
Network Working Group S. Hyun
Internet-Draft S. Woo
Intended status: Standards Track Y. Yeo
Expires: April 8, 2017 J. Jeong
 Sungkyunkwan University
 J. Park
 ETRI
 October 5, 2016

Service Function Chaining-Enabled I2NSF Architecture
draft-hyun-i2nsf-sfc-enabled-i2nsf-01

Abstract

 This document describes an architecture of the I2NSF framework which
 enables traffic steering between NSFs for security policy
 enforcement. Such traffic steering enables composite inspection of
 network traffic by steering the traffic through multiple types of
 security functions according to the information model for the NSF
 facing interface in the I2NSF framework. This document explains the
 additional components integrated into the I2NSF framework and their
 functionalities to achieve NSF-triggered traffic steering. It also
 describes representative use cases to address major benefits from the
 proposed architecture.

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 8, 2017.

Hyun, et al. Expires April 8, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Objective . 3
3. Terminology . 4
4. Architecture . 5
4.1. NSF Operation Manager 7
4.2. Developer's Management System 7
4.3. Packet Forwarding Header 8
4.4. Security Function Forwarder (SFF) 8

5. Use Cases . 9
 5.1. Enforcing Different NSFs Depending on a Packet
 Source's Trust Level 9
 5.2. Effective Load Balancing with Dynamic NSF Instantiation . 10

6. Security Considerations 11
7. Acknowledgements . 11
8. References . 11
8.1. Normative References 11
8.2. Informative References 11

Appendix A. Changes from draft-hyun-i2nsf-sfc-enabled-i2nsf-00 . 12

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-hyun-i2nsf-sfc-enabled-i2nsf-00

Hyun, et al. Expires April 8, 2017 [Page 2]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

1. Introduction

 To effectively cope with emerging sophisticated network attacks, it
 is necessary that various security functions cooperatively analyze
 network traffic [sfc-ns-use-cases] [RFC7498] [i2nsf-ps-and-use-cases]
 [i2nsf-cap-interface-im]. In addition, depending on the
 characteristics of network traffic and their suspiciousness level,
 the different types of network traffic need to be analyzed through
 the different sets of security functions. [i2nsf-cap-interface-im]
 proposes an information model for NSF facing interface of the I2NSF
 framework that enables a network security function to trigger further
 inspection by calling another network security function based on its
 own analysis results [i2nsf-framework]. However, the current design
 of the I2NSF framework does not consider network traffic steering
 fully in order to enable such consecutive inspections through
 multiple security functions.

 In this document, we propose an architecture that integrates
 additional components for traffic steering over NSFs into the I2NSF
 framework. We extend the security controller's functionalities such
 that it can interpret a high-level policy of NSF-triggered traffic
 steering into a low-level policy and manage them. It also keeps
 track of the available network security function instances and their
 information (e.g., network information and workload), and makes a
 decision on which NSF instances to use for a given network security
 function. Based on the forwarding information provided by the
 security controller, the security function forwarder performs network
 traffic steering through required security functions. The security
 function forwarder is also responsible for interpreting inspection
 result from a network security function to enforce more advanced
 inspection. We define an additional packet header format to specify
 security inspection results and advanced inspection requests.

2. Objective

 o Policy configuration for consecutive inspections: NSF-triggered
 traffic steering architecture allows policy configuration and
 management of network security function triggering. Based on the
 triggering policy, relevant network traffic can be analyzed
 through various security functions in a composite, cooperative
 manner.

 o Network traffic steering for consequtive inspection: NSF-triggered
 traffic steering architecture allows network traffic to be steered
 through multiple required network security functions based on the
 triggering policy. Moreover, the I2NSF information model for NSF
 facing interface [i2nsf-cap-interface-im] requires a security
 function to call another security function for further inspection

https://datatracker.ietf.org/doc/html/rfc7498

Hyun, et al. Expires April 8, 2017 [Page 3]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

 based on its own inspection result. To meet this requirement,
 NSF-triggered traffic steering architecture also enables traffic
 forwarding from one security function to another security
 function.

 o Load balancing over network security function instances: NSF-
 triggered traffic steering architecture provides load balancing of
 incoming traffic over available network security function
 instances by leveraging the flexible traffic steering mechanism.
 For this objective, it also performs dynamic instantiation of a
 security function when there are an excessive amount of requests
 for that network security function.

