
Network Working Group S. Hyun
Internet-Draft S. Woo
Intended status: Standards Track Y. Yeo
Expires: January 5, 2017 J. Jeong
 Sungkyunkwan University
 J. Park
 ETRI
 July 4, 2016

Service Function Chaining-Enabled I2NSF Architecture
draft-hyun-i2nsf-sfc-enabled-i2nsf-00

Abstract

 This document describes an architecture of the I2NSF framework using
 security function chaining for securiy policy enforcement. Security
 function chaining enables composite inspection of network traffic by
 steering the traffic through multiple types of security functions
 according to the information model for the capability layer interface
 in the I2NSF framework. This document explains the additional
 components integrated into the I2NSF framework and their
 functionalities to achieve security function chaining. It also
 describes representative use cases to address major benefits from the
 proposed architecture.

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 5, 2017.

Hyun, et al. Expires January 5, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SFC-enabled I2NSF Architecture July 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Objective . 3
3. Terminology . 4
4. Architecture . 6
4.1. SFC Policy Manager . 8
4.2. SFC Catalog Manager 8
4.3. Developer's Management System 9
4.4. Classifier . 9
4.5. Service Function Forwarder (SFF) 9

5. Use Cases . 10
5.1. Dynamic Path Alternation 10
5.2. Enforcing Different SFPs Depending on Trust Levels 11
5.3. Effective Load Balancing with Dynamic SF Instantiation . . 12

6. Security Considerations 13
7. Acknowledgements . 13
8. References . 13
8.1. Normative References 13
8.2. Informative References 14

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Hyun, et al. Expires January 5, 2017 [Page 2]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

1. Introduction

 To effectively cope with emerging sophisticated network attacks, it
 is necessary that various security functions cooperatively analyze
 network traffic [sfc-ns-use-cases] [RFC7498]
 [i2nsf-problem-and-use-cases] [i2nsf-capability-interface-im]. In
 addition, depending on the characteristics of network traffic and
 their suspiciousness level, the different types of network traffic
 need to be analyzed through the different sets of security functions.
 In order to meet such requirements, besides security policy rules for
 individual security functions, we need an additional policy about
 service function chaining (SFC) for network security
 [sfc-ns-use-cases] which determines a set of security functions
 through which network traffic packets should pass for inspection. In
 addition, [i2nsf-capability-interface-im] proposes an information
 model for capability layer interface of the I2NSF framework that
 enables a security function to trigger further inspection by
 executing additional security functions based on its own analysis
 results [i2nsf-framework]. However, the current design of the I2NSF
 framework does not consider network traffic steering fully in order
 to enable such chaining between security functions.

 In this document, we propose an architecture that integrates
 additional components for security function chaining into the I2NSF
 framework. We extend the security controller's functionalities such
 that it can interpret a high-level policy of security function
 chaining into a low-level policy and manage them. It also keeps the
 track of the available service function (SF) instances for security
 functions and their information (e.g., network information and
 workload), and makes a decision on which SF instances to use for a
 given security function chain/path. Based on the forwarding
 information provided by the security controller, the service function
 forwarder (SFF) performs network traffic steering through various
 required security functions. A classifier is deployed for the
 enforcement of SFC policies given by the security controller. It
 performs traffic classification based on the polices so that the
 traffic passes through the required security function chain/path by
 the SFF.

2. Objective

 o Policy configuration for security function chaining: SFC-enabled
 I2NSF architecture allows policy configuration and management of
 security function chaining. Based on the chaining policy,
 relevant network traffic can be analyzed through various security
 functions in a composite, cooperative manner.

https://datatracker.ietf.org/doc/html/rfc7498

Hyun, et al. Expires January 5, 2017 [Page 3]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 o Network traffic steering for security function chaining: SFC-
 enabled I2NSF architecture allows network traffic to be steered
 through multiple required security functions based on the SFC
 policy. Moreover, the I2NSF information model for capability
 layer interface [i2nsf-capability-interface-im] requires a
 security function to call another security function for further
 inspection based on its own inspection result. To meet this
 requirement, SFC-enabled I2NSF architecture also enables traffic
 forwarding from one security function to another security
 function.

 o Load balancing over security function instances: SFC-enabled I2NSF
 architecture provides load balancing of incoming traffic over
 available security function instances by leveraging the flexible
 traffic steering mechanism. For this objective, it also performs
 dynamic instantiation of a security function when there are an
 excessive amount of requests for that security function.

