for requests

that were partially or fully processed. When a UAS abandons a

response after partial processing, it SHOULD abort its response

stream with the error code SIP_REQUEST_CANCELLED.

3.2.2. Malformed Requests And Responses

A malformed request or response is one that is a sequence of

syntactically valid SIP-over-QUIC frames but that is invalid due to:

an invalid sequence of SIP-over-QUIC frames, such as a DATA frame

preceding a HEADERS frame,

the presence of prohibited header fields or pseudo-header fields

in a HEADERS frame,

the absence of mandatory pseudo-header fields in a HEADERS frame,

invalid values for pseudo-header fields in a HEADERS frame,

pseudo-header fields after header fields in a HEADERS frame,

the inclusion of uppercase header field names in a HEADERS frame,

the inclusion of invalid characters in field names or values in a

HEADERS frame.

A request or response that is defined as having content when it

contains a Content-Length header field (see Section 18.3 of

[SIP2.0]) is malformed if the value of the Content-Length header

field does not equal the sum of the received DATA frame lengths.

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

¶

https://rfc-editor.org/rfc/rfc3261#section-18.3

Intermediaries that process SIP-over-QUIC request or response

messages (such as a proxy server) MUST NOT forward a malformed

request or response. Malformed requests or responses that are

detected MUST be treated as a stream error of type

SIP_MESSAGE_ERROR.

A UAS MAY respond to a malformed request, indicating the error prior

to closing or resetting the stream.

A UAC MUST NOT accept a malformed response.

3.3. SIP Header Fields

SIP messages carry metadata as a series of key-value pairs called

"SIP header fields"; see Section 7.3 of [SIP2.0]. For a listing of

registered SIP header fields, see the "Session Initiation Protocol

(SIP) Parameters - Header Fields Registry" maintained at https://

www.iana.org/assignments/sip-parameters/sip-parameters.xhtml#sip-

parameters-2.

3.3.1. SIP-over-QUIC Header Compression

The abbreviated forms of SIP header fields described in

Section 7.3.3 of [SIP2.0] MUST NOT be used with SIP-over-QUIC.

Instead, header fields (including the control data present in the

header section) are compressed an decompressed using the [QPACK]

codec.

A SIP-over-QUIC implementation MAY impose a limit on the maximum

size of the encoded field section it will accept for an individual

SIP message using the SETTINGS_MAX_FIELD_SECTION_SIZE parameter.

Unlike HTTP, there is no response code in SIP for the size of a

header block being too large. If a user agent receives an encoded

field section larger than it has promised to accept, it MUST treat

this as stream error of type SIP_HEADER_TOO_LARGE, and discard the

response.

Section 4.2 of [QPACK] describes the definition of two

unidirectional stream types for the encoder and decoder streams. The

values of these stream types are identical when used with SIP-over-

QUIC, see Section 5.2.

The static table defined in Appendix A of [QPACK] is designed for

use with HTTP and, as such, contains header fields that are of

little interest to SIP endpoints. Appendix B in this document

defines a replacement static table that MUST be used by SIP-over-

QUIC transport clients and servers.

To bound the memory requirements of the decoder for the QPACK

dynamic table, the decoder limits the maximum value the encoder is

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3261#section-7.3
https://www.iana.org/assignments/sip-parameters/sip-parameters.xhtml#sip-parameters-2
https://www.iana.org/assignments/sip-parameters/sip-parameters.xhtml#sip-parameters-2
https://www.iana.org/assignments/sip-parameters/sip-parameters.xhtml#sip-parameters-2
https://rfc-editor.org/rfc/rfc3261#section-7.3.3
https://rfc-editor.org/rfc/rfc9204#section-4.2
https://rfc-editor.org/rfc/rfc9204#appendix-A

permitted to set for the dynamic table capacity, as specified in

Section 3.2.3 of [QPACK]. The dynamic table capacity is determined

by the value of the SETTINGS_QPACK_MAX_TABLE_CAPACITY parameter sent

by the decoder. Use of the dynamic table can be disabled by setting

this value to zero. If both endpoints disable use of the dynamic

table, then the endpoints SHOULD NOT open the encoder and decoder

streams.

When the dynamic table is in use, a QPACK decoder may encounter an

encoded field section that references a dynamic table entry that it

has not yet received, because QUIC does not guarantee order between

data on different streams. In this case, the stream is considered

"blocked" as described in Section 2.1.2 of [QPACK]. The HTTP/3

setting SETTINGS_QPACK_BLOCKED_STREAMS is replicated as a SIP-over-

QUIC parameter, set by the recipient, determines the maximum number

of streams that are allowed to be "blocked" by pending dynamic table

updates. If a decoder encounters more blocked streams than it

promised to support, it MUST treat this as a connection error of

type SIP_HEADER_DECOMPRESSION_FAILED.

Stream blocking can be avoided by sending Huffman-encoded literals

instead of updating the QPACK dynamic table.

3.3.2. SIP Control Data

SIP-over-QUIC employs a series of pseudo-header fields where the

field name begins with the : character (ASCII 0x3a). These pseudo-

header fields convey message control data, which replaces the

Request-Line described in Section 7.1 of [SIP2.0].

Pseudo-header fields are not SIP header fields. Endpoints MUST NOT

generate pseudo-header fields other than those defined in this

document. However, an extension could negotiate a modification of

this restriction; see Section 9.

Pseudo-header fields are only valid in the context in which they are

defined. Pseudo-header fields defined for requests MUST NOT appear

in responses; pseudo-header fields defined for responses MUST NOT

appear in requests. Pseudo-header fields MUST NOT appear in trailer

sections. Endpoints MUST treat a request or response that contains

undefined or invalid pseudo-header fields as malformed.

All pseudo-header fields MUST appear in the header section before

regular header fields. Any request or response that contains a

pseudo-header field that appears in a header section after a regular

header field MUST be treated as malformed.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9204#section-3.2.3
https://rfc-editor.org/rfc/rfc9204#section-2.1.2
https://rfc-editor.org/rfc/rfc3261#section-7.1

3.3.2.1. Request Pseudo-header fields

The following pseudo-header fields are defined for requests:

":method": Contains the SIP method. See Section 6 to understand

SIP-over-QUIC-specific usages of SIP methods.

":request-uri": Contains the SIPS URI as described in

Section 19.1 of [SIP2.0].

All SIP-over-QUIC requests MUST include exactly one value for

the :method and :request-uri pseudo-header fields. The SIP-Version

element of the Request-Line structure in Section 7.1 of [SIP2.0] is

omitted, and all SIP-over-QUIC requests implicitly have a protocol

version of "2.0".

A SIP request that omits any mandatory pseudo-header fields or

contains invalid values for those pseudo-header fields is malformed.

3.3.2.2. Response Pseudo-header fields

For responses, a single ":status" pseudo-header field is defined

that carries the SIP status code, see Section 7.2 of [SIP2.0].

All SIP-over-QUIC responses MUST include exactly one value for the

":status" pseudo-header field. The SIP-Version and Reason-Phrase

elements of the Status-Line structure in Section 7.2 of [SIP2.0] are

omitted, and all SIP-over-QUIC responses implicitly have a protocol

version of "2.0". If it is required, for example to provide a human

readable string of a received status code, the Reason-Phrase can be

inferred from the list of reason phrases accompanying the status

codes listed in Section 21 of [SIP2.0].

3.3.3. Via Transport Parameter

The Via header field in SIP messages carry a transport protocol

identifier. This document defines the value "QUIC" to be used for

SIP-over-QUIC requests over QUIC transport.

