
Network Working Group B. Carpenter
Internet-Draft B. Aboba (ed)
Intended Status: Informational S. Cheshire
Expires: August 4, 2011 Internet Architecture Board
 4 February 2011

Design Considerations for Protocol Extensions
draft-iab-extension-recs-05

Abstract

 This document discusses issues related to the extensibility of
 Internet protocols, with a focus on the architectural design
 considerations involved. Case study examples are included. It is
 intended to assist designers of both base protocols and extensions.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 4, 2011.

IAB Informational [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Design Considerations for Extensions 4 February 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

IAB Informational [Page 2]

Internet-Draft Design Considerations for Extensions 4 February 2011

Table of Contents

1. Introduction . 4
1.1 Requirements Language 4

2. Extension Documentation and Review 5
2.1 When is an Extension Routine? 5
2.2 What Constitutes a Major Extension? 6

3. Architectural Principles 7
3.1 Limited Extensibility 8
3.2 Design for Global Interoperability 8
3.3 Architectural Compatibility 9
3.4 Protocol Variations 9
3.5 Testability . 11
3.6 Parameter Parameter Registration 11
3.7 Extensions to Critical Infrastructure 12

4. Considerations for the Base Protocol 13
4.1 Version Numbers . 13
4.2 Reserved Fields . 16
4.3 Encoding Formats . 16
4.4 Parameter Space Design 16
4.5 Cryptographic Agility 19

5. Security Considerations 20
6. IANA Considerations . 20
7. References . 20
7.1 Normative References 20
7.2 Informative References 20

Acknowledgments . 24
IAB Members . . . 24
Appendix A - Examples . 25
A.1 Already documented cases 25
A.2 RADIUS Extensions . 25
A.3 TLS Extensions . 26
A.4 L2TP Extensions . 28

Change log . 29
Authors' Addresses . 30

IAB Informational [Page 3]

Internet-Draft Design Considerations for Extensions 4 February 2011

1. Introduction

 Internet Engineering Task Force (IETF) protocols typically include
 mechanisms whereby they can be extended in the future. It is of
 course a good principle to design extensibility into protocols; one
 common definition of a successful protocol is one that becomes widely
 used in ways not originally anticipated, as described in "What Makes
 for a Successful Protocol" [RFC5218]. Well-designed extensibility
 mechanisms facilitate the evolution of protocols and help make it
 easier to roll out incremental changes in an interoperable fashion.

 When an initial protocol design is extended, there is always a risk
 of unintended consequences, such as interoperability problems or
 security vulnerabilities. This risk is especially high if the
 extension is performed by a different team than the original
 designers, who may stray outside implicit design constraints or
 assumptions. As a result, extensions should be done carefully and
 with a full understanding of the base protocol, existing
 implementations, and current operational practice.

 This is hardly a recent concern. "TCP Extensions Considered Harmful"
 [RFC1263] was published in 1991. "Extend" or "extension" occurs in
 the title of more than 400 existing Request For Comment (RFC)
 documents. Yet generic extension considerations have not been
 documented previously.

 This document describes technical considerations for protocol
 extensions, in order to minimize such risks. It is intended to
 assist designers of both base protocols and extensions. Formal
 procedures for extending IETF protocols are discussed in "Procedures
 for Protocol Extensions and Variations" BCP 125 [RFC4775].

Section 2 discusses extension documentation and review. Section 3
 describes architectural principles for protocol extensibility.

Section 4 explains how designers of base protocols can take steps to
 anticipate and facilitate the creation of such subsequent extensions
 in a safe and reliable manner. Readers are advised to study the
 whole document, since the considerations are closely linked.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc5218
https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/bcp125
https://datatracker.ietf.org/doc/html/rfc4775
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

IAB Informational [Page 4]

Internet-Draft Design Considerations for Extensions 4 February 2011

2. Extension Documentation and Review

 One of the pre-requisites for interoperable extensibility is proper
 documentation and review.

 Protocol components that are designed with the specific intention of
 allowing extensibility should be clearly identified, with specific
 and complete instructions on how to extend them. This includes the
 process for adequate review of extension proposals: do they need
 community review and if so how much and by whom?

 The level of review required for protocol extensions will typically
 vary based on the nature of the extension. Routine extensions may
 require minimal review, while major extensions may require wide
 review. Guidance on which extensions may be considered 'routine' and
 which ones are 'major' are provided in the sections that follow.