3. Terminology

 This document uses the terminology described in [RFC7665], [RFC7665]
 [sfc-ns-use-cases] [i2nsf-terminology][ONF-SFC-Architecture].

 o Service Function/Security Function (SF): A function that is
 responsible for specific treatment of received packets. A Service
 Function can act at various layers of a protocol stack (e.g., at
 the network layer or other OSI layers) [RFC7665]. In this
 document, SF is used to represent both Service Function and
 Security Function. Sample Security Service Functions are as
 follows: Firewall, Intrusion Prevention/Detection System (IPS/
 IDS), Deep Packet Inspection (DPI), Application Visibility and
 Control (AVC), network virus and malware scanning, sandbox, Data
 Loss Prevention (DLP), Distributed Denial of Service (DDoS)
 mitigation and TLS proxy.

 o Classifier: An element that performs Classification. It uses a
 given policy from SFC Policy Manager.

 o Service Function Chain (SFC): A service function chain defines an
 ordered set of abstract service functions and ordering constraints
 that must be applied to packets and/or frames and/or flows
 selected as a result of classification [RFC7665].

 o Service Function Forwarder (SFF): A service function forwarder is
 responsible for forwarding traffic to one or more connected
 service functions according to information carried in the SFC
 encapsulation, as well as handling traffic coming back from the
 SF. Additionally, an SFF is responsible for delivering traffic to

https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc7665

Hyun, et al. Expires January 5, 2017 [Page 4]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 a classifier when needed and supported, transporting traffic to
 another SFF (in the same or the different type of overlay), and
 terminating the Service Function Path (SFP) [RFC7665].

 o Service Function Path (SFP): The service function path is a
 constrained specification of where packets assigned to a certain
 service function path must be forwarded. While it may be so
 constrained as to identify the exact locations for packet
 processing, it can also be less specific for such locations
 [RFC7665].

 o SFC Policy Manager: It is responsible for translating a high-level
 policy into a low-level policy, and performing the configuration
 for SFC-aware nodes, passing the translated policy and
 configuration to SFC-aware nodes, and maintaining a stabilized
 network.

 o SFC Catalog Manager: It is responsible for keeping the track of
 the information of available SF instances. For example, the
 information includes the supported transport protocols, IP
 addresses, and locations for the SF instances.

 o Control Nodes: It collectively refer to SFC Policy Manager, SFC
 Catalog Manager, SFF, and Classifier.

 o Service Path Identifier (SPI): It identifies a service path. The
 classifier MUST use this identifier for path selection and the
 Control Nodes MUST use this identifier to find the next hop
 [sfc-nsh].

 o Service Index (SI): It provides a location within the service
 path. SI MUST be decremented by service functions or proxy nodes
 after performing the required services [sfc-nsh].

 o Network Service Header (NSH): The header is used to carry SFC
 related information. Basically, SPI and SI should be conveyed to
 the Control Nodes of SFC via this header.

 o SF Forwarding Table: SFC Policy Manager maintains this table. It
 contains all the forwarding information on SFC-enabled I2NSF
 architecture. Each entry includes SFF identifier, SPI, SI, and
 next hop information. For example, an entry ("SFF: 1", "SPI: 1",
 "SI: 1", "IP: 192.168.xx.xx") is interpreted as follows: "SFF 1"
 should forword the traffic containing "SPI 1" and "SI 1" to
 "IP=192.168.xx.xx".

https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc7665

Hyun, et al. Expires January 5, 2017 [Page 5]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

4. Architecture

 This section describes an SFC-enabled I2NSF architecture and the
 basic operations of service chaining. It also includes details about
 each component of the architecture.

