
Transport Area P. Hurtig, Ed.
Internet-Draft Karlstad University
Intended status: Informational S. Gjessing
Expires: June 18, 2014 M. Welzl
 University of Oslo
 M. Sustrik

 December 15, 2013

Transport APIs
draft-hurtig-tsvwg-transport-apis-00

Abstract

 Commonly used networking APIs are currently limited by the transport
 layer's inability to expose services instead of protocols. An API/
 application/user is therefore forced to use exactly the services that
 are implemented by the selected transport. This document surveys
 networking APIs and discusses how they can be improved by a more
 expressive transport layer that hides and automatizes the choice of
 the transport protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 18, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Hurtig, et al. Expires June 18, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Transport APIs December 2013

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3

2. Services Offered by IETF Transports 3
3. General Networking APIs 4
3.1. ZeroMQ . 5
3.2. nanomsg . 6
3.3. enet . 6
3.4. Java Message Service 7
3.5. Chrome Network Stack 7
3.6. CFNetwork . 8
3.7. Apache Portable Runtime 8
3.8. VirtIO . 8

4. Networking APIs with Exposed Transport 8
4.1. Berkeley Sockets . 8
4.2. Java Libraries . 8
4.3. Netscape Portable Runtime 9
4.4. Infiniband Verbs . 10
4.5. Input/Output Completion Port 10

5. Security Considerations 10
6. IANA Considerations . 10
7. Acknowledgments . 10
8. Comments Solicited . 10
9. References . 10
9.1. Normative References 10
9.2. Informative References 11

 Authors' Addresses . 12

1. Introduction

 The intention of this document is to create an understanding of some
 commonly used network APIs and how the mechanisms they provide could
 possibly be enhanced via a richer set of transport services. A non-
 comprehensive list of APIs is given, along with a brief description
 and a discussion of how they relate to services provided by current
 transports.

 To understand what tools a transport system could have available to
 better realize mechanisms that higher level APIs offer, the next
 section gives a high-level (and most certainly incomplete) overview

Hurtig, et al. Expires June 18, 2014 [Page 2]

Internet-Draft Transport APIs December 2013

 of services offered by transports that have been published by the
 IETF or are currently being proposed.

 This overview is followed by two sections describing different types
 of transport APIs: general APIs and APIs exposing the underlying
 transport.

 The general APIs can intuitively benefit from a richer set of
 transport services as they do not expose the underlying transport to
 the application. Section 3 describe a subset of these APIs and
 analyze how they can benefit from transport services. The complexity
 of these APIs range from providing simple transport interfaces to
 providing advanced communication libraries utilizing message-oriented
 middleware. API-wise there are two broad classes of such middleware:
 centralized solutions where a server manages the communication and
 decentralized ones where the endpoints communicate directly.
 Although there is no standard interface for these types of middleware
 the JMS API (see Section 3.4) can be thought of as the canonical API
 for centralized solutions and the BSD socket API, as implemented by
 nanomsg (see Section 3.2), for the decentralized.

 APIs that expose the underlying transport, including e.g. BSD
 sockets, differ a lot from general APIs as they both require an
 explicit choice of transport, and then expose this choice. This is a
 significant limitation in the context of transport services, as an
 explicit choice of transport also limits the amount of services that
 can be used. It is, however, possible to enhance this type of APIs
 as some transports provide services that are not fully exposed to
 applications. Section 4 explains how such services can be used and
 provides descriptions of the most common APIs and how they can be
 enhanced.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Services Offered by IETF Transports

 From [WJG11], TCP [RFC0793] [RFC5681], UDP [RFC0768], UDP-Lite
 [RFC3828], SCTP [RFC4960] and DCCP [RFC4340] offer various
 combinations of: TCP-like congestion control / "smooth" congestion
 control (which is expected to have less jitter); application PDU
 bundling (which is the mechanism called "Nagle" in TCP); error
 detection (using a checksum with full or partial payload coverage);
 reliability (yes/no); delivery order. The point of not always
 requiring full reliability and ordered delivery is that these

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340

Hurtig, et al. Expires June 18, 2014 [Page 3]

Internet-Draft Transport APIs December 2013

 mechanisms can come at the cost of extra delay which is unnecessary
 if these properties of the data transmission are not needed. After
 the publication of [WJG11], some more features were defined, e.g.
 SCTP now also offers partial reliability using a timer.

