
TCP Maintenance and Minor Extensions P. Hurtig
(tcpm) Karlstad University
Internet-Draft A. Petlund
Intended status: Experimental Simula Research Laboratory AS
Expires: April 25, 2013 M. Welzl
 University of Oslo
 October 22, 2012

TCP and SCTP RTO Restart
draft-hurtig-tcpm-rtorestart-03

Abstract

 This document describes a modified algorithm for managing the TCP and
 SCTP retransmission timers that provides faster loss recovery when a
 connection's amount of outstanding data is small. The modification
 allows the transport to restart its retransmission timer more
 aggressively in situations where fast retransmit cannot be used.
 This enables faster loss detection and recovery for connections that
 are short-lived or application-limited.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Hurtig, et al. Expires April 25, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TCP and SCTP RTO Restart October 2012

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 TCP uses two mechanisms to detect segment loss. First, if a segment
 is not acknowledged within a certain amount of time, a retransmission
 timeout (RTO) occurs, and the segment is retransmitted [RFC6298].
 While the RTO is based on measured round-trip times (RTTs) between
 the sender and receiver, it also has a conservative lower bound of 1
 second to ensure that delayed segments are not mistaken as lost.
 Second, when a sender receives duplicate acknowledgments, the fast
 retransmit algorithm infers segment loss and triggers a
 retransmission. Duplicate acknowledgments are generated by a
 receiver when out-of-order segments arrive. As both segment loss and
 segment reordering cause out-of-order arrival, fast retransmit waits
 for three duplicate acknowledgments before considering the segment as
 lost. In some situations, however, the number of outstanding
 segments is not enough to trigger three duplicate acknowledgments,
 and the sender must rely on lengthy RTOs for loss recovery.

 The amount of outstanding segments can be small for several reasons:

 (1) The connection is limited by the congestion control when the
 path has a low total capacity (bandwidth-delay product) or the
 connection's share of the capacity is small. It is also limited
 by the congestion control in the first RTTs of a connection or
 after an RTO when the available capacity is probed using slow-
 start.

 (2) The connection is limited by the receiver's available buffer
 space.

 (3) The connection is limited by the application if the available
 capacity of the path is not fully utilized (e.g. interactive
 applications), or at the end of a transfer, which is frequent if
 the total amount of data is small (e.g. web traffic).

 The first two situations can occur for any flow, as external factors
 at the network and/or host level cause them. The third situation
 primarily affects flows that are short or have a low transmission
 rate. Typical examples of applications that produce short flows are
 web servers. [RJ10] shows that 70% of all web objects, found at the
 top 500 sites, are too small for fast retransmit to work. [BPS98]

https://datatracker.ietf.org/doc/html/rfc6298

Hurtig, et al. Expires April 25, 2013 [Page 2]

Internet-Draft TCP and SCTP RTO Restart October 2012

 shows that about 56% of all retransmissions sent by a busy web server
 are sent after RTO expiry. While the experiments were not conducted
 using SACK [RFC2018], only 4% of the RTO-based retransmissions could
 have been avoided. Applications have a low transmission rate when
 data is sent in response to actions, or as a reaction to real life
 events. Typical examples of such applications are stock trading
 systems, remote computer operations and online games. What is
 special about this class of applications is that they are time-
 dependant, and extra latency can reduce the application service level
 [P09]. Although such applications may represent a small amount of
 data sent on the network, a considerable number of flows have such
 properties and the importance of low latency is high.

 The RTO restart approach outlined in this document makes the RTO
 slightly more aggressive when the number of outstanding segments is
 small, in an attempt to enable faster loss recovery for all segments
 while being robust to reordering. While it still conforms to the
 requirement in [RFC6298] that segments must not be retransmitted
 earlier than RTO seconds after their original transmission, it could
 increase the chance for a spurious timeout, which could degrade
 performance when the congestion window (cwnd) is large -- for
 example, when an application sends enough data to reach a cwnd
 covering 100 segments and then stops. The likelihood and potential
 impact of this problem as well as possible mitigation strategies are
 currently under investigation.