 Figure 1 describes the components of SFC-enabled I2NSF architecture.
 Our architecture is designed to support a composite inspection of
 traffic packets in transit. According to the inspection result of
 each SF, the traffic packets could be steered to another SF for
 futher detailed analysis. It is also possible to reflect a high-
 level SFC-related policy and a configuration from I2NSF Client on the
 components of the original I2NSF framwork. Moreover, the proposed
 architecture provides load balancing, auto supplementary SF
 generation, and the elimination of unused SFs. In order to achieve
 these design purposes, we integrate several components to the
 original I2NSF framwork. In the following sections, we explain the
 details of each component.

Hyun, et al. Expires January 5, 2017 [Page 6]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 +-+
 | I2NSF Client |
 | +-+-+-+-+-+-+-+-+ |
 | |Client/ | |
 | |App Controller | |
 | +-+-+-+^+-+-+-+-+ |
 | | |
 | | |
 +-+-+-+-+-+-+-+-+-+-+-|-+
 | Client Facing Interface
 | (called Service Layer Interface)
 +-+-+-+-+-+-+-+-+-+-+-|-+
 | Security Management System |
 | | |
 | +-+-+-+-+-+-+-v-+-+-+-+-+ |
	Security Controller							
	+-+-+-+-+ +-+-+-+-+	Registration						
		SFC		SFC		Interface +-+-+-+-++-+-+-+-+		
		Policy		Catalog		<----------->	Developer's	
		Manager		Manager			Mgnt System	<-+
	+-+-+-+-+ +-+-+-+-+	+-+-+-+-++-+-+-+-+						
+-+-+-+-+-+-^-+-+-+-+-+-+ Instance Layer Interface								
 +-+-+-+-+-+-+-+-+-+-|-+
 | NSF Facing Interface |
 | (called Capability Layer Interface) |
 +-+
Security Network										
+--+										
	+-+-+-v-+-+-+ +-+-+-+-+v+-+-+									
+-+-+-v-++-+	+-+-+-+		+-+-+-+							
				SFF1	<-	---------------->	SF1			
	Classifier	<------>	+-+-+-+<		+-+-+-+					
			\|	+-+-+-+						
+-+-+-+-++-+	+-+-+-+ \---------------->	SF2		<---						
		SFF2	<-	---------------/ +-+-+-+						
	+-+-+-+<-	-------------\ +-+-+-+								
+-+-+-+-+-+-+ \->	SF3									
	+-+-+-+									
+-+-+-+-+-+-+-+										
 +-+

 Figure 1: SFC-enabled I2NSF

Hyun, et al. Expires January 5, 2017 [Page 7]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

4.1. SFC Policy Manager

 SFC Policy Manager is a core component in our system. It is
 responsible for the following two things: (1) Interpreting a high-
 level SFC policy (or configuration) into a low-level SFC policy (or
 configuration), which is given by I2NSF Client, and delivering the
 interpreted policy to Classifiers for security function chaining. (2)
 Generating an SF forwarding table and distributing the fowarding
 information to SFF(s) by consulting with SFC Catalog Manager. As
 Figure 1 describes, SFC Policy Manager performs these additional
 functionalities through Service Layer Interface and Capability Layer
 Interface.

 Given a high-level SFC policy/configuration from I2NSF Client via
 Service Layer Interface, SFC Policy Manager interprets it into a low-
 level policy/configuration comprehensible to Classifier(s), and then
 delivers the resulting low-level policy to them. Moreover, SFC
 Policy Manager possibly generates new policies for the flexible
 change of traffic steering to rapidly react to the current status of
 SFs. For instance, it could generate new rules to forward all
 subsequent packets to "Firewall Instance 2" instead of "Firewall
 Instance 1" in the case where "Firewall Instance 1" is under
 congestion.