 MPTCP [RFC6824] and SCTP offer multihoming for improved robustness
 (as a backup in case a path fails), which is a mechanism that is
 listed in [WJG11] but could perhaps be hidden from an application.
 Similarly, it was shown in [WNG11] that the benefits of multi-
 streaming (mapping multiple application streams onto one connection,
 or "association" in SCTP terminology) can be exploited without
 exposing this functionality to an application. Because of this
 assumption, multi-streaming was not included as a service in [WJG11].

 MPTCP and CMT-SCTP also use multiple paths to achieve better
 performance, at the possible cost of some extra delay and jitter; as
 discussed in Appendix A.2 of [RFC6897], an advanced MPTCP API could
 allow applications to provide high-level guidance about its
 requirements in terms of high bandwidth, low latency and jitter
 stability, or high reliability.

 The newly proposed Minion [MINION] has a somewhat different way of
 translating some of the above mentioned lower-level transport
 mechanisms (e.g. multi-streaming or partial reliability) into
 application services. It provides message cancellation and has a
 notion of superseding messages, i.e. a later message rendering a
 prior one unnecessary. Ordered delivery is provided according to
 pre-specified message dependencies, and a request-reply communication
 model is offered (i.e. a message can be a reply to another message,
 i.e. address the original message's reply-handler).

 When applying multi-streaming, priorities between streams become a
 mere scheduling decision. In the absence of multi-streaming, there
 is at least one congestion control method in an RFC that is more
 aggressive than standard Reno-like TCP (HighSpeed TCP [RFC3649]), and
 there is also the more recent LEDBAT [RFC6817] which is specifically
 designed for low-priority "scavenger" traffic. All in all, it is
 probably correct to say that IETF transports are likely to be able to
 honor priorities between data streams in one way or another.

3. General Networking APIs

 This section introduces and provides an analysis of commonly used
 networking APIs in the context of transport services. That is, how
 are these APIs currently designed and how, if at all, can these APIs
 be simplified and/or enhanced given a transport API that exposes all
 services provided by the operating system.

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6897#appendix-A.2
https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc6817

Hurtig, et al. Expires June 18, 2014 [Page 4]

Internet-Draft Transport APIs December 2013

 Please note that the current list of APIs is incomplete and rather
 arbitrary. Feedback is very welcome!

3.1. ZeroMQ

3.1.1. Description

 ZeroMQ is a messaging library that simplifies and improves the usage
 of sockets. It operates on messages, and has embedded support for a
 variety of communication styles including e.g. request/reply or pub/
 sub. What this means is that, for instance, a socket of type
 "request" can issue one request, and then a reply must arrive on that
 socket; any other sequence of communication will produce an error
 message. ZeroMQ tries to be transport agnostic and currently works
 on top of IPC, TCP and PGM.

 Internally, ZeroMQ's functionality largely depends on buffering
 mechanisms. For instance, in contrast to native Berkeley sockets, a
 single server socket can be used to read and respond to requests from
 multiple clients. To achieve this, ZeroMQ must accept incoming
 requests and read their data as they arrive from multiple clients,
 buffer them, and upon the application's request hand the data over to
 the application using fair queuing.

3.1.2. Analysis

 Like Minion, ZeroMQ introduces delimiters into a TCP stream to send
 frames of a given size using the ZeroMQ Message Transport Protocol
 [ZMTP]. Some form of multi-streaming is intended for the future:
 According to the FAQ [ZMQFAQ] page, having multiple sockets share a
 single TCP connection is being added to the next version of the ZMTP
 protocol. Today one can accomplish this "using a proxy that sits
 between the external TCP address, and your tasks".