The updated ABNF (Augmented Backus-Naur Form) [RFC5234] for this

parameter is the following:

A full example Via: header is as follows:

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

transport =/ "QUIC"¶

¶

Via: SIP/2.0/QUIC wxp6O3dffes2.example.com;branch=z9hG4bKXG1gNkhgOiNR¶

https://rfc-editor.org/rfc/rfc3261#section-19.1
https://rfc-editor.org/rfc/rfc3261#section-7.1
https://rfc-editor.org/rfc/rfc3261#section-7.2
https://rfc-editor.org/rfc/rfc3261#section-7.2
https://rfc-editor.org/rfc/rfc3261#section-21

3.3.4. SIP URI Transport Parameter

This document defines the value "quic" as the transport parameter

value for a SIP-over-QUIC URI [RFC3986] where the transport

mechanism used for sending SIP messages will be QUIC transport,

extending the parameter names defined in Section 19.1.1 of [SIP2.0].

The updated ABNF for this parameter is the following:

3.3.5. Transaction Sequence Number

SIP-over-QUIC endpoints MUST NOT use the CSeq header field (see

Section 20.16 of [SIP2.0]). The correct order of SIP-over-QUIC

transactions is instead inferred from the QUIC stream identifier as

described in Section 5. Intermediaries that forward SIP-over-QUIC

messages to SIP sessions running over other transports are

responsible for defining the value carried in the CSeq header field

for those messages, and for mapping those values back to the correct

SIP-over-QUIC request stream in the opposite direction.

3.4. Connection Keep-Alive

SIP-over-QUIC endpoints may keep their QUIC connection active and

open by sending periodic PING frames to defer the QUIC idle timeout

as described in Section 10.1.2 of [QUIC-TRANSPORT].

4. Compatibility With Earlier SIP Versions

Figure 1: Example showing mixed SIP transports

In the above example, the Initiator, Invitee and the proxy server

identified as "Proxy A" all support SIP-over-QUIC, but the proxy

server identified as "Proxy B" only supports SIP/2.0 over TCP/TLS

and UDP. When Proxy A attempts to connect to Proxy B, it may have

previous knowledge of the lack of support for SIP-over-QUIC on Proxy

B, or either of the DNS SRV record [RFC2782] or DNS service binding

¶

¶

transport-param =/ "transport=" "quic"¶

¶

¶

+-----------+ +-------+ +-------+ +---------+

| | | | | | | |

| <=SIP-QUIC=> Proxy <-SIP/2.0-> Proxy <-SIP/2.0-> |

| | | A |(TCP/UDP)| B |(TCP/UDP)| |

| Initiator | +-------+ +-------+ | Invitee |

| (UAC) | | (UAS) |

| <==================SIP-QUIC====================> |

| | | |

+-----------+ +---------+

https://rfc-editor.org/rfc/rfc3261#section-19.1.1
https://rfc-editor.org/rfc/rfc3261#section-20.16
https://rfc-editor.org/rfc/rfc9000#section-10.1.2

record [DNS-SVCB] may have indicated that the server only supports

SIPS services over TCP, thereby implying SIP/2.0.

If Proxy B only supports unencrypted SIP over UDP, then Proxy A MUST

NOT forward messages from the secure SIP-over-QUIC over an

unencrypted protocol because this could constitute a downgrade

attack. Instead, if the designated Invitee cannot be contacted by

means other than via Proxy B, then Proxy A MUST return a response of

502 Bad Gateway to the initiator for that transaction.

When initiating direct communication with an invitee after the

conclusion of the initial INVITE transaction, SIP-over-QUIC SHOULD

be used if:

The DNS SRV record for the SIPS URI indicates that the invitee

supports SIPS over UDP, or

The DNS service binding record for the SIPS URI indicates the

sips/quic ALPN token as described in Section 2.1, or

The Contact: header field indicates a SIPS URI carrying the

"quic" transport parameter as described in Section 3.3.4.

4.1. Transactions

In [SIP2.0], messages pertaining to a given SIP transaction are

identified as such using the branch parameter on the Via: header

fields carried in requests and responses. In SIP-over-QUIC,

individual transactions are tracked using the QUIC streams that are

used to carry them. SIP-over-QUIC endpoints MAY omit this parameter.

For intermediaries converting between SIP-over-QUIC and SIP sessions

running over other transport protocols, these endpoints SHOULD

insert missing branch parameters. To avoid leaking details of the

QUIC transport connection, these converted branch parameters MUST

NOT be textual representations of the stream IDs used to carry a

given transactions, or any other representation that could be used

to infer stream IDs that have been used in a given QUIC transport

connection.

4.2. Dialogs

In [SIP2.0], dialogs are tracked by use of the Call-ID: header field

and the tag= parameter on the To: and From: header fields. The

current document does not introduce any additional means for

tracking dialogs, and as such the Call-ID: and tag= values MUST

continue to be used in SIP-over-QUIC.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

5. Stream Mapping and Usage

A QUIC stream provides reliable and in-order delivery of bytes on

that stream, but makes no guarantees about order of delivery with

regard to bytes on other streams. The semantics of the QUIC stream

layer is opaque to the SIP framing layer. The transport layer

buffers and orders received stream data, exposing a reliable byte

stream to the application. Although QUIC permits out-of-order

delivery within a stream, SIP-over-QUIC does not make use of this

feature.

QUIC streams can be either unidirectional, carrying data only from

initiator to receiver, or bidirectional, carrying data in both

directions. In the context of this specification, bidirectional

streams are used to convey SIP-over-QUIC request and response

messages; unidirectional streams are used only for controlling the

SIP-over-QUIC session itself. A bidirectional stream ensures that

the response can be readily correlated with the request. These

streams are referred to as request streams.

[SIP2.0] is designed to run over unreliable transports such as UDP.

Since QUIC guarantees reliability, some of the features of SIP/2.0

are not required. User agents MUST NOT send the CSeq header field in

requests or responses because the messages are already associated

with a QUIC stream. Intermediaries that convert SIP-over-QUIC to

other transport protocols when forwarding messages are responsible

for handing the mapping of the CSeq header field to individual

transactions.

Author's note: The author invites feedback as to whether the MUST

NOT in relation to the CSeq header could be relaxed to a SHOULD

NOT, or whether there is a valid use case that I have not

identified that means this restriction should be relaxed even

further.

If the [QPACK] dynamic table is used, then the unidirectional

encoder and decoder streams described in Section 4.2 of [QPACK] will

be in operation in a SIP-over-QUIC connection.

5.1. Bidirectional Streams

Bidirectional QUIC streams are used for SIP requests and responses.

These streams are referred to as request streams.

5.2. Unidirectional Streams

SIP-over-QUIC makes use of unidirectional QUIC streams. The purpose

of a given unidirectional stream is indicated by a stream type,

which is sent as a variable-length integer at the start of the

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9204#section-4.2

stream. The format and structure of data that follows this integer

is determined by the stream type.

Figure 2: Unidirectional Stream Header

One stream type is defined in this document: the control stream. In

addition, the HTTP/3 stream types defined by Section 4.2 of [QPACK]

are mapped to the same values in SIP-over-QUIC (0x2 for the encoder

stream and 0x3 for the decoder stream).

In addition, the stream type value of 0x4 is reserved by this

document for future use as the media stream.

Each SIP-over-QUIC user agent MUST create at least one

unidirectional stream for the SIP-over-QUIC control stream. If the

QPACK dynamic table is used, then each endpoint will open two

additional unidirectional streams each. Other extensions might

require further unidirectional streams. Therefore, the transport

parameters sent by both endpoints MUST allow the peer to create at

least three unidirectional streams. These transport parameters

SHOULD also provide at least 1,024 bytes of flow-control credit to

each unidirectional stream.