 SFC Policy Manager gets information about SFs from SFC Catalog
 Manager to generate SF forwarding table. In the table generation
 process, SFC Policy Manager considers various criteria such as SFC
 policies, SF load status, SF physical location, and supported
 transport protocols. An entry of the SF forwarding table consists of
 SFF Identifier, SFP, SI, and next hop information. The examples of
 next hop information includes the IP address and supported transport
 protocols (e.g., VxLAN and GRE). These forwarding table updates are
 distributed to SFFs with either push or pull methods.

4.2. SFC Catalog Manager

 In Figure 1, SFC Catalog Manager is a component integrated into
 Security Controller. It is responsible for the following three
 things: (1) Maintaining the information of every available SF
 instance such as IP address, supported transport protocol, service
 name, and load status. (2) Responding the queries of available SF
 instances from SFC Policy Manager so as to help to generate a
 forwarding table entry relevant to a given SFP. (3) Requesting
 Developer's Management System for the dynamic instantiation of
 supplementary SF instances to avoid service congestion or the
 elimination of an existing SF instance to avoid resource waste.

 Whenever a new SF instance is registered, Developer's Management

Hyun, et al. Expires January 5, 2017 [Page 8]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 System passes the information of the registered SF instance to SFC
 Catalog Manager, so Catalog Manager maintains a list of the
 information of every available SF instance. Once receiving a query
 of a certain SFP from SFC Policy Manager, SFC Catalog Manager
 searches for all the available SF instances applicable for that SFP
 and then returns the search result to SFC Policy Manager.

 In our system, each SF instance periodically reports its load status
 to SFC Catalog Manager. Based on such reports, SFC Catalog Manager
 updates the information of the SF instances and manages the pool of
 SF instances by requesting Developer's Management System for the
 additional instantiation or elimination of the SF instances.
 Consequently, SFC Catalog Manager enables efficient resource
 utilization by avoiding congestion and resource waste.

4.3. Developer's Management System

 We extend Developer's Management System for additional
 functionalities as follows. As mentioned above, SFC Catalog Manager
 requests Developer's Management System to create additional SF
 instances when the existing instances of that service function are
 congested. On the other hand, when there are an excessive number of
 instances for a certain service function, SFC Policy Manager requests
 Developer's Management System to eliminate some of the SF instances.
 As a response to such requests, Developer's Management System creates
 and/or removes SF instances. Once it creates a new SF instance or
 removes an existing SF instance, the changes must be notified to SFC
 Catalog Manager.

4.4. Classifier

 Classifier is a logical component that may exist as a standalone
 component or a submodule of another component. In our system, the
 initial classifier is typically located at an entry point like a
 border router of the network domain, and performs the initial
 classification of all incoming packets according to the SFC policies,
 which are given by SFC policy manager. The classification means
 determining the SFP through which a given packet should pass. Once
 the SFP is decided, the classifier constructs an NSH that specifies
 the corresponding SPI and SI, and attaches it to the packet. The
 packet will then be forwarded through the determined SFP on the basis
 of the NSH information.

4.5. Service Function Forwarder (SFF)

 It is responsible for the following two functionalities: (1)
 Forwarding the packets to the next SFF/SF. (2) Handling re-
 classification request from SF.

Hyun, et al. Expires January 5, 2017 [Page 9]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 An SFF basically takes forwarding functionality, so it needs to find
 the next SF/SFF for the incoming traffic. It will search its
 forwarding table to find the next hop information that corresponds to
 the given traffic. In the case where the SFF finds a target entry on
 its forwarding table, it just forwards the traffic to the next SF/SFF
 specified in the next hop information. If an SFF does not have an
 entry for a given packet, it will request the next hop information to
 SFC Policy Manager with SFF identifier, SPI, and SI information. The
 SFC Policy Manager will respond to the SFF with next hop information,
 and then the SFF updates its forwarding table with the response,
 forwarding the traffic to the next hop.

 Sometimes an SF may want to forward the traffic, which is highly
 suspicious, to another SF for futher inspection. The SF then appends
 the inspection result to the MetaData field of the NSH and delivers
 it to the source SFF. The attached MetaData includes a re-
 classification request to change the SFP of the traffic to another
 SFP for stronger inspection. When the SFF receives the traffic
 requiring re-classification, it forwards the traffic to the
 Classifier where re-classification will be eventually performed.