 Multi-streaming over standard TCP creates an RTT of HOL blocking
 delay for all out-of-order packets that arrive at the receiver's
 buffer. This problem also occurs with e.g. SPDY [SPDYWP] [SPDYID]
 over TCP; just like SPDY works better over QUIC [QUIC], ZeroMQ can be
 made to work better over a transport that natively supports multi-
 streaming.

 Because ZeroMQ is implemented as a user space library, it cannot
 multiplex streams from multiple processes. This can be a significant
 drawback when many small stand-alone services are co-located on the
 same host. In contrast, in line with the way TCP and UDP are
 currently implemented, it is likely that broader transport services
 would be provided monolithically, e.g. in the system's kernel,
 thereby eliminating this problem.

Hurtig, et al. Expires June 18, 2014 [Page 5]

Internet-Draft Transport APIs December 2013

 The notion of request and reply sockets seems to be similar in Minion
 and in ZeroMQ. Hence, mapping such ZeroMQ sockets onto Minion is
 probably an efficient way to implement them. One may wonder where to
 draw the boundaries between a transport like Minion and a middleware
 or library like ZeroMQ, i.e. is it really more efficient to provide
 request-reply functionality in the transport layer? Conceptually,
 many of Minion's functions (e.g., message cancellation and
 superseding messages) relate to having direct access to the sender
 and receiver-side buffers, which is otherwise limited depending on
 the TCP implementation, and by standard TCP's in-order-delivery
 requirement. At the same time, ZeroMQ's functions have to do with
 controlling the sender and receiver-side buffers; it therefore seems
 natural that transports such as Minion could improve the performance
 of ZeroMQ.

 Notably, some transports might turn out to be a poor match for
 ZeroMQ. For example, MPTCP requires a larger receiver buffer than
 standard TCP due to the larger expected reordering. However, if
 ZeroMQ's ZMTP protocol does or will (in accordance with the FAQ
 mentioned above) multiplex data from several sockets over a single
 TCP stream, this might create extra delay before the the receiver-
 side ZeroMQ instance can take the data from the buffer and hand it
 over to the application.

3.2. nanomsg

3.2.1. Description

3.2.2. Analysis

3.3. enet

3.3.1. Description

 enet started out as a networking layer for a first-person shooter
 where low latency communication with very frequent data transmission
 was needed. It is a lightweight library that is entirely based on
 UDP, which it extends with a set of optional features such as
 reliability and in-order packet delivery.

 Its features include connection management (monitoring of a
 connection with frequent pings), optional reliability, sequencing
 (mandatory for reliable transmission), fragmentation and reassembly,
 aggregation, flow control. It gives its user control over the packet
 size (a function call allows a packet to be resized), and sequential
 delivery is enforced.

Hurtig, et al. Expires June 18, 2014 [Page 6]

Internet-Draft Transport APIs December 2013

 Reliability in enet is a binary choice; it does not allow providing a
 deadline or maximum number of retransmissions per packet; if a per-
 host-configurable number of retries is exceeded, the host is
 disconnected.

 Because HOL blocking delay can arise when guaranteeing sequential
 delivery, enet also has a form of multi-streaming (called
 "channels").

 enet provides window-based flow control for reliable packets and a
 dynamic throttle that drops packets from the send buffer if the
 network is congested based on a given probability. This probability
 is based on measuring the RTT to a peer; if the current RTT is
 significantly greater than the mean RTT, the probability is increased
 up to a configurable maximum value. Each host's bandwidth limits are
 taken into account as an upper bound for the bandwidth used by enet.

 A broadcast function can be used to send a packet to all currently
 connected peers on a host.

3.3.2. Analysis

 Many of the functions in enet resemble functions found in SCTP and
 Minion -- e.g., control over the packet size, optional reliability,
 multi-streaming. Since enet intends to be "thin", simply using these
 protocols instead probably would not make it better. However, enet's
 goal being low latency, it could benefit from other functions such as
 SCTP's and MPTCP's multi-path capability (picking the lower latency
 path). The congestion control also appears to be rather rudimentary
 -- there are known issues with using the RTT as a congestion signal
 (for one, it is incapable of distinguishing between congestion on the
 forward and backward path). Probably, using the congestion control
 embedded in an IETF-standardized protocol could improve enet's
 performance under certain situations. Finally, the "broadcast"
 functionality could benefit from multicast.