If the stream header indicates a stream type that is not supported

by the recipient, the receiver MUST abort reading the stream,

discard incoming data without further processing, and reset the

stream with the SIP_STREAM_CREATION_ERROR error code. The recipient

MUST NOT consider unknown stream types to be a connection error of

any kind.

Since certain stream types can affect connection state, a recipient

user agent SHOULD NOT discard data from incoming unidirectional

streams prior to reading the stream type.

Implementations SHOULD wait for the reception of a SETTINGS frame

describing what stream types their peer user agent supports before

sending streams of that type. Implementations MAY send stream types

that do not modify the state or semantics of existing protocol

components before it is known whether the peer user agent supports

them, but MUST NOT send stream types that do (such as QPACK).

A sender can close or reset a unidirectional stream unless otherwise

specified. A receiver MUST tolerate unidirectional streams being

closed or reset prior to the reception of the unidirectional stream

header.

¶

Unidirectional Stream Header {

 Stream Type (i),

}

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9204#section-4.2

5.2.1. Control Streams

A control stream is indicated by a stream type of 0x00. Data on this

stream consists of SIP-over-QUIC frames, as defined in Section 7.

Each SIP-over-QUIC user agent MUST initiate a single control stream

at the beginning of the connection and send its SETTINGS frame as

the first frame on this stream. If the first frame of the control

stream is any other frame type, this MUST be treated as a connection

error of type SIP_MISSING_SETTINGS. Only one control stream is

permitted per user agent; receipt of a second stream claiming to be

a control stream MUST be treated as a connection error of type

SIP_STREAM_CREATION_ERROR.

The control stream MUST NOT be closed by the sender, and the

receiver MUST NOT request that the sender close the control stream.

If either control stream is closed at any point, this MUST be

treated as a connection error of type SIP_CLOSED_CRITICAL_STREAM.

Connection errors are described in Section 8.

Because the contents of the control stream are used to manage the

behaviour of other streams, user agents SHOULD provide enough flow-

control credit to keep the peer's control stream from becoming

blocked.

6. SIP Methods

The REGISTER, INVITE, ACK and BYE methods as described in [SIP2.0]

continue to operate in SIP-over-QUIC as they do in SIP running over

other transport protocols.

The CANCEL method MUST NOT be used in SIP-over-QUIC. If a SIP-over-

QUIC request needs to be cancelled, the CANCEL frame SHOULD be used

instead, or the stream for that request reset using the QUIC

RESET_STREAM frame (Section 19.4 of [QUIC-TRANSPORT]). Note that

SIP-over-QUIC messages in flight at the time may still arrive on a

stream before the cancellation is received and processed by the

peer.

Author's note: I have not done a comprehensive review of all SIP/

2.0 extensions and their applicability to this document, so I

invite feedback on any other methods that may be problematic.

7. SIP Framing Layer

SIP-over-QUIC frames are carried on QUIC streams, as described in

Section 5. SIP-over-QUIC defines a single stream type: the Request

Stream. This section describes SIP-over-QUIC frame formats; see

Table 1 for an overview.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-19.4

Frame Request Stream Control Stream Section

DATA Yes No Section 7.2.1

HEADERS Yes No Section 7.2.2

CANCEL No Yes Section 7.2.3

SETTINGS No Yes Section 7.2.4

Table 1

Note that, unlike QUIC frames, SIP-over-QUIC frames can span

multiple QUIC or UDP packets.

7.1. Frame Layout

All frames have the following format:

Figure 3: SIP-over-QUIC Frame Format

A frame includes the following fields:

Type: A variable-length integer that identifies the frame type.

Length: A variable-length integer that describes the length in

bytes of the Frame Payload.

Frame Payload: A payload, the semantics of which are determined

by the Type field.

Each frame's payload MUST contain exactly the fields identified in

its description. A frame payload that contains additional bytes

after the identified fields of a frame payload that terminates

before the end of the identified fields MUST be treated as a

connection error of type SIP_FRAME_ERROR.

When a stream terminates cleanly, if the last frame on the stream

was truncated, this MUST be treated as a connection error of type

SIP_FRAME_ERROR. Streams that terminate abruptly may be reset at any

point in a frame.

7.2. Frame Definitions

7.2.1. DATA

DATA frames (type=0x00) are only sent on Request Streams. The frame

payload carried in the Data field conveys an arbitrary, variable-

¶

¶

SIP-over-QUIC Frame Format {

 Type (i),

 Length (i),

 Frame Payload (...)

}

¶

* ¶

*

¶

*

¶

¶

¶

length sequences of bytes associated with a SIP-over-QUIC request or

response message.

DATA frames MUST be associated with a SIP request or response.

Figure 4: DATA Frame

7.2.2. HEADERS

HEADERS frames (type=0x01) are only sent on Request Streams. They

are used to carry the collection of SIP header fields associated

with a SIP request or response message, as described in Section 3.3.

The payload, carried in Encoded Field Section, is encoded using

[QPACK].

Figure 5: HEADERS Frame

7.2.3. CANCEL

The CANCEL frame (type=0x02) is only sent on a Control Stream and

informs the receiver that its peer user agent does not intend to do

any further processing on the message carried by the associated

bidirectional stream ID. If the receiver has already completed the

processing for the message, sent the response and closed the sending

end of the stream, it MUST disregard this frame.

Author's Note: Remove the length from this frame type as the

stream ID field is self-describing.

¶

¶

DATA Frame {

 Type (i) = 0x00,

 Length (i),

 Data (..)

}

¶

HEADERS Frame {

 Type (i) = 0x01,

 Length (i),

 Encoded Field Section (..)

}

¶

¶

CANCEL Frame {

 Type (i) = 0x02,

 Length (i),

 Stream ID (i)

}

Figure 6: CANCEL Frame

Senders MUST NOT send this frame with a stream ID that has not been

acknowledged by its peer. A user agent that receives a CANCEL frame

with a stream ID that has not yet been opened MUST respond with a

connection error of type SIP_CANCEL_STREAM_CLOSED error.

7.2.4. SETTINGS

The SETTINGS frame (type=0x04) is only sent on a Control Stream. It

conveys configuration parameters that affect how SIP-over-QUIC user

agents communicate, such as preferences and constraints on peer

behaviour. The parameters always apply to an entire SIP-over-QUIC

connection, never to a single transaction. A SETTINGS frame MUST be

sent as the first frame of each Control Stream by each peer user

agent, and it MUST NOT be sent subsequently. If a SIP-over-QUIC user

agent receives a second SETTINGS frame on the control stream, or any

other stream, the user agent MUST respond with a connection error of

type SIP_FRAME_UNEXPECTED.

SETTINGS parameters are not negotiated; they describe

characteristics of the sending user agent that can be used by the

receiving user agent. However, a negotiation can be implied by the

use of SETTINGS: each user agent uses SETTINGS to advertise a set of

supported values. Each user agent combines the two sets to conclude

which choice will be used. SETTINGS does not provide a mechanism to

identify when the choice takes effect.

Different values for the same parameter can be advertised by the two

user agents.

The same parameter MUST NOT occur more than once in the SETTINGS

frame. A receiver MAY treat the presence of duplicate setting

identifiers as a connection error of type SIP_SETTINGS_ERROR.

The payload of a SETTINGS frame consists of zero or more parameters.

Each parameter consists of a parameter identifier and a value, both

encoded as QUIC variable-length integers.

¶

¶

¶

¶

¶

¶

Parameter {

 Identifier (i),

 Value (i)

}

SETTINGS Frame {

 Type (i) = 0x04,

 Length (i),

 Parameter (..) ...