 While this document focuses on TCP, the described changes are also
 valid for the Stream Control Transmission Protocol (SCTP) [RFC4960]
 which has similar loss recovery and congestion control algorithms.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. RTO Restart Overview

 The RTO management algorithm described in [RFC6298] recommends that
 the retransmission timer is restarted when an acknowledgment (ACK)
 that acknowledges new data is received and there is still outstanding
 data. The restart is conducted to guarantee that unacknowledged
 segments will be retransmitted after approximately RTO seconds.
 However, by restarting the timer on each incoming acknowledgment,
 retransmissions are not typically triggered RTO seconds after their
 previous transmission but rather RTO seconds after the last ACK
 arrived. The duration of this extra delay depends on several factors

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6298

Hurtig, et al. Expires April 25, 2013 [Page 3]

Internet-Draft TCP and SCTP RTO Restart October 2012

 but is in most cases approximately one RTT. Hence, in most
 situations the time before a retransmission is triggered is equal to
 "RTO + RTT".

 The extra delay can be significant, especially for applications that
 use a lower RTOmin than the standard of 1 second and/or in
 environments with high RTTs, e.g. mobile networks. The restart
 approach is illustrated in Figure 1 where a TCP sender transmits
 three segments to a receiver. The arrival of the first and second
 segment triggers a delayed ACK [RFC1122], which restarts the RTO
 timer at the sender. The RTO restart is performed approximately one
 RTT after the transmission of the third segment. Thus, if the third
 segment is lost, as indicated in Figure 1, the effective loss
 detection time is "RTO + RTT" seconds. In some situations, the
 effective loss detection time becomes even longer. Consider a
 scenario where only two segments are outstanding. If the second
 segment is lost, the time to expire the delayed ACK timer will also
 be included in the effective loss detection time.

 Sender Receiver
 ...
 DATA [SEG 1] ----------------------> (ack delayed)
 DATA [SEG 2] ----------------------> (send ack)
 DATA [SEG 3] ----X /-------- ACK
 (restart RTO) <----------/
 ...
 (RTO expiry)
 DATA [SEG 3] ---------------------->

 Figure 1: RTO restart example

 During normal TCP bulk transfer the current RTO restart approach is
 not a problem. Actually, as long as enough segments arrive at a
 receiver to enable fast retransmit, RTO-based loss recovery should be
 avoided. RTOs should only be used as a last resort, as they
 drastically lower the congestion window compared to fast retransmit,
 and the current approach can therefore be beneficial -- it is
 described in [EL04] to act as a "safety margin" that compensates for
 some of the problems that the authors have identified with the
 standard RTO calculation. Notably, the authors of [EL04] also state
 that "this safety margin does not exist for highly interactive
 applications where often only a single packet is in flight."

 There are only a few situations where timeouts are appropriate, or
 the only choice. For example, if the network is severely congested
 and no segments arrive, RTO-based recovery should be used. In this

https://datatracker.ietf.org/doc/html/rfc1122

Hurtig, et al. Expires April 25, 2013 [Page 4]

Internet-Draft TCP and SCTP RTO Restart October 2012

 situation, the time to recover from the loss(es) will not be the
 performance bottleneck. Furthermore, for connections that do not
 utilize enough capacity to enable fast retransmit, RTO is the only
 choice. The time needed for loss detection in such scenarios can
 become a serious performance bottleneck.

3. RTO Restart Algorithm

 To enable faster loss recovery for connections that are unable to use
 fast retransmit, an alternative RTO restart can be used. By
 resetting the timer to "RTO - T_earliest", where T_earliest is the
 time elapsed since the earliest outstanding segment was transmitted,
 retransmissions will always occur after exactly RTO seconds. This
 approach makes the RTO more aggressive than the standardized approach
 in [RFC6298] but still conforms to the requirement in [RFC6298] that
 segments must not be retransmitted earlier than RTO seconds after
 their original transmission.

 This document specifies the following update of step 5.3 in Section 5
 of [RFC6298] (and a similar update in Section 6.3.2 of [RFC4960] for
 SCTP):

 When an ACK is received that acknowledges new data:

 (1) Set T_earliest = 0.

 (2) If the following two conditions hold:

 (a) The number of outstanding segments is less than four.

 (b) There is no unsent data ready for transmission or the
 receiver's advertised window does not permit
 transmission.

 set T_earliest to the time elapsed since the earliest
 outstanding segment was sent.

 (3) Restart the retransmission timer so that it will expire after
 "RTO - T_earliest" seconds (for the current value of RTO).