 To help future extension writers to use extension mechanisms
 properly, there may be a need for explicit guidance relating to
 extensions beyond what is encapsulated in the IANA considerations
 section of the base specification.

 Protocols whose data model is likely to be widely extended
 (particularly using vendor-specific elements) should have a Design
 Guidelines document specifically addressing extensions. For example,
 "Guidelines for Authors and Reviewers of MIB Documents" [RFC4181]
 provides valuable guidance to protocol designers creating new MIB
 modules.

2.1. When is an Extension Routine?

 An extension may be considered 'routine' if it amounts to a new data
 element of a type that is already supported within the data model,
 and if its handling is opaque to the protocol itself (e.g. does not
 substantially change the pattern of messages and responses).

 For this to apply, the protocol must have been designed to carry the
 proposed data type, so that no changes to the underlying base
 protocol or existing implementations are needed to carry the new data
 element.

 Moreover, no changes should be required to existing and currently
 deployed implementations of the underlying protocol unless they want
 to make use of the new data element. Using the existing protocol to
 carry a new data element should not impact existing implementations
 or cause operational problems. This typically requires that the
 protocol silently discard unknown data elements.

https://datatracker.ietf.org/doc/html/rfc4181

IAB Informational [Page 5]

Internet-Draft Design Considerations for Extensions 4 February 2011

 Examples of routine extensions include the Dynamic Host Configuration
 Protocol (DHCP) vendor-specific option [RFC2132], RADIUS Vendor-
 Specific Attributes [RFC2865], the enterprise Object IDentifier (OID)
 tree for Management Information Base (MIB) modules, vendor
 Multipurpose Internet Mail Extension (MIME) types, and some classes
 of (non-critical) certification extensions. Such extensions can
 safely be made with minimal discussion.

 In order to increase the likelihood that routine extensions are truly
 routine, protocol documents should provide guidelines explaining how
 extensions should be performed. For example, even though DHCP
 carries opaque data, defining a new option using completely
 unstructured data may lead to an option that is unnecessarily hard
 for clients and servers to process.

 Processes that allow routine extensions with minimal or no review
 should be used sparingly (such as the "First Come First Served"
 allocation policy described in "Guidelines for Writing an IANA
 Considerations Section in RFCs" [RFC5226]). In particular, they
 should be limited to cases that are unlikely to cause protocol
 failures, such as allowing new opaque data elements.

2.2. What Constitutes a Major Extension?

 Major extensions may have characteristics leading to a risk of
 interoperability failure. Where these characteristics are present,
 it is necessary to pay extremely close attention to backward
 compatibility with implementations and deployments of the unextended
 protocol, and to the risk of inadvertent introduction of security or
 operational exposures.

 Extension designers should examine their design for the following
 issues:

 1. Modifications or extensions to the working of the underlying
 protocol. This can include changing the semantics of existing
 Protocol Data Units (PDUs) or defining new message types that may
 require implementation changes in existing and deployed
 implementations of the protocol, even if they do not want to make
 use of the new functions or data types. A base protocol without a
 "silent discard" rule for unknown data elements may automatically
 enter this category, even for apparently minor extensions.

 2. Changes to the transport model. While there are circumstances
 where specification of additional transport protocols may make
 sense, removal of a widely implemented transport protocol is
 highly likely to result in interoperability problems and thus
 should be avoided wherever possible.

https://datatracker.ietf.org/doc/html/rfc2132
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc5226

IAB Informational [Page 6]

Internet-Draft Design Considerations for Extensions 4 February 2011

 Where additional transports are specified, one way to avoid issues
 is to mandate support for a single transport protocol, while
 designating other transport protocols as optional. However, if
 optional transport protocols are introduced due to the unique
 advantages they afford in certain scenarios, in those situations
 implementations not supporting optional transport protocols may
 exhibit degraded performance or may even fail.

 While requiring support for multiple transport protocols may
 appear attractive, authors need to realistically evaluate the
 likelihood that implementers will conform to the requirements.
 For example, where resources are limited (such as in embedded
 systems), implementers may choose to only support a subset of the
 mandated transport protocols, resulting in non-interoperable
 protocol variants.

 3. Changes to the basic architectural assumptions. This may
 include architectural assumptions that are explicitly stated or
 those that have been assumed by implementers. For example, this
 would include adding a requirement for session state to a
 previously stateless protocol.