}

SETTINGS_QPACK_MAX_TABLE_CAPACITY

(0x01):

SETTINGS_MAX_FIELD_SECTION_SIZE

(0x06):

SETTINGS_QPACK_BLOCKED_STREAMS

(0x07):

Figure 7: SETTINGS Frame

An implementation MUST ignore any parameter with an identifier it

does not understand.

7.2.4.1. Defined SETTINGS Parameters

The following parameters are defined in SIP-over-QUIC:

The default value is zero.

See Section 3.3 for usage.

The default value is

unlimited. See Section 3.3

for usage.

The default value is zero.

See Section 3.3 for usage.

8. Error Handling

When a request cannot be completed successfully, or if there is an

issue with the underlying QUIC stream, QUIC allows the application

protocol to abruptly reset that stream and communicate a reason (see

Section 2.4 of [QUIC-TRANSPORT]. This is referred to as a "stream

error". A SIP-over-QUIC implementation can decide to close a QUIC

stream and communicate the type of error. The wire encoding of error

codes is defined in Section 8.1. Stream errors are distinct from SIP

status codes that indicate error conditions. Stream errors indicate

that the sender did not transfer or consume the full request or

response message, while SIP status codes indicate the result of a

request that was successfully received and processed by the

recipient.

If an entire connection needs to be terminated, QUIC similarly

provides mechanisms to communicate a reason (see Section 5.3 of

[QUIC-TRANSPORT]). This is referred to as a "connection error".

Similar to stream errors, a SIP-over-QUIC implementation can

terminate a QUIC connection and communicate the reason using an

error code from Section 8.1.

Although called a "stream error", this does not necessarily indicate

a problem with either the implementation or the connection as a

whole. Streams MAY also be reset if the result of a SIP response is

no longer of interest to the user agent client, see Section 3.2.1.

Section 9 specifies that extensions may define new error codes

without negotiation. Use of an unknown error code or a known error

code in an unexpected context MUST be treated as equivalent to

SIP_NO_ERROR.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-2.4
https://rfc-editor.org/rfc/rfc9000#section-5.3

SIP_NO_ERROR

(0x0300):

SIP_GENERAL_PROTOCOL_ERROR

(0x0301):

SIP_INTERNAL_ERROR

(0x0302):

SIP_STREAM_CREATION_ERROR

(0x0303):

SIP_CLOSED_CRITICAL_STREAM

(0x0304):

SIP_FRAME_ERROR

(0x0305):

SIP_FRAME_UNEXPECTED

(0x0306):

SIP_CANCEL_FRAME_CLOSED

(0x0307):

SIP_SETTINGS_ERROR

(0x0309):

SIP_MISSING_SETTINGS

(0x030a):

SIP_REQUEST_INCOMPLETE

(0x030d):

SIP_REQUEST_REJECTED

(0x030b):

8.1. SIP-over-QUIC Error Codes

The following error codes are defined for use when abruptly

terminating streams, aborting reading of streams, or immediately

closing SIP-over-QUIC connections.

No error. This is used when the connection or

stream needs to be closed, but there is no

error to signal.

Peer violated protocol

requirements in a way that does

not match a more specific error code or endpoint declines to use

a more specific error code.

An internal error has occurred in the

SIP-over-QUIC stack.

The endpoint detected that its

peer created a stream that it

will not accept.

A stream required by the SIP-

over-QUIC connection was closed

or reset.

A frame that fails to satisfy layout

requirements or with an invalid size was

received.

A frame was received that was not

permitted in the current state or on

the current stream.

A CANCEL frame was received that

referenced an unknown stream ID.

An endpoint detected an error in the

payload of a SETTINGS frame.

No SETTINGS frame was received at the

beginning of the control stream.

An endpoint's stream terminated

without containing a fully formed

request.

A server rejected a request without

performing any application

processing.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

(0x030c):

SIP_REQUEST_CANCELLED

(0x030c):

SIP_MESSAGE_ERROR

(0x030e):

SIP_HEADER_COMPRESSION_FAILED

(0x0310):

SIP_HEADER_TOO_LARGE

(0x0311):

The request or its response is

cancelled.

A SIP message was malformed and cannot

be processed.

The QPACK decoder failed to

interpret an encoded field

section and is not able to continue decoding that field. section

The received encoded field section

was larger than the receiver has

previously promised to accept. See Section 3.3.

9. Extensions to SIP-over-QUIC

SIP-over-QUIC permits extension of the protocol. Within the

limitations described in this section, protocol extensions can be

used to provide additional services or alter any aspect of the

protocol. Extensions are effective only within the scope of a single

SIP-over-QUIC connection.

This applies only to the protocol elements defined in this document.

This does not affect the existing options for extending SIP, such as

defining new methods, status codes or header fields.

Extensions are permitted to use new frame types (Section 7.2), new

settings (Section 7.2.4.1), new error codes (Section 8.1), or new

stream types (Section 5).

RFC Editor's Note: Establish registries for frame types,

settings, error codes and stream types.

Implementations MUST ignore unknown or unsupported values in all

extensible protocol elements. This means that any of these extension

points can be safely used by extensions without prior arrangement or

negotiation. However, where a known frame type is required to be in

a specific location, such as the SETTINGS frame (see Section 5.2.1),

an unknown frame type does not satisfy that requirement and SHOULD

be treated as an error.

Extensions that could change the semantics of existing protocol

components MUST be negotiated before being used. For example, an

extension that allows the multiplexing of other protocols such as

media transport protocols over bidirectional QUIC streams MUST NOT

be used until the peer user agent has given a positive signal that

this is acceptable.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This document does not mandate a specific method for negotiating the

use of any extension, but it notes that a parameter

(Section 7.2.4.1) could be used for that purpose. If both peer user

agents set a value that indicates willingness to use the extension,

then the extension can be used. If a parameter is used in this way,

the default value MUST be defined in such a way that the extension

is disabled if the setting is omitted.

10. Future Carriage of Media Sessions

Author's Note: This section is intended to foster discussion

around how the QUIC transport connection established and used by

SIP-over-QUIC could be also used for carriage of media.

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

Future versions of this specification may include support for

carrying media sessions within the same QUIC transport connection as

SIP-over-QUIC, with the intention being that they will be negotiated

using the SDP offer/answer mechanism.

There already exists several attempts to define carriage of media

over QUIC transport, such as [QRT], [RTP-over-QUIC], [QuicR-Arch],

[RUSH] and [Warp].

In the case of media carried in QUIC datagrams, a user agent cannot

propose sending media using this mechanism unless its peer has

indicated its support for receiving datagrams by means of the

max_datagram_frame_size parameter as described in Section 3 of

[QUIC-DATAGRAMS].

In the case of media carried in QUIC streams, if the media streams

are transmitted using unidirectional streams, then new stream types

will need to be defined. This document reserves the stream type

value 0x04 for this, see Section 5.2. In the unlikely case where

media streams are to be transmitted using bidirectional streams, the

stream type mechanism will need to be extended to cover

bidirectional streams, because this specification currently assumes

that SIP-over-QUIC messages have exclusive use of the bidirectional

streams.

10.1. Carriage Of RTP In A QUIC Transport Session

Both [QRT] and [RTP-over-QUIC] define ways to carry RTP and RTCP

messages over QUIC DATAGRAM frames. With SIP and SDP already closely

aligned with RTP media sessions, adapting SIP-over-QUIC to coexist

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9221#section-3

within the same QUIC transport connection as RTP/RTCP would save at

least one network round trip.