3. Terminology

 This document uses the terminology described in [RFC7665], [RFC7665]
 [sfc-ns-use-cases] [i2nsf-terminology][ONF-SFC-Architecture].

 o Network Security Function (NSF): A function that is responsible
 for specific treatment of received packets. A Network Security
 Function can act at various layers of a protocol stack (e.g., at
 the network layer or other OSI layers) [RFC7665]. Sample Network
 Security Service Functions are as follows: Firewall, Intrusion
 Prevention/Detection System (IPS/IDS), Deep Packet Inspection
 (DPI), Application Visibility and Control (AVC), network virus and
 malware scanning, sandbox, Data Loss Prevention (DLP), Distributed
 Denial of Service (DDoS) mitigation and TLS proxy.

 o Advanced Inspection/Action: As like the I2NSF information model
 for NSF facing interface [i2nsf-cap-interface-im], Advanced
 Inspection/Action means that a security function calls another
 security function for further inspection based on its own
 inspection result.

 o Network Security Function Profile (NSF Profile): NSF Profile
 represents NSF's inspection capabilities. Each NSF has its own
 NSF Profile to specify the type of security service it provides
 and its resource capacity etc.

 o Network Security Function Operation Manager (NSF Operation
 Manager): NSF Operation Manager consistently manages information
 and state of NSF instances and provides NSF network access
 information to support advanced inspection request. For example,
 the information includes the supported transport protocols, IP
 addresses, and locations for the NSF instances. Also, NSF
 Operation Manager takes charge of dynamic management of a pool of
 NSF instances by consulting with Developer's Management System and
 load balancing over NSF instances.

https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc7665

Hyun, et al. Expires April 8, 2017 [Page 4]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

 o Packet Forwarding Header/Encapsulation: Packet Forwarding Header
 is used to forward a packet from one NSF to another for further
 inspection. The former NSF constructs a Packet Forwarding Header
 with the NSF profile of the latter NSF and transmits it to a SFF.
 The required fields are the action code, the number of the
 metadata, and the metadata. In this context, the metadata is a
 part of NSF profile.

 o Security Function Forwarder (SFF): A security function forwarder
 is responsible for forwarding traffic to one or more connected
 network security functions according to the information carried in
 the packet forwarding encapsulation when the traffic comes back
 from an NSF. Additionally, an SFF is responsible for transporting
 traffic to another SFF (in the same or the different type of
 overlay), and terminating overlay inspection [RFC7665].

4. Architecture

 This section describes an NSF-triggered traffic steering architecture
 and the basic operations of traffic steering. It also includes
 details about each component of the architecture.

 Figure 1 describes the components of NSF-triggered traffic steering
 architecture. Our architecture enables support a composite
 inspection of packets in transit. According to the inspection result
 of each NSF, which is stored in the Packet Forwarding Header, the
 traffic packets could be steered to another NSF for futher detailed
 analysis. It is also possible to reflect a high-level advanced
 inspection policy and a configuration from I2NSF Client which is a
 component of the original I2NSF framwork. Moreover, the proposed
 architecture provides load balancing, auto supplementary NSF instance
 generation, and the elimination of unused NSF instances. In order to
 achieve these design purposes, we integrate several components to the
 original I2NSF framwork. In the following sections, we explain the
 details of each component.

https://datatracker.ietf.org/doc/html/rfc7665

Hyun, et al. Expires April 8, 2017 [Page 5]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