 The update requires TCP implementations to track the time elapsed
 since the transmission of the earliest outstanding segment
 (T_earliest). As the alternative restart is used only when the
 number of outstanding segments is less than four only four segments
 need to be tracked. Furthermore, some implementations of TCP (e.g.
 Linux TCP) already track the transmission times of all segments.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298#section-5
https://datatracker.ietf.org/doc/html/rfc6298#section-5
https://datatracker.ietf.org/doc/html/rfc4960#section-6.3.2

Hurtig, et al. Expires April 25, 2013 [Page 5]

Internet-Draft TCP and SCTP RTO Restart October 2012

4. Discussion

 The currently standardized algorithm has been shown to add at least
 one RTT to the loss recovery process in TCP [LS00] and SCTP
 [HB08][PBP09]. Applications that have strict timing requirements
 (e.g. telephony signaling and gaming) rather than throughput
 requirements may want to use a lower RTOmin than the standard of 1
 second [RFC4166]. For such applications the modified restart
 approach could be important as the RTT and also the delayed ACK timer
 of receivers will be large components of the effective loss recovery
 time. Measurements in [HB08] have shown that the total transfer time
 of a lost segment (including the original transmission time and the
 loss recovery time) can be reduced with up to 35% using the suggested
 approach. These results match those presented in [PGH06][PBP09],
 where the modified restart approach is shown to significantly reduce
 retransmission latency.

 There are several proposals that address the problem of not having
 enough ACKs for loss recovery. In what follows, we explain why the
 mechanism described here is complementary to these approaches:

 The limited transmit mechanism [RFC3042] allows a TCP sender to
 transmit a previously unsent segment for each of the first two
 duplicate acknowledgments. By transmitting new segments, the sender
 attempts to generate additional duplicate acknowledgments to enable
 fast retransmit. However, limited transmit does not help if no
 previously unsent data is ready for transmission or if the receiver
 is out of buffer space. [RFC5827] specifies an early retransmit
 algorithm to enable fast loss recovery in such situations. By
 dynamically lowering the amount of duplicate acknowledgments needed
 for fast retransmit (dupthresh), based on the number of outstanding
 segments, a smaller number of duplicate acknowledgments are needed to
 trigger a retransmission. In some situations, however, the algorithm
 is of no use or might not work properly. First, if a single segment
 is outstanding, and lost, it is impossible to use early retransmit.
 Second, if ACKs are lost, the early retransmit cannot help. Third,
 if the network path reorders segments, the algorithm might cause more
 unnecessary retransmissions than fast retransmit.

 TCP-NCR [RFC4653] sets the dupthresh to three or more, to better
 disambiguate reordered and lost segments. In addition, early
 retransmit lowers the dupthresh when the amount of outstanding data
 is small, to enable faster loss recovery. The reasons why the RTO
 restart procedure described in this document does not take dynamic
 dupthresh considerations into account are twofold. First, if a
 larger dupthresh is used, the RTO restart approach could be used when
 the congestion window, and the amount of outstanding data, is larger.
 However, in such situations the actual amount of outstanding data can

https://datatracker.ietf.org/doc/html/rfc4166
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc4653

Hurtig, et al. Expires April 25, 2013 [Page 6]

Internet-Draft TCP and SCTP RTO Restart October 2012

 significantly impact the RTT of the connection, making it potentially
 dangerous to be more aggressive. Second, if a smaller dupthresh is
 used, the amount of outstanding data needed for a restart is smaller.
 However, as the congestion window is already small, it does not
 matter if a retransmission is due to a fast retransmit or an RTO.
 The resulting congestion window will still be very small, and the
 only difference is how quickly TCP infers segment loss.

 Tail Loss Probe [TLP] is a proposal to send up to two "probe
 segments" when a timer fires which is set to a value smaller than the
 RTO. A "probe segment" is a new segment if new data is available,
 else a retransmission. The intention is to compensate for sluggish
 RTO behavior in situations where the RTO greatly exceeds the RTT,
 which, according to measurements reported in [TLP], is not uncommon.
 The Probe timeout (PTO) is at least 2 RTTs, and only scheduled in
 case the RTO is farther than the PTO. A spurious PTO is less risky
 than a spurious RTO, as it would not have the same negative effects
 (clearing the scoreboard and restarting with slow-start). In
 contrast, RTO restart is trying to make the RTO more appropriate in
 cases where there is no need to be overly cautious.