QRT only defines a way to carry RTP and RTCP in QUIC DATAGRAM

frames.

RTP-over-QUIC defines a way to carry RTP and RTCP over

unidirectional QUIC STREAM frames as well as QUIC DATAGRAM

frames.

In addition, QRT attempts to define SDP attributes to allow the

negotiation of QRT sessions in SIP. [SDP-QUIC] also describes a

different set of SDP attributes to perform a similar task.

Future versions of this document or the above documents may specify

a mechanism for signalling that a given media session will be

carried in the same QUIC connection as the SIP-over-QUIC session.

10.2. Carriage Of Non-RTP Media Streaming Protocols In A QUIC

Transport Session

[RUSH] does not specify a means to discover the presence of a RUSH

streaming session, nor a mechanism for negotiating the encoding

parameters of media that is being exchanged. RUSH has two modes of

operation: Normal and Multi Stream modes. Normal mode, as described

in Section 4.3.1 of [RUSH], uses a single bidirectional QUIC stream

to send and receive media streams. Multi Stream mode, as described

in Section 4.3.2 of [RUSH], uses a bidirectional QUIC stream for

each individual media frame. Bidirectional streams appear to be used

in order to give error feedback, as opposed to having a separate

control stream for handling errors or using the QUIC transport error

mechanism. If the stream type mechanism described in Section 5.2 is

expanded to cover bidirectional streams as well, then SIP-over-QUIC

could be used with RUSH.

[Warp] specifies that sessions are established using HTTP/3

WebTransport ([WebTransH3]). However, to the author's best knowledge

WebTransport does not yet contain any signalling or media

negotiation similar to how WebRTC would use SDP offer/answer

exchanges, so some form of session establishment mechanism like SIP-

over-QUIC could be useful in filling this gap. Warp uses QUIC

unidirectional streams for sending media. Similar to MPEG-DASH,

media is sent in ISO-BMFF "segments", with each stream carrying a

single segment. This can easily be accommodated by the media stream

type reserved in Section 5.2.

[QuicR-Arch] describes SDP as overly complicated, and [QuicR-Proto]

defines the QuicR Manifest for advertising media sessions and

endpoint capabilities and, as such, SIP-over-QUIC probably isn't

required. However, it is possible that trying to design this

¶

*

¶

*

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-kpugin-rush-01#section-4.3.1
https://datatracker.ietf.org/doc/html/draft-kpugin-rush-01#section-4.3.2

Protocol:

Identification Sequence:

Specification:

manifest mechanism from scratch is likely to require extra time and

effort to develop, while SDP is a perfectly usable solution.

11. Security Considerations

The security considerations of SIP-over-QUIC should be comparable to

those of [SIP2.0] and [HTTP3].

SIP-over-QUIC relies on QUIC, which itself relies on TLS 1.3 and

thus supports by default the protections against downgrade attacks

described in [BCP195]. QUIC-specific issues and their mitigations

are described in Section 21 of [QUIC-TRANSPORT].

Section 4.1 gives specific guidance on the conversion of

transactions between SIP-over-QUIC and carriage of SIP over other

transport protocols which make use of the branch parameter, in order

to avoid leaking details of the underlying QUIC transport

connection.

12. IANA Considerations

Author's Note: This section of the document reflects future IANA

registrations, and not current ones. The intention is for these

registrations to occur once this Internet-Draft becomes an RFC.

This document registers a new ALPN protocol IDs (Section 12.1) and

creates new registries that manage the assignment of code points in

SIP-over-QUIC (Section 12.2).

12.1. Registration Of SIP Identification Strings

This document creates a new registration of SIP-over-QUIC in the

"TLS Application-Layer Protocol Negotiation (ALPN) Protocol IDs"

registry established in [RFC7301].

The "sips/quic" string identifies SIP-over-QUIC:

SIP-over-QUIC

0x73 0x69 0x70 0x73 0x2F 0x71 0x75 0x69

0x63 ("sips/quic")

This document

This document creates a new registration of SIP/2.0 over TLS in the

"TLS Application-Layer Protocol Negotiation (ALPN) Protocol IDs"

registry established in [RFC7301].

The "sips/2.0" string identifies SIP/2.0 over TLS:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-21

Protocol:

Identification Sequence:

Specification:

Protocol:

Identification Sequence:

Specification:

Frame type:

SIP/2.0 over TLS

0x73 0x69 0x70 0x73 0x2F 0x32 0x2E 0x30

("sips/2.0")

[SIP2.0]

This document creates a new registration of SIP/2.0 over UDP in the

"TLS Application-Layer Protocol Negotiation (ALPN) Protocol IDs"

registry established in [RFC7301].

The "sip/2.0" string identifies SIP/2.0 over UDP:

SIP/2.0 over UDP

0x73 0x69 0x70 0x2F 0x32 0x2E 0x30 ("sip/

2.0")

[SIP2.0]

12.2. New Registries

New registries created in this document operate under the QUIC

registration policy documented in Section 22.1 of [QUIC-TRANSPORT].

These registries all include the common set of fields listed in

Section 22.1.1 of [QUIC-TRANSPORT]. These registries are collected

under the "Session Initiation Protocol over QUIC Transport (SIP-

over-QUIC)" heading.

The initial allocations in these registries are all assigned

permanent status and list a change controller of the IETF and a

contact of the [TBC] working group.

12.2.1. Frame Types

This document establishes a registry for SIP-over-QUIC frame type

codes. The "SIP-over-QUIC Frame Types" registry governs a 62-bit

space. This registry follows the QUIC registry policy; see

Section 12.2. Permanent registrations in this registry are assigned

using the Specification Required policy [RFC8126]), except for

values between 0x00 and 0x3f (in hexadecimal; inclusive), which are

assigned using Standards Action or IESG Approval as defined in

Sections 4.9 and 4.10 of [RFC8126].

In addition to common fields as described in Section 12.2, permanent

registrations in this registry MUST include the following fields:

A name or label for the frame type.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-22.1
https://rfc-editor.org/rfc/rfc9000#section-22.1.1
https://rfc-editor.org/rfc/rfc8126#section-4.9
https://rfc-editor.org/rfc/rfc8126#section-4.10

Parameter Name:

Default:

Specifications of frame types MUST include a description of the

frame layout and its semantics, including any parts of the frame

that are conditionally present.

The entries in Table 2 are registered by this document.

Frame Type Value Specification

DATA 0x00 Section 7.2.1

HEADERS 0x01 Section 7.2.2

CANCEL 0x02 Section 7.2.3

SETTINGS 0x04 Section 7.2.4

Table 2: Initial SIP-over-QUIC

Frame Types

12.2.2. Settings Parameters

This document establishes a registry for SIP-over-QUIC parameters.

The "SIP-over-QUIC Parameters" registry governs a 62-bit space. This

registry follows the QUIC registry policy; see Section 12.2.

Permanent registrations in this registry are assigned using the

Specification Required policy [RFC8126]), except for values between

0x00 and 0x3f (in hexadecimal; inclusive), which are assigned using

Standards Action or IESG Approval as defined in Sections 4.9 and

4.10 of [RFC8126].

In addition to common fields as described in Section 12.2, permanent

registrations in this registry MUST include the following fields:

A symbolic name for the parameter. Specifying a

parameter name is optional.

The value of the parameter unless otherwise indicated. A

default SHOULD be the most restrictive possible value.

The entries in Table 3 are registered by this document.