 +-+
 | Security Client |
 | +-+-+-+-+-+-+-+-+ |
 | | I2NSF | |
 | | Client | |
 | +-+-+-+^+-+-+-+-+ |
 | | |
 | | |
 +-+-+-+-+-+-+-+-+-+-+-|-+
 | Client Facing Interface
 |
 +-+-+-+-+-+-+-+-+-+-+-|-+
 | Security Management System |
 | | |
 | +-+-+-+-+-+-+-v-+-+-+-+ |
	Security Controller					
	+-+-+-+-+-+-+	Registration				
		NSF		Interface +-+-+-+-++-+-+-+-+		
		Opeation		<------------>	Developer's	
		Manager			Mgnt System	<--+
	+-+-+-+-+-+-+	+-+-+-+-++-+-+-+-+				
+-+-+-+-+-+-^-+-+-+-+-+						
 +-+-+-+-+-+-+-+-+-+-|-+
 | NSF Facing Interface |
 | |
 +-+
Security Network									
+-------------------------------------+									
+-+-+-v-+-+-+-+-+-+-+-+-+-+-+-+-+-+									
	+---------+ +---------+								
		SFF	...	SFF					
	+---------+ +---------+								
+-+-+-+-+-+-+-+-^-+-+-+-+-+-+-+-+-+									
+-+-+-+-+-+-+-+-+-+-+-v-+-+-+-+-+-+-+-+-+-+-+--+									
	+---------+ +---------+ +---------+	<-+							
		NSF		NSF	...	NSF			
	+---------+ +---------+ +---------+	<---------+							
+--+									
 +-+

 Figure 1: NSF-triggered Traffic Steering Architecture

Hyun, et al. Expires April 8, 2017 [Page 6]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

4.1. NSF Operation Manager

 NSF Operation Manager is a core component in our system. It is
 responsible for the following three things: (1) Maintaining the
 information of every available NSF instance such as IP address,
 supported transport protocol, NSF profile, and load status. (2)
 Responding the queries of available NSF instances from SFF so as to
 help to conduct advanced inspection relevant to a given NSF profile.
 (3) Requesting Developer's Management System for the dynamic
 instantiation of supplementary NSF instances to avoid service
 congestion or the elimination of an existing NSF instance to avoid
 resource waste. As Figure 1 describes, NSF Operation Manager is a
 sub-module of Security Controller.

 Whenever a new NSF instance is registered, Developer's Management
 System passes the information of the registered NSF instance to NSF
 Operation Manager, so NSF Operation Manager maintains a list of the
 information of every available NSF instance. NSF Operation Manger
 will receive the request packet containing NSF profile for advanced
 inspection from SFF. Once receiving a query of a certain NSF profile
 from SFF, NSF Operation Manager searches for all the available NSF
 instances applicable for that NSF profile and then finds the best
 instance with selection criteria like location and load status.
 After finding the best instance, it returns the search result to SFF.

 In our system, each NSF instance periodically reports its load status
 to NSF Operation Manager. Based on such reports, NSF Operation
 Manager updates the information of the NSF instances and manages the
 pool of NSF instances by requesting Developer's Management System for
 the additional instantiation or elimination of the NSF instances.
 Consequently, NSF Operation Manager enables efficient resource
 utilization by avoiding congestion and resource waste.

4.2. Developer's Management System

 We extend Developer's Management System for additional
 functionalities as follows. As mentioned above, NSF Operation
 Manager requests Developer's Management System to create additional
 NSF instances when the existing instances of that security function
 are congested. On the other hand, when there are an excessive number
 of instances for a certain security function, NSF Operation Manager
 requests Developer's Management System to eliminate some of the NSF
 instances. As a response to such requests, Developer's Management
 System creates and/or removes NSF instances. Once it creates a new
 NSF instance or removes an existing NSF instance, the changes must be
 notified to NSF Operation Manager.