5. Use Cases

 This section introduces three use cases for the SFC-enabled I2NSF
 architecture : (1) Dynamic Path Alternation, (2) Enforcing Different
 SFPs Depending on Trust Levels, and (3) Effective Load Balancing with
 Dynamic SF Instantiation.

5.1. Dynamic Path Alternation

 In SFC-enabled I2NSF architecture, a Classifier determines the
 initial SFP of incoming traffic according to the SFC policies. The
 classifier then attaches an NSH specifying the determined SFP of the
 packets, and they are analyzed through the SFs of the initial SFP.
 However, SFP is not a static property, so it could be changed
 dynamically through re-classification. A typical example is for a
 certain SF in the initial SFP to detect that the traffic is highly
 suspicious (likely to be malicious). In this case, the traffic needs
 to take stronger inspection through a different SFP which consists of
 more sophisticated SFs.

 Figure 2 illustrates an example of such dynamic SFP alternation in a
 DDoS attack scenario. SFP-1 represents the default Service Function
 Path that the traffic initially follows, and SFP-1 consists of AVC,
 Firewall, and IDS/IPS. If the IDS/IPS suspects that the traffic is
 attempting DDoS attacks, it will change the SFP of the traffic from
 the default to SFP-2 so that the DDoS attack mitigator can execute a
 proper countermeasure against the attack.

Hyun, et al. Expires January 5, 2017 [Page 10]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 Such SFP alternation is possible in the proposed architecture with
 re-classification. In Figure 1, to initiate re-classification, the
 IDS/IPS appends its own inspection result to the MetaData field of
 NSH and deliver it to the SFF from which it has originally received
 the traffic. The SFF then forwards the received traffic including
 the inspection result from the IDS/IPS to Classifier for re-
 classification. Classifier checks the inspection result and
 determines the new SFP (SFP-2) associated with the inspection result
 in the SFC policy, and updates the NSH with the SPI of SFP-2. The
 traffic is forwarded to the DDoS attack mitigator.

 SFP-1. AVC:Firewall:IDS/IPS
 -->
 +-+-+-+-+ +-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+-+-+
 | Source|---| AVC |---| Firewall|-----| IDS/IPS |---| Destination |
 +-+-+-+-+ +-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+-+-+
 --, ,------>
 \ +-+-+-+-+ /
 \ | DDoS | /
 \ +-+-+-+-+ /
 '----------'
 SFP-2. AVC:Firewall:DDoS:IDS/IPS

 Figure 2: Dynamic SFP Alternation Example

5.2. Enforcing Different SFPs Depending on Trust Levels

 Because the traffic coming from a trusted source is highly likely to
 be harmless, it does not need to be inspected excessively. On the
 other hand, the traffic coming from an untrusted source requires an
 in-depth inspection. By applying minimum required security functions
 to the traffic from a trusted source, it is possible to prevent the
 unnecessary waste of resources. In addition, we can concentrate more
 resources on potential malicious traffic. In the SFC-enabled I2NSF
 architecture, by configuring an SFC Policy to take into account the
 levels of trust of traffic sources, we can apply different SFPs to
 the traffic coming from different sources.

 Figure 3(a) and Figure 3(b) represent SFPs applicable to traffic from
 trusted and untrusted sources, respectively. In Figure 3(a), we
 assume a lightweight IDS/IPS which is configured to perform packet
 header inspection only. In this scenario, when receiving the traffic
 from a trusted source, the classifier determines the SFP in
 Figure 3(a) such that the traffic passes through just a simple
 analysis by the lightweight IDS/IPS. On the other hand, traffic from
 an untrusted source passes more thorough examination through the SFP

Hyun, et al. Expires January 5, 2017 [Page 11]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 in Figure 3(b) which consists of three different types of SFs.