Parameter Name Value Specification Default

SETTINGS_QPACK_MAX_TABLE_CAPACITY 0x01 Section 7.2.4.1 0

SETTINGS_MAX_FIELD_SECTION_SIZE 0x06 Section 7.2.4.1 Unlimited

SETTINGS_QPACK_BLOCKED_STREAMS 0x07 Section 7.2.4.1 0

Table 3: Initial SIP-over-QUIC Parameters

12.2.3. Error Codes

This document establishes a registry for SIP-over-QUIC error codes.

The "SIP-over-QUIC Error Codes" registry governs a 62-bit space.

This registry follows the QUIC registry policy; see Section 12.2.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.9
https://rfc-editor.org/rfc/rfc8126#section-4.10

Name:

Description:

Permanent registrations in this registry are assigned using the

Specification Required policy [RFC8126]), except for values between

0x0300 and 0x033f (in hexadecimal; inclusive), which are assigned

using Standards Action or IESG Approval as defined in Sections 4.9

and 4.10 of [RFC8126].

In addition to common fields as described in Section 12.2, permanent

registrations in this registry MUST include the following fields:

A name for the error code.

A brief description of the error code semantics.

The entries in Table 4 are registered by this document. These error

codes were selected from the range that operates on a Specification

Required policy to avoid collisions with HTTP/2 and HTTP/3 error

codes.

Name Value Description Specification

SIP_NO_ERROR 0x0300 No error. Section 8.1

SIP_GENERAL_PROTOCOL_ERROR 0x0301
Non-specific

error code.
Section 8.1

SIP_INTERNAL_ERROR 0x0302
An internal

error occurred.
Section 8.1

SIP_STREAM_CREATION_ERROR 0x0303

Peer created an

unacceptable

stream.

Section 8.1

SIP_CLOSED_CRITICAL_STREAM 0x0304

A required

stream was

closed.

Section 8.1

SIP_FRAME_ERROR 0x0305

An invalid

frame was

received.

Section 8.1

SIP_FRAME_UNEXPECTED 0x0306

A not permitted

frame was

received.

Section 8.1

SIP_CANCEL_FRAME_CLOSED 0x0307

A CANCEL frame

referenced an

unopened stream

ID.

Section 8.1

SIP_SETTINGS_ERROR 0x0309

An error was

detected in a

SETTINGS frame.

Section 8.1

SIP_MISSING_SETTINGS 0x030a

No SETTINGS

frame was

received.

Section 8.1

SIP_REQUEST_REJECTED 0x030b Section 8.1

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.9
https://rfc-editor.org/rfc/rfc8126#section-4.10

Stream Type:

Sender:

Name Value Description Specification

User agent

server rejected

a request.

SIP_REQUEST_CANCELLED 0x030c

The request or

its response is

cancelled.

Section 8.1

SIP_REQUEST_INCOMPLETE 0x030d

Stream

terminated

without a full

request.

Section 8.1

SIP_MESSAGE_ERROR 0x030e
A SIP message

was malformed.
Section 8.1

SIP_HEADER_COMPRESSION_FAILED 0x0310

Failed to

interpret an

encoded field

section.

Section 8.1

SIP_HEADER_TOO_LARGE 0x0311

Received

encoded field

section is too

large.

Section 8.1

Table 4: Initial SIP-over-QUIC Error Codes

12.2.4. Stream Types

This document establishes a registry for SIP-over-QUIC stream types.

The "SIP-over-QUIC Stream Types" registry governs a 62-bit space.

This registry follows the QUIC registry policy; see Section 12.2.

Permanent registrations in this registry are assigned using the

Specification Required policy [RFC8126]), except for values between

0x00 and 0x3f (in hexadecimal; inclusive), which are assigned using

Standards Action or IESG Approval as defined in Sections 4.9 and

4.10 of [RFC8126].

In addition to common fields as described in Section 12.2, permanent

registrations in this registry MUST include the following fields:

A name or label for the stream type.

Which endpoint on a SIP-over-QUIC connection may initiate a

stream of this type. Values are "Client", "Server", or "Both".

The entries is Table 5 are registered by this document.

Stream Type Value Specification Sender

Control Stream 0x00 Section 5.2.1 Both

QPACK Encoder Stream 0x02 Section 5.2 Both

QPACK Decoder Stream 0x03 Section 5.2 Both

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.9
https://rfc-editor.org/rfc/rfc8126#section-4.10

[BCP195]

[HTTP-SEMANTICS]

[HTTP3]

[QPACK]

[QUIC-TRANSPORT]

[RFC2119]

[RFC3261]

[RFC3264]

Stream Type Value Specification Sender

Reserved 0x04 Section 5.2 Both

Table 5: Initial SIP-over-QUIC Stream Types

13. References

13.1. Normative References

Sheffer, Y., Holz, R., and P. Saint-Andre,

"Recommendations for Secure Use of Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS)", BCP 195, RFC 7525, May 2015.

Moriarty, K. and S. Farrell, "Deprecating TLS 1.0 and TLS

1.1", BCP 195, RFC 8996, March 2021.

<https://www.rfc-editor.org/info/bcp195>

Fielding, R., Ed., Nottingham, M., Ed., and J.

Reschke, Ed., "HTTP Semantics", STD 97, RFC 9110, DOI

10.17487/RFC9110, June 2022, <https://www.rfc-editor.org/

rfc/rfc9110>.

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>.

Krasic, C., Bishop, M., and A. Frindell, Ed., "QPACK:

Field Compression for HTTP/3", RFC 9204, DOI 10.17487/

RFC9204, June 2022, <https://www.rfc-editor.org/rfc/

rfc9204>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/rfc/rfc3261>.

Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model

with Session Description Protocol (SDP)", RFC 3264, DOI

https://www.rfc-editor.org/info/bcp195
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9204
https://www.rfc-editor.org/rfc/rfc9204
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3261
https://www.rfc-editor.org/rfc/rfc3261

[RFC3986]

[RFC8126]

[RFC8174]

[RFC9000]

[SIP2.0]

[DNS-SVCB]

[HTTP1.1]

[QRT]

[QUIC-DATAGRAMS]

10.17487/RFC3264, June 2002, <https://www.rfc-editor.org/

rfc/rfc3264>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/rfc/rfc3261>.

13.2. Informative References

Schwartz, B., Bishop, M., and E. Nygren, "Service binding

and parameter specification via the DNS (DNS SVCB and

HTTPS RRs)", Work in Progress, Internet-Draft, draft-

ietf-dnsop-svcb-https-11, <https://datatracker.ietf.org/

doc/html/draft-ietf-dnsop-svcb-https-11>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112,

June 2022, <https://www.rfc-editor.org/rfc/rfc9112>.

Hurst, S., "QRT: QUIC RTP Tunnelling", Work in Progress,

Internet-Draft, draft-hurst-quic-rtp-tunnelling-01,

<https://datatracker.ietf.org/doc/html/draft-hurst-quic-

rtp-tunnelling-01>.

Pauly, T., Kinnear, E., and D. Schinazi, "An

Unreliable Datagram Extension to QUIC", RFC 9221, DOI

10.17487/RFC9221, March 2022, <https://www.rfc-

editor.org/rfc/rfc9221>.

https://www.rfc-editor.org/rfc/rfc3264
https://www.rfc-editor.org/rfc/rfc3264
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc3261
https://www.rfc-editor.org/rfc/rfc3261
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-https-11
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-svcb-https-11
https://www.rfc-editor.org/rfc/rfc9112
https://datatracker.ietf.org/doc/html/draft-hurst-quic-rtp-tunnelling-01
https://datatracker.ietf.org/doc/html/draft-hurst-quic-rtp-tunnelling-01
https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc9221

[QuicR-Arch]

[QuicR-Proto]

[RFC2782]

[RFC5234]

[RFC7301]

[RFC8499]

[RTP-over-QUIC]

[RUSH]

[SDP-QUIC]

Jennings, C. and S. Nandakumar, "QuicR - Media Delivery

Protocol over QUIC", Work in Progress, Internet-Draft,

draft-jennings-moq-quicr-arch-01, <https://

datatracker.ietf.org/doc/html/draft-jennings-moq-quicr-

arch-01>.