3.4. Java Message Service

3.4.1. Description

3.4.2. Analysis

3.5. Chrome Network Stack

3.5.1. Description

3.5.2. Analysis

Hurtig, et al. Expires June 18, 2014 [Page 7]

Internet-Draft Transport APIs December 2013

3.6. CFNetwork

3.6.1. Description

3.6.2. Analysis

3.7. Apache Portable Runtime

3.7.1. Description

3.7.2. Analysis

3.8. VirtIO

3.8.1. Description

3.8.2. Analysis

4. Networking APIs with Exposed Transport

 Much of the motivation behind the transport services concept comes
 from the limitations posed by networking APIs that require the user
 to explicitly chose a transport, and thus confine itself to a certain
 number of "services". It is, however, possible to include such APIs
 in the transport services concept if mechanisms can be hidden from
 the application [WNG11].

 This section describes a number of commonly used APIs that expose the
 underlying transport and analyzes how these particular APIs could be
 improved with transport services.

4.1. Berkeley Sockets

4.1.1. Description

4.1.2. Analysis

4.2. Java Libraries

4.2.1. Description

 The Java library has classes to handle TCP and UDP sockets. There is
 also a separate library, not included with the regular Java
 distribution, that interfaces SCTP.

 The java.net library contains the two classes Socket and ServerSocket
 that handle TCP sockets. These sockets write a message at a time,
 but read character streams. A ServerSocket contains a method called

Hurtig, et al. Expires June 18, 2014 [Page 8]

Internet-Draft Transport APIs December 2013

 "accept", that waits for a connection request from a client. The
 class DatagramSocket handles UDP-sockets. It "receive"s and "send"s
 objects of the class DatagramPacket that contain characters. The
 "close" method closes the connection. Finally the library contains a
 class called NetworkInterface that can be used to query the operating
 system about available network interfaces.

 The separate Java library that handle SCTP a is called
 com.sun.nio.sctp. Similar to the TCP-sockets there are classes
 called SctpChannel and SctpServerChannel. An instance of the former
 can control a single association only, while an instance of the
 latter can control multiple associations. Instances of the class
 SctpMultiChannel can also control multiple associations.

4.2.2. Analysis

 The Java socket api is very similar to the Berkeley socket api. A
 main difference is that the transport to be used is defined as a
 parameter to the socket() call in the Berkeley socket api, while in
 Java different classes is used for the different protocols. There is
 no well known support for DCCP in Java.

 When a socket object is created it can either be connected
 immediately, or the "connect" method can be called later. If not
 already bound, a socket is bound to a local address by calling the
 method "bind". To shut down the connection, "close" is called. If
 an application calls "receive" on a datagram socket, the method call
 will block the application until a packet is received, which may
 never happen using an unreliable transfer. When operations on
 Sockets fail, an exception is thrown.

 The SCTP interface is event driven. When the SCTP stack wants to
 notify the applications, it generates a Notification object. This
 object is passed as parameter to the method "handleNotification" in
 an instance of the class NotificationHandler. An association will be
 implicitly set up by a send or receive method call if there is no
 current association. The SCTP library is only supporter at run time
 by Linux and Solaris.

4.3. Netscape Portable Runtime

4.3.1. Description

Hurtig, et al. Expires June 18, 2014 [Page 9]

Internet-Draft Transport APIs December 2013

4.3.2. Analysis

4.4. Infiniband Verbs

4.4.1. Description

4.4.2. Analysis

4.5. Input/Output Completion Port

4.5.1. Description

4.5.2. Analysis

5. Security Considerations

 TBD

6. IANA Considerations

 At this point, the memo includes no request to IANA.

7. Acknowledgments

 Hurtig, Gjessing, and Welzl are supported by RITE, a research project
 (ICT-317700) funded by the European Community under its Seventh
 Framework Program. The views expressed here are those of the
 author(s) only. The European Commission is not liable for any use
 that may be made of the information in this document.