Hyun, et al. Expires April 8, 2017 [Page 7]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

4.3. Packet Forwarding Header

 +-+
 | Outer Encapsulation | Packet Forwarding Header| Origin Packet |
 +-+
 / \
 +---------+ +-----------+
 / \
 / \
 +-+
 | Action Code | SpecInfo Num| SpecInfo 0| ... | SpecInfo n|
 +-+

 Figure 2: Packet Forwarding Header Format

 Packet Forwarding Header is used to convey inspection result and
 required inspection to an SFF, so it has variable length of fields
 like Figure 2. It contains fixed Action and the SpecInfo Num fields
 and variable SpecInfo fields. Action field has a value out of
 "allow", "deny", "advanced", and "mirror". SpecInfo Num field
 represents how many SpecInfos are included in the Packet Forwarding
 Header and each SpecInfo can include a part of NSF Profile which is
 required for the next inspection. For instance, SepcInfo can be
 "syn-flood-mitigate", "udp-flood-mitigate", "content-matching-tcp"
 etc, which are the service profile of an NSF.

4.4. Security Function Forwarder (SFF)

 It is responsible for the following two functionalities: (1)
 Initially forwarding the incoming traffic/packets to Network Security
 Sub-Module, as described in the I2NSF information model for NSF
 facing interface [i2nsf-cap-interface-im]. (2) Forwarding the
 traffic/packets to the matched NSF with the NSF profile which is
 specified in a Packet Forwarding Header.

 An SFF takes a gateway functionality, so it receives incoming
 traffic/packets first and attachs outter encapsulation in order to
 forward the traffic/packets to Network Sub-Module
 [i2nsf-cap-interface-im]. The example of Network Sub-Moudle is a
 firewall which performs packet header inspection. This Network
 Security Sub-Module attachs a Packet Forwarding Header between the
 outter encapsulation and the original packet and specifies NSF
 Profile in that header so that it can be forwarded to Content
 Security Sub-Module or Mitigate Sub-Module for advanced inspection.

 When receiving a packet attached with a packet forwarding header of a

Hyun, et al. Expires April 8, 2017 [Page 8]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

 specific NSF profile, an SFF searches for an available NSF instance
 which provides the network security service corresponding to
 (matching with) the NSF profile and forward the packet to the NSF
 instance. If an NSF decides that the packet requires further
 inspection via another type of network security function, it
 constructs a packet forwarding header specified with (including) the
 NSF profile of the advanced network security function, attaches the
 header to the packet, and then sends the resulting packet to the SFF.
 Once receiving the packet, the SFF checks the NSF profile specified
 in the packet forwarding header. Then it searches for an NSF
 instance matching with the NSF profile by consulting with NSF
 Operation Manager, and finally forwards the packet to the NSF
 instance.

5. Use Cases

 This section introduces two use cases for the NSF-triggered Traffic
 Steering Framework: (1) Enforcing Different NSFs Depending on a
 Packet Source's Trust Level, (2) Effective Load Balancing with
 Dynamic NSF Instantiation.

5.1. Enforcing Different NSFs Depending on a Packet Source's Trust
 Level

 In the proposed architecture, all incoming packets initially arrive
 at the SFF. We assume that the current security policy forces all
 incoming packets to be by default inspected by a firewall in this
 scenario. Thus the SFF forwards the received packets to a firewall
 instance. Then the firewall identifies the source of the traffic and
 evaluates the trust level of the source. If the traffic comes from a
 trusted source, it is likely to be benign. In this case, the traffic
 is just forwarded to the destination without further detailed
 inspection via different types of security functions as illustrated
 in Figure 3-(a). Otherwise if the traffic comes from an untrusted
 source, the firewall attaches a packet forwarding header including
 the NSF profile corresponding to DPI to the packet and returns the
 resulting packet to the SFF. Once receiving the packet, the SFF
 forwards the packet to the DPI instance which will perform detailed
 inspection for the packet payload. Figure 3-(b) illustrates this
 case.