 +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+-+-+
 | Source |----------->| IDS/IPS |----------->| Destination |
 +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+-+-+

 (a) Traffic flow of trusted source

 +-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
 | Source | | Anti-Spoofing | | Destination |
 +-+-+-+-+-+ | function | +-+-+-+^+-+-+-+
 | +-+^+-+-+-+-+-+-+ |
 | | | |
 | +-+-+-+-+-+-+ | | +-+-+-+-+-+ |
 ------->| Firewall |-- ---->| DPI |--
 +-+-+-+-+-+-+ +-+-+-+-+-+

 (b) Traffic flow of untrusted source

 Figure 3: Different path allocation depending on source of traffic

5.3. Effective Load Balancing with Dynamic SF Instantiation

 In a large-scale network domain, there typically exist a large number
 of SF instances that provide various security services. It is
 possible that a specific SF instance experiences an excessive amount
 of traffic beyond its capacity. In this case, it is required to
 allocate some of the traffic to another available instance of the
 same security function. If there are no additional instances of the
 same security function available, we need to create a new SF instance
 and then direct the subsequent traffic to the new instance. In this
 way, we can avoid service congestion and achieve more efficient
 resource utilization. This process is commonly called load
 balancing.

 In the SFC-enabled I2NSF architecture, SFC Catalog Manager performs
 periodic monitoring of the load status of available SF instances. In
 addition, it is possible to dynamically generate a new SF instance
 through Developer's Management System. With these functionalities
 along with the flexible traffic steering mechanism, we can eventually
 provide load balancing service.

 The following describes the detailed process of load balancing when
 congestion occurs at the firewall instance:

Hyun, et al. Expires January 5, 2017 [Page 12]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 1. SFC Catalog Manager detects that the firewall instance is
 receiving too much requests. Currently, there are no additional
 firewall instances available.

 2. SFC Catalog Manager requests Developer's Management System to
 create a new firewall instance.

 3. Developer's Management System creates a new firewall instance and
 then registers the information of the new firewall instance to
 SFC Catalog Manager.

 4. SFC Catalog Manager updates the SFC Information Table to reflect
 the new firewall instance, and notifies SFC Policy Manager of
 this update.

 5. Based on the received information, SFC Policy Manager updates the
 forwarding information for traffic steering and sends the new
 forwarding information to the SFF.

 6. According to the new forwarding information, the SFF forwards the
 subsequent traffic to the new firewall instance. As a result, we
 can effecively alleviate the burden of the existing firewall
 instance.

6. Security Considerations

 To enable security function chaining in the I2NSF framework, we adopt
 the additional components in the SFC architecture. Thus, this
 document shares the security considerations of the SFC architecture
 that are specified in [RFC7665] for the purpose of achieving secure
 communication among components in the proposed architecture.

7. Acknowledgements

 This work was supported by Institute for Information & communications
 Technology Promotion(IITP) grant funded by the Korea government(MSIP)
 (No.R-20160222-002755, Cloud based Security Intelligence Technology
 Development for the Customized Security Service Provisioning).

8. References

8.1. Normative References

 [RFC7665] Boucadair, M. and C. Jacquenet,
 "Software-Defined Networking: A
 Perspective from within a Service
 Provider Environment", RFC 7665,
 March 2014.

https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc7665

Hyun, et al. Expires January 5, 2017 [Page 13]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 [sfc-nsh] Lopez, E., Lopez, D., Dunbar, L.,
 Zhuang, X., Parrott, J., Krishnan,
 R., and S. Durbha, "Framework for
 Interface to Network Security
 Functions", draft-ietf-sfc-nsh-05 ,
 June 2015.

 [sfc-ns-use-cases] Wang, E., Leung, K., Felix, J., and
 J. Iyer, "Service Function Chaining
 Use Cases for Network Security",

draft-wang-sfc-ns-use-cases-01 ,
 March 2016.

8.2. Informative References

 [RFC7498] Quinn, P. and T. Nadeau, "Problem
 Statement for Service Function
 Chaining", RFC 7498, April 2015.