8. Comments Solicited

 To be removed by RFC Editor: This draft is a part of the first steps
 towards an IETF BoF on Transport Services. Comments and questions
 are encouraged and very welcome. They can be addressed to the
 current mailing list <transport-services@ifi.uio.no> and/or to the
 authors.

9. References

9.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Hurtig, et al. Expires June 18, 2014 [Page 10]

Internet-Draft Transport APIs December 2013

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3208] Speakman, T., Crowcroft, J., Gemmell, J., Farinacci, D.,
 Lin, S., Leshchiner, D., Luby, M., Montgomery, T., Rizzo,
 L., Tweedly, A., Bhaskar, N., Edmonstone, R.,
 Sumanasekera, R., and L. Vicisano, "PGM Reliable Transport
 Protocol Specification", RFC 3208, December 2001.

 [RFC3649] Floyd, S., "HighSpeed TCP for Large Congestion Windows",
RFC 3649, December 2003.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
 G. Fairhurst, "The Lightweight User Datagram Protocol
 (UDP-Lite)", RFC 3828, July 2004.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol", RFC
4960, September 2007.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 December 2012.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

 [RFC6897] Scharf, M. and A. Ford, "Multipath TCP (MPTCP) Application
 Interface Considerations", RFC 6897, March 2013.

9.2. Informative References

 [MINION] Iyengar, J., Cheshire, S., and J. Graessley, "Minion -
 Service Model and Conceptual API", draft-iyengar-minion-

concept-02.txt (work in progress), October 2013.

 [QUIC] Roskind, J., "QUIC: Design Document and Specification
 Rational", April 2012, <https://bitly.com/Hm0DyX>.

 [SPDYID] Belshe, M. and R. Peon, "SPDY Protocol", draft-mbelshe-
httpbis-spdy-00.txt (work in progress), February 2012.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3208
https://datatracker.ietf.org/doc/html/rfc3649
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6817
https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6897
https://datatracker.ietf.org/doc/html/draft-iyengar-minion-concept-02.txt
https://datatracker.ietf.org/doc/html/draft-iyengar-minion-concept-02.txt
https://bitly.com/Hm0DyX
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00.txt
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00.txt

Hurtig, et al. Expires June 18, 2014 [Page 11]

Internet-Draft Transport APIs December 2013

 [SPDYWP] Belshe, M., "SPDY: An Experimental Protocol for a Faster
 Web", April 2012,
 <http://www.chromium.org/spdy/spdy-whitepaper>.

 [WJG11] Welzl, M., Jorer, S., and S. Gjessing, "Towards a
 Protocol-Independent Internet Transport API", IEEE ICC
 2011., June 2011.

 [WNG11] Welzl, M., Niederbacher, F., and S. Gjessing, "Beneficial
 Transparent Deployment of SCTP: the Missing Pieces", IEEE
 GLOBECOM 2011, December 2011.

 [ZMQFAQ] Sustrik, M., "Frequently Asked Questions - zeromq", July
 2008, <http://zeromq.org/area:faq>.

 [ZMTP] Hintjens, P., Hurton, M., and I. Barber, "ZMTP - ZeroMQ
 Message Transport Protocol", June 2013,
 <http://rfc.zeromq.org/spec:23>.

Authors' Addresses

 Per Hurtig (editor)
 Karlstad University
 Universitetsgatan 2
 Karlstad 651 88
 Sweden

 Phone: +46 54 700 23 35
 Email: per.hurtig@kau.se

 Stein Gjessing
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 44
 Email: stein.gjessing@ifi.uio.no

http://www.chromium.org/spdy/spdy-whitepaper
http://zeromq.org/area:faq
http://rfc.zeromq.org/spec:23

Hurtig, et al. Expires June 18, 2014 [Page 12]

Internet-Draft Transport APIs December 2013

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

 Martin Sustrik

 Phone: +421 908 714 885
 Email: sustrik@250bpm.com

Hurtig, et al. Expires June 18, 2014 [Page 13]