Jennings, C., Nandakumar, S., and C. Huitema, "QuicR -

Media Delivery Protocol over QUIC", Work in Progress,

Internet-Draft, draft-jennings-moq-quicr-proto-01,

<https://datatracker.ietf.org/doc/html/draft-jennings-

moq-quicr-proto-01>.

Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for

specifying the location of services (DNS SRV)", RFC 2782,

DOI 10.17487/RFC2782, February 2000, <https://www.rfc-

editor.org/rfc/rfc2782>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/rfc/

rfc7301>.

Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS

Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,

January 2019, <https://www.rfc-editor.org/rfc/rfc8499>.

Ott, J. and M. Engelbart, "RTP over QUIC", Work in

Progress, Internet-Draft, draft-ietf-avtcore-rtp-over-

quic-01, <https://datatracker.ietf.org/doc/html/draft-

ietf-avtcore-rtp-over-quic-01>.

Pugin, K., Frindell, A., Cenzano, J., and J. Weissman,

"RUSH - Reliable (unreliable) streaming protocol", Work

in Progress, Internet-Draft, draft-kpugin-rush-01,

<https://datatracker.ietf.org/doc/html/draft-kpugin-

rush-01>.

Dawkins, S., "SDP Offer/Answer for RTP using QUIC as

Transport", Work in Progress, Internet-Draft, draft-

dawkins-avtcore-sdp-rtp-quic-00, <https://

datatracker.ietf.org/doc/html/draft-dawkins-avtcore-sdp-

rtp-quic-00>.

https://datatracker.ietf.org/doc/html/draft-jennings-moq-quicr-arch-01
https://datatracker.ietf.org/doc/html/draft-jennings-moq-quicr-arch-01
https://datatracker.ietf.org/doc/html/draft-jennings-moq-quicr-arch-01
https://datatracker.ietf.org/doc/html/draft-jennings-moq-quicr-proto-01
https://datatracker.ietf.org/doc/html/draft-jennings-moq-quicr-proto-01
https://www.rfc-editor.org/rfc/rfc2782
https://www.rfc-editor.org/rfc/rfc2782
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc7301
https://www.rfc-editor.org/rfc/rfc7301
https://www.rfc-editor.org/rfc/rfc8499
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-rtp-over-quic-01
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-rtp-over-quic-01
https://datatracker.ietf.org/doc/html/draft-kpugin-rush-01
https://datatracker.ietf.org/doc/html/draft-kpugin-rush-01
https://datatracker.ietf.org/doc/html/draft-dawkins-avtcore-sdp-rtp-quic-00
https://datatracker.ietf.org/doc/html/draft-dawkins-avtcore-sdp-rtp-quic-00
https://datatracker.ietf.org/doc/html/draft-dawkins-avtcore-sdp-rtp-quic-00

[SNI]

[Warp]

[WebTransH3]

Eastlake 3rd, D., "Transport Layer Security (TLS)

Extensions: Extension Definitions", RFC 6066, DOI

10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/rfc/rfc6066>.

Curley, L., "Warp - Segmented Live Media Transport", Work

in Progress, Internet-Draft, draft-lcurley-warp-02,

<https://datatracker.ietf.org/doc/html/draft-lcurley-

warp-02>.

Frindell, A., Kinnear, E., and V. Vasiliev,

"WebTransport over HTTP/3", Work in Progress, Internet-

Draft, draft-ietf-webtrans-http3-03, <https://

datatracker.ietf.org/doc/html/draft-ietf-webtrans-

http3-03>.

Appendix A. Acknowledgments

The author would like to acknowledge Richard Bradbury as the

inspiration for the idea behind this document, and to Piers O'Hanlon

for his review comments.

Appendix B. QPACK Static Table

Author's Note: This is only a preliminary table. The original

HPACK static table was created after analysing the frequency of

common HTTP header fields and their values. QPACK repeated that

effort at a later date, which resulted in a different static

table. The author welcomes any data that would permit a similar

level of analysis for the frequency of common SIP header fields

and their values.

Index Name Value

0 :request-uri

1 from

2 to

3 call-id

4 via

5 :method REGISTER

6 :method INVITE

7 :method ACK

8 :method BYE

9 :method CANCEL

10 :method UPDATE

11 :method REFER

12 :method OPTIONS

13 :method MESSAGE

¶

¶

https://www.rfc-editor.org/rfc/rfc6066
https://www.rfc-editor.org/rfc/rfc6066
https://datatracker.ietf.org/doc/html/draft-lcurley-warp-02
https://datatracker.ietf.org/doc/html/draft-lcurley-warp-02
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-03
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-03
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-03

Index Name Value

14 :status 100

15 :status 180

16 :status 200

17 :status 301

18 :status 302

19 :status 400

20 :status 401

21 :status 404

22 :status 407

23 :status 408

24 contact

25 content-type application/sdp

26 content-type text/html

27 content-disposition session

28 content-disposition render

29 content-length

30 accept application/sdp

31 accept-encoding gzip

32 accept-language

33 alert-info

34 allow REGISTER

35 allow INVITE

36 allow ACK

37 allow BYE

38 allow CANCEL

39 allow UPDATE

40 allow REFER

41 allow OPTIONS

42 allow MESSAGE

43 authentication-info

44 authorization

45 call-info

46 content-encoding

47 content-language

48 date

49 error-info

50 expires

51 in-reply-to

52 max-forwards

53 min-expires

54 mime-version

55 organization

56 priority Non-urgent

57 priority Normal

58 priority Urgent

bidirectional stream

CANCEL

Index Name Value

59 priority Emergency

60 proxy-authenticate

61 proxy-authorization

62 proxy-require

63 record-route

64 reply-to

65 require

66 retry-after

67 route

68 server

69 subject

70 supported

71 timestamp

72 unsupported

73 user-agent

74 warning 300

75 warning 301

76 warning 302

77 warning 303

78 warning 304

79 warning 305

80 warning 306

81 warning 307

82 warning 330

83 warning 331

84 warning 370

85 warning 399

86 www-authenticate

Table 6: Static Table

Index

B C D H M S U

B

Section 5, Paragraph 2; Section 5, Paragraph 2;

Section 7.2.3, Paragraph 1; Section 10, Paragraph 6;

Section 10, Paragraph 6; Section 10, Paragraph 6;

Section 10.2, Paragraph 1

C

Table 1; Section 8.1, Paragraph 2.16.1; Table 2; Table 4;

Table 6; Table 6

¶

¶

¶

¶

¶

connection error

control stream

DATA

HEADERS

malformed

Section 1.2; Section 3.2, Paragraph 7;

Section 3.2.1, Paragraph 4; Section 3.3.1, Paragraph 6;

Section 5.2, Paragraph 6; Section 5.2.1, Paragraph 2;

Section 5.2.1, Paragraph 2; Section 5.2.1, Paragraph 3;

Section 7.1, Paragraph 5; Section 7.1, Paragraph 6;

Section 7.2.3, Paragraph 4; Section 7.2.4, Paragraph 1;

Section 7.2.4, Paragraph 4; Section 8, Paragraph 2

Section 5.2, Paragraph 3; Section 5.2, Paragraph 5;

Section 5.2.1, Paragraph 1; Section 5.2.1, Paragraph 2;