Hyun, et al. Expires April 8, 2017 [Page 9]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

 +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+-+-+
 | Source |----------->|Firewall |------------>| Destination |
 +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+-+-+

 (a) Traffic flow of trusted source

 +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+-+-+
 | Source |---->|Firewall |---->| DPI |---->| Destination |
 +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+ +-+-+-+-+-+-+-+

 (b) Traffic flow of untrusted source

 Figure 3: Different path allocation depending on source of traffic

5.2. Effective Load Balancing with Dynamic NSF Instantiation

 In a large-scale network domain, there typically exist a large number
 of NSF instances that provide various security services. It is
 possible that a specific NSF instance experiences an excessive amount
 of traffic beyond its capacity. In this case, it is required to
 allocate some of the traffic to another available instance of the
 same security function. If there are no additional instances of the
 same security function available, we need to create a new NSF
 instance and then direct the subsequent traffic to the new instance.
 In this way, we can avoid service congestion and achieve more
 efficient resource utilization.

 This process is commonly called load balancing. In our proposed
 architecture, NSF Operation Manager performs periodic monitoring of
 the load status of available NSF instances. In addition, it is
 possible to dynamically generate a new NSF instance through
 Developer's Management System. With these functionalities along with
 the flexible traffic steering mechanism, we can eventually provide
 load balancing service.

 The following describes the detailed process of load balancing when
 congestion occurs at the firewall instance:

 1. NSF Operation Manager detects that the firewall instance is
 receiving too much requests. Currently, there are no additional
 firewall instances available.

 2. NSF Operation Manager requests Developer's Management System to
 create a new firewall instance.

Hyun, et al. Expires April 8, 2017 [Page 10]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

 3. Developer's Management System creates a new firewall instance and
 then registers the information of the new firewall instance to
 NSF Operation Manager.

 4. NSF Operation Manager updates the SFC Information Table to
 reflect the new firewall instance, and notifies NSF and SFF of
 this update.

 5. According to the new forwarding information, the SFF forwards the
 subsequent traffic to the new firewall instance. As a result, we
 can effectively alleviate the burden of the existing firewall
 instance.

6. Security Considerations

 To enable security function chaining in the I2NSF framework, we adopt
 the additional components in the SFC architecture. Thus, this
 document shares the security considerations of the SFC architecture
 that are specified in [RFC7665] for the purpose of achieving secure
 communication among components in the proposed architecture.

7. Acknowledgements

 This work was supported by Institute for Information & communications
 Technology Promotion(IITP) grant funded by the Korea government(MSIP)
 (No.R-20160222-002755, Cloud based Security Intelligence Technology
 Development for the Customized Security Service Provisioning).

8. References

8.1. Normative References

 [RFC7665] Boucadair, M. and C. Jacquenet, "Software-
 Defined Networking: A Perspective from
 within a Service Provider Environment",

RFC 7665, March 2014.

 [sfc-ns-use-cases] Wang, E., Leung, K., Felix, J., and J.
 Iyer, "Service Function Chaining Use Cases
 for Network Security",

draft-wang-sfc-ns-use-cases-01 (work in
 progress), March 2016.

8.2. Informative References

 [RFC7498] Quinn, P. and T. Nadeau, "Problem Statement
 for Service Function Chaining", RFC 7498,
 April 2015.

https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/draft-wang-sfc-ns-use-cases-01
https://datatracker.ietf.org/doc/html/rfc7498

Hyun, et al. Expires April 8, 2017 [Page 11]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

 [i2nsf-cap-interface-im] Xia, L., Strassner, J., Li, K., Zhang, D.,
 Lopez, E., Bouthors, N., and L. Fang,
 "Information Model of Interface to Network
 Security Functions Capability Interface",

draft-xia-i2nsf-capability-interface-im-06
 (work in progress), June 2016.

 [i2nsf-framework] Lopez, E., Lopez, D., Dunbar, L.,
 Strassner, J., Zhuang, X., Parrott, J.,
 Krishnan, R., Durbha, S., Kumar, R., and A.
 Lohiya, "Framework for Interface to Network
 Security Functions",

draft-ietf-i2nsf-framework-03 (work in
 progress), August 2016.

 [i2nsf-ps-and-use-cases] Hares, S., Dunbar, L., Lopez, D., Zarny,
 M., and C. Jacquenet, "I2NSF Problem
 Statement and Use cases",

draft-ietf-i2nsf-problem-and-use-cases-02
 (work in progress), October 2016.