 [i2nsf-capability-interface-im] Xia, L., Zhang, D., Lopez, E.,
 Bouthors, N., and L. Fang,
 "Information Model of Interface to
 Network Security Functions
 Capability Interface", draft-xia-

i2nsf-capability-interface-im-05 ,
 March 2016.

 [i2nsf-framework] Lopez, E., Lopez, D., Dunbar, L.,
 Strassner, J., Zhuang, X., Parrott,
 J., Krishnan, R., and S. Durbha,
 "Framework for Interface to Network
 Security Functions",

draft-ietf-i2nsf-framework-00 ,
 May 2016.

 [i2nsf-problem-and-use-cases] Hares, S., Dunbar, L., Lopez, D.,
 Zarny, M., and C. Jacquenet, "I2NSF
 Problem Statement and Use cases",

draft-ietf-i2nsf-problem-and-use-
cases-00 , February 2016.

 [i2nsf-terminology] Hares, S., Strassner, J., Lopez, D.,
 and L. Xia, "Interface to Network
 Security Functions (I2NSF)
 Terminology",

draft-ietf-i2nsf-terminology-00 ,
 April 2016.

https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-05
https://datatracker.ietf.org/doc/html/draft-wang-sfc-ns-use-cases-01
https://datatracker.ietf.org/doc/html/rfc7498
https://datatracker.ietf.org/doc/html/draft-xia-i2nsf-capability-interface-im-05
https://datatracker.ietf.org/doc/html/draft-xia-i2nsf-capability-interface-im-05
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-framework-00
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases-00
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases-00
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-terminology-00

Hyun, et al. Expires January 5, 2017 [Page 14]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 [ONF-SFC-Architecture] ONF, "L4-L7 Service Function
 Chaining Solution Architecture",
 June 2015.

Authors' Addresses

 Sangwon Hyun
 Department of Software
 Sungkyunkwan University
 2066 Seobu-Ro, Jangan-Gu
 Suwon, Gyeonggi-Do 16419
 Republic of Korea

 Phone: +82 31 290 7222
 Fax: +82 31 299 6673
 EMail: swhyun77@skku.edu
 URI: http://imtl.skku.ac.kr/

 SangUk Woo
 Department of Software
 Sungkyunkwan University
 2066 Seobu-Ro, Jangan-Gu
 Suwon, Gyeonggi-Do 16419
 Republic of Korea

 Phone: +82 31 290 7222
 Fax: +82 31 299 6673
 EMail: suwoo@imtl.skku.ac.kr,
 URI: http://imtl.skku.ac.kr/index.php?mid=member_student

 YunSuk Yeo
 Department of Software
 Sungkyunkwan University
 2066 Seobu-Ro, Jangan-Gu
 Suwon, Gyeonggi-Do 16419
 Republic of Korea

 Phone: +82 31 290 7222
 Fax: +82 31 299 6673
 EMail: yunsuk@imtl.skku.ac.kr,
 URI: http://imtl.skku.ac.kr/index.php?mid=member_student

http://imtl.skku.ac.kr/
http://imtl.skku.ac.kr/index.php?mid=member_student
http://imtl.skku.ac.kr/index.php?mid=member_student

Hyun, et al. Expires January 5, 2017 [Page 15]

Internet-Draft SFC-enabled I2NSF Architecture July 2016

 Jaehoon Paul Jeong
 Department of Software
 Sungkyunkwan University
 2066 Seobu-Ro, Jangan-Gu
 Suwon, Gyeonggi-Do 16419
 Republic of Korea

 Phone: +82 31 299 4957
 Fax: +82 31 290 7996
 EMail: pauljeong@skku.edu
 URI: http://iotlab.skku.edu/people-jaehoon-jeong.php

 Jung-Soo Park
 Electronics and Telecommunications Research Institute
 218 Gajeong-Ro, Yuseong-Gu
 Daejeon 305-700
 Republic of Korea

 Phone: +82 42 860 6514
 EMail: pjs@etri.re.kr

http://iotlab.skku.edu/people-jaehoon-jeong.php

Hyun, et al. Expires January 5, 2017 [Page 16]