 TLP could kick in in situations where RTO restart does not apply, and
 it could overrule (yielding a similar general behavior, but with a
 lower timeout) RTO restart in cases where the number of outstanding
 segments is smaller than 4 and no new segments are available for
 transmission. The shorter RTO from RTO restart also reduces the
 probability that TLP is activated because PTO might be farther than
 RTO. This could make RTO restart more aggressive than the algorithm
 in [TLP] when:

 (1) no data has been sent in an interval exceeding the RTO

 (2) the number of outstanding segments is 3

 (3) (defined in [RFC5681]) is at least 3

 because, under these conditions, in accordance with [RFC5681], 3
 packets can immediately be retransmitted, whereas TLP only allows up
 to two consecutive PTOs.

5. IANA Considerations

 This memo includes no request to IANA.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681

Hurtig, et al. Expires April 25, 2013 [Page 7]

Internet-Draft TCP and SCTP RTO Restart October 2012

6. Security Considerations

 This document discusses a change in how to set the retransmission
 timer's value when restarted. This change does not raise any new
 security issues with TCP or SCTP.

7. References

7.1. Normative References

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP's Loss Recovery Using Limited Transmit", RFC 3042,
 January 2001.

 [RFC4166] Coene, L. and J. Pastor-Balbas, "Telephony Signalling
 Transport over Stream Control Transmission Protocol (SCTP)
 Applicability Statement", RFC 4166, February 2006.

 [RFC4653] Bhandarkar, S., Reddy, A., Allman, M., and E. Blanton,
 "Improving the Robustness of TCP to Non-Congestion
 Events", RFC 4653, August 2006.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC5827] Allman, M., Avrachenkov, K., Ayesta, U., Blanton, J., and
 P. Hurtig, "Early Retransmit for TCP and Stream Control
 Transmission Protocol (SCTP)", RFC 5827, May 2010.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 June 2011.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc4166
https://datatracker.ietf.org/doc/html/rfc4653
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc6298

Hurtig, et al. Expires April 25, 2013 [Page 8]

Internet-Draft TCP and SCTP RTO Restart October 2012

7.2. Informative References

 [BPS98] Balakrishnan, H., Padmanabhan, V., Seshan, S., Stemm, M.,
 and R. Katz, "TCP Behavior of a Busy Web Server: Analysis
 and Improvements", Proc. IEEE INFOCOM Conf., March 1998.

 [EL04] Ekstroem, H. and R. Ludwig, "The Peak-Hopper: A New End-
 to-End Retransmission Timer for Reliable Unicast
 Transport", IEEE INFOCOM 2004, March 2004.

 [HB08] Hurtig, P. and A. Brunstrom, "SCTP: designed for timely
 message delivery?", Springer Telecommunication Systems,
 May 2010.

 [LS00] Ludwig, R. and K. Sklower, "The Eifel retransmission
 timer", ACM SIGCOMM Comput. Commun. Rev., 30(3),
 July 2000.

 [P09] Petlund, A., "Improving latency for interactive, thin-
 stream applications over reliable transport", Unipub PhD
 Thesis, Oct 2009.

 [PBP09] Petlund, A., Beskow, P., Pedersen, J., Paaby, E., Griwodz,
 C., and P. Halvorsen, "Improving SCTP Retransmission
 Delays for Time-Dependent Thin Streams",
 Springer Multimedia Tools and Applications, 45(1-3), 2009.

 [PGH06] Pedersen, J., Griwodz, C., and P. Halvorsen,
 "Considerations of SCTP Retransmission Delays for Thin
 Streams", IEEE LCN 2006, November 2006.

 [RJ10] Ramachandran, S., "Web metrics: Size and number of
 resources", Google http://code.google.com/speed/articles/

web-metrics.html, May 2010.

 [TLP] Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,
 "TCP Loss Probe (TLP): An Algorithm for Fast Recovery of
 Tail Losses", draft-dukkipati-tcpm-tcp-loss-probe-00.txt
 (work in progress), July 2012.

http://code.google.com/speed/articles/web-metrics.html
http://code.google.com/speed/articles/web-metrics.html
https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-tcp-loss-probe-00.txt

Hurtig, et al. Expires April 25, 2013 [Page 9]

Internet-Draft TCP and SCTP RTO Restart October 2012

Authors' Addresses

 Per Hurtig
 Karlstad University
 Universitetsgatan 2
 Karlstad, 651 88
 Sweden

 Phone: +46 54 700 23 35
 Email: per.hurtig@kau.se

 Andreas Petlund
 Simula Research Laboratory AS
 P.O. Box 134
 Lysaker, 1325
 Norway

 Phone: +47 67 82 82 00
 Email: apetlund@simula.no

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo, N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

Hurtig, et al. Expires April 25, 2013 [Page 10]