 [i2nsf-terminology] Hares, S., Strassner, J., Lopez, D., and L.
 Xia, "Interface to Network Security
 Functions (I2NSF) Terminology",

draft-ietf-i2nsf-terminology-01 (work in
 progress), July 2016.

 [ONF-SFC-Architecture] ONF, "L4-L7 Service Function Chaining
 Solution Architecture", June 2015.

Appendix A. Changes from draft-hyun-i2nsf-sfc-enabled-i2nsf-00

 The following changes were made from
draft-hyun-i2nsf-sfc-enabled-i2nsf-00:

 o This version reflects the framework for I2NSF in
draft-ietf-i2nsf-framework-03.

 o As a term change, Security Function (SF) is replaced by Network
 Security Function (NSF). As new terms, the following terms are
 added, such as Advanced Inspection/Action, NSF Profile, NSF
 Operation Manager, and Packet Forwarding Header.

 o As an architecture change, the next NSF in service function
 chaining is determined by both the policy from I2NSF Client and
 the result of the current NSF.

https://datatracker.ietf.org/doc/html/draft-xia-i2nsf-capability-interface-im-06
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-framework-03
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases-02
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-terminology-01
https://datatracker.ietf.org/doc/html/draft-hyun-i2nsf-sfc-enabled-i2nsf-00
https://datatracker.ietf.org/doc/html/draft-hyun-i2nsf-sfc-enabled-i2nsf-00
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-framework-03

Hyun, et al. Expires April 8, 2017 [Page 12]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

 o As a use case change, the first two use cases in the previous
 version is integrated into one use case.

Authors' Addresses

 Sangwon Hyun
 Department of Software
 Sungkyunkwan University
 2066 Seobu-Ro, Jangan-Gu
 Suwon, Gyeonggi-Do 16419
 Republic of Korea

 Phone: +82 31 290 7222
 Fax: +82 31 299 6673
 EMail: swhyun77@skku.edu
 URI: http://imtl.skku.ac.kr/

 SangUk Woo
 Department of Software
 Sungkyunkwan University
 2066 Seobu-Ro, Jangan-Gu
 Suwon, Gyeonggi-Do 16419
 Republic of Korea

 Phone: +82 31 290 7222
 Fax: +82 31 299 6673
 EMail: suwoo@imtl.skku.ac.kr,
 URI: http://imtl.skku.ac.kr/index.php?mid=member_student

 YunSuk Yeo
 Department of Software
 Sungkyunkwan University
 2066 Seobu-Ro, Jangan-Gu
 Suwon, Gyeonggi-Do 16419
 Republic of Korea

 Phone: +82 31 290 7222
 Fax: +82 31 299 6673
 EMail: yunsuk@imtl.skku.ac.kr,
 URI: http://imtl.skku.ac.kr/index.php?mid=member_student

http://imtl.skku.ac.kr/
http://imtl.skku.ac.kr/index.php?mid=member_student
http://imtl.skku.ac.kr/index.php?mid=member_student

Hyun, et al. Expires April 8, 2017 [Page 13]

Internet-Draft SFC-Enabled I2NSF Architecture October 2016

 Jaehoon Paul Jeong
 Department of Software
 Sungkyunkwan University
 2066 Seobu-Ro, Jangan-Gu
 Suwon, Gyeonggi-Do 16419
 Republic of Korea

 Phone: +82 31 299 4957
 Fax: +82 31 290 7996
 EMail: pauljeong@skku.edu
 URI: http://iotlab.skku.edu/people-jaehoon-jeong.php

 Jung-Soo Park
 Electronics and Telecommunications Research Institute
 218 Gajeong-Ro, Yuseong-Gu
 Daejeon 305-700
 Republic of Korea

 Phone: +82 42 860 6514
 EMail: pjs@etri.re.kr

http://iotlab.skku.edu/people-jaehoon-jeong.php

Hyun, et al. Expires April 8, 2017 [Page 14]