Section 5.2.1, Paragraph 2; Section 5.2.1, Paragraph 2;

Section 5.2.1, Paragraph 2; Section 5.2.1, Paragraph 3;

Section 5.2.1, Paragraph 3; Section 5.2.1, Paragraph 3;

Section 5.2.1, Paragraph 5; Section 5.2.1, Paragraph 5;

Section 7.2.4, Paragraph 1; Section 8.1, Paragraph 2.20.1;

Section 10.2, Paragraph 1

D

Section 2, Paragraph 3; Section 3.2, Paragraph 5, Item 2;

Section 3.2, Paragraph 7;

Section 3.2.2, Paragraph 2, Item 1; Table 1; Table 2

H

Section 2, Paragraph 3; Section 3.2, Paragraph 5, Item 1;

Section 3.2, Paragraph 7; Section 3.2, Paragraph 8;

Section 3.2.2, Paragraph 2, Item 1;

Section 3.2.2, Paragraph 2, Item 2;

Section 3.2.2, Paragraph 2, Item 3;

Section 3.2.2, Paragraph 2, Item 4;

Section 3.2.2, Paragraph 2, Item 5;

Section 3.2.2, Paragraph 2, Item 6;

Section 3.2.2, Paragraph 2, Item 7; Table 1; Table 2

M

Section 3.2, Paragraph 3; Section 3.2.2, Paragraph 1;

Section 3.2.2, Paragraph 3; Section 3.2.2, Paragraph 4;

Section 3.2.2, Paragraph 5; Section 3.2.2, Paragraph 6;

Section 3.3.2, Paragraph 3; Section 3.3.2, Paragraph 4;

Section 3.3.2.1, Paragraph 4;

Section 8.1, Paragraph 2.28.1; Table 4

S

¶

¶

¶

¶

¶

¶

¶

¶

¶

SETTINGS

SETTINGS_MAX_FIELD_SECTION_SIZE

SETTINGS_QPACK_BLOCKED_STREAMS

SETTINGS_QPACK_MAX_TABLE_CAPACITY

SIP_CANCEL_FRAME_CLOSED

SIP_CLOSED_CRITICAL_STREAM

SIP_FRAME_ERROR

SIP_FRAME_UNEXPECTED

SIP_GENERAL_PROTOCOL_ERROR

SIP_HEADER_COMPRESSION_FAILED

SIP_HEADER_TOO_LARGE

SIP_INTERNAL_ERROR

SIP_MESSAGE_ERROR

SIP_MISSING_SETTINGS

SIP_NO_ERROR

SIP_REQUEST_CANCELLED

SIP_REQUEST_INCOMPLETE

SIP_REQUEST_REJECTED

SIP_SETTINGS_ERROR

SIP_STREAM_CREATION_ERROR

stream error

Section 5.2, Paragraph 8; Table 1;

Section 8.1, Paragraph 2.18.1;

Section 8.1, Paragraph 2.20.1; Section 9, Paragraph 5;

Table 2; Table 4; Table 4

Section 3.3.1, Paragraph 2; Section 7.2.4.1; Table 3

Section 3.3.1, Paragraph 6; Section 7.2.4.1; Table 3

Section 3.3.1, Paragraph 5; Section 7.2.4.1; Table 3

Section 3.2.1, Paragraph 4; Section 8.1; Table 4

Section 5.2.1, Paragraph 3; Section 8.1; Table 4

Section 7.1, Paragraph 5; Section 7.1, Paragraph 6;

Section 8.1; Table 4

Section 3.2, Paragraph 7; Section 7.2.4, Paragraph 1;

Section 8.1; Table 4

Section 8.1; Table 4

Section 8.1; Table 4

Section 3.3.1, Paragraph 2; Section 8.1; Table 4

Section 8.1; Table 4

Section 3.2.2, Paragraph 4; Section 8.1; Table 4

Section 5.2.1, Paragraph 2; Section 8.1; Table 4

Section 8, Paragraph 4; Section 8.1; Table 4

Section 3.2.1, Paragraph 3; Section 3.2.1, Paragraph 7;

Section 8.1; Table 4

Section 3.2, Paragraph 10; Section 8.1; Table 4

Section 3.2.1, Paragraph 3; Section 3.2.1, Paragraph 3;

Section 3.2.1, Paragraph 6; Section 3.2.1, Paragraph 7;

Section 8.1; Table 4

Section 7.2.4, Paragraph 4; Section 8.1; Table 4

Section 5.2, Paragraph 6; Section 5.2.1, Paragraph 2;

Section 8.1; Table 4

Section 1.2; Section 3.2.2, Paragraph 4;

Section 3.3.1, Paragraph 2; Section 8, Paragraph 1;

Section 8, Paragraph 2; Section 8, Paragraph 3

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

unidirectional stream

U

Section 3.3.1, Paragraph 3; Section 5, Paragraph 2;

Section 5.2, Paragraph 1; Section 5.2, Paragraph 5;

Section 5.2, Paragraph 5; Section 5.2, Paragraph 5;

Section 5.2, Paragraph 5; Section 5.2, Paragraph 5;

Section 5.2, Paragraph 7; Section 5.2, Paragraph 9;

Section 5.2, Paragraph 9; Section 5.2, Paragraph 9;

Section 10, Paragraph 6; Section 10.2, Paragraph 2

Author's Address

Sam Hurst

BBC Research & Development

Email: sam.hurst@bbc.co.uk

¶

¶

mailto:sam.hurst@bbc.co.uk

	SIP-over-QUIC: Session Initiation Protocol over QUIC Transport
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions
	1.2. Definitions

	2. SIP-over-QUIC Protocol Overview
	2.1. QUIC Transport
	2.1.1. Draft Version Identification

	2.2. Connection Reuse

	3. Expressing SIP Semantics Over QUIC Transport
	3.1. QUIC Clients and Servers
	3.2. SIP Transaction Framing
	3.2.1. Request Cancellation and Rejection
	3.2.2. Malformed Requests And Responses

	3.3. SIP Header Fields
	3.3.1. SIP-over-QUIC Header Compression
	3.3.2. SIP Control Data
	3.3.2.1. Request Pseudo-header fields
	3.3.2.2. Response Pseudo-header fields

	3.3.3. Via Transport Parameter
	3.3.4. SIP URI Transport Parameter
	3.3.5. Transaction Sequence Number

	3.4. Connection Keep-Alive

	4. Compatibility With Earlier SIP Versions
	4.1. Transactions
	4.2. Dialogs

	5. Stream Mapping and Usage
	5.1. Bidirectional Streams
	5.2. Unidirectional Streams
	5.2.1. Control Streams

	6. SIP Methods
	7. SIP Framing Layer
	7.1. Frame Layout
	7.2. Frame Definitions
	7.2.1. DATA
	7.2.2. HEADERS
	7.2.3. CANCEL
	7.2.4. SETTINGS
	7.2.4.1. Defined SETTINGS Parameters

	8. Error Handling
	8.1. SIP-over-QUIC Error Codes

	9. Extensions to SIP-over-QUIC
	10. Future Carriage of Media Sessions
	10.1. Carriage Of RTP In A QUIC Transport Session
	10.2. Carriage Of Non-RTP Media Streaming Protocols In A QUIC Transport Session

	11. Security Considerations
	12. IANA Considerations
	12.1. Registration Of SIP Identification Strings
	12.2. New Registries
	12.2.1. Frame Types
	12.2.2. Settings Parameters
	12.2.3. Error Codes
	12.2.4. Stream Types

	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Acknowledgments
	Appendix B. QPACK Static Table
	Index
	Author's Address