 4. New usage scenarios not originally intended or investigated.
 This can potentially lead to operational difficulties when
 deployed, even in cases where the "on-the-wire" format has not
 changed. For example, the level of traffic carried by the
 protocol may increase substantially, packet sizes may increase,
 and implementation algorithms that are widely deployed may not
 scale sufficiently or otherwise be up to the new task at hand.
 For example, a new DNS Resource Record (RR) type that is too big
 to fit into a single UDP packet could cause interoperability
 problems with existing DNS clients and servers.

3. Architectural Principles

 This section describes basic principles of protocol extensibility:

 1. Extensibility features should be limited to what is reasonably
 anticipated when the protocol is developed.

 2. Protocol extensions should be designed for global
 interoperability.

 3. Protocol extensions should be architecturally compatible with
 the base protocol.

 4. Protocol extension mechanisms should not be used to create
 incompatible protocol variations.

IAB Informational [Page 7]

Internet-Draft Design Considerations for Extensions 4 February 2011

 5. Extension mechanisms need to be testable.

 6. Protocol parameter assignments need to be coordinated to avoid
 potential conflicts.

 7. Extensions to critical infrastructure require special care.

3.1. Limited Extensibility

 Designing a protocol for extensibility may have the perverse side
 effect of making it easy to construct incompatible extensions.
 Consequently, protocols should not be made more extensible than
 clearly necessary at inception, and the process for defining new
 extensibility mechanisms should ensure that adequate review of
 proposed extensions will take place before widespread adoption.

3.2. Design for Global Interoperability

 The IETF mission [RFC3935] is to create interoperable protocols for
 the global Internet, not a collection of different incompatible
 protocols (or "profiles") for use in separate private networks.
 Experience shows that separate private networks often end up using
 equipment from the same vendors, or end up having portable equipment
 like laptop computers move between them, and networks that were
 originally envisaged as being separate can end up being connected
 later.

 As a result, extensions cannot be designed for an isolated
 environment; instead, extension designers must assume that systems
 using the extension will need to interoperate with systems on the
 global Internet.

 A key requirement for interoperable extension design is that the base
 protocol must be well designed for interoperability, and that
 extensions must have unambiguous semantics. Ideally, the protocol
 mechanisms for extension and versioning should be sufficiently well
 described that compatibility can be assessed on paper. Otherwise,
 when two "private" extensions encounter each other on a public
 network, unexpected interoperability problems may occur.

 Consider a "private" extension installed on a work computer which,
 being portable, is sometimes connected to a home network or a hotel
 network. If the "private" extension is incompatible with an
 unextended version of the same protocol, problems will occur.

 Similarly, problems can occur if "private" extensions conflict with
 each other. For example, imagine the situation where one site chose
 to use DHCP [RFC2132] option code 62 for one meaning, and a different

https://datatracker.ietf.org/doc/html/rfc3935
https://datatracker.ietf.org/doc/html/rfc2132

IAB Informational [Page 8]

Internet-Draft Design Considerations for Extensions 4 February 2011

 site chose to use DHCP option code 62 for a completely different,
 incompatible, meaning. It may be impossible for a vendor of portable
 computing devices to make a device that works correctly in both
 environments.

 One approach to solving this problem has been to reserve parts of an
 identifier namespace for "site-specific" or "experimental" use, such
 as "X-" headers in email messages [RFC0822]. This problem with this
 approach is that when an experiment turns out to be successful, or a
 site-specific use turns out to have applicability elsewhere, other
 vendors will then implement that "X-" header for interoperability,
 and the "X-" header becomes a de facto standard, meaning that it is
 no longer true that any header beginning "X-" is site-specific or
 experimental. The notion of "X-" headers was removed from the
 Internet Message Format standard when it was was updated in 2001
 [RFC2822].

3.3. Architectural Compatibility

 Since protocol extension mechanisms may impact interoperability, it
 is important that they be architecturally compatible with the base
 protocol. As part of the definition of new extension mechanisms, it
 is important to address whether the mechanisms make use of features
 as envisaged by the original protocol designers, or whether a new
 extension mechanism is being invented. If a new extension mechanism
 is being invented, then architectural compatibility issues need to be
 addressed.

 Documents relying on extension mechanisms need to explicitly identify
 the mechanisms being relied upon. Where extension guidelines are
 available, mechanisms need to indicate whether they are compliant
 with those guidelines and if not, why not. For example, a document
 defining new data elements should not implicitly define new data
 types or protocol operations without explicitly describing those
 dependencies and discussing their impact.

3.4. Protocol Variations

 Protocol variations - specifications that look very similar to the
 original but don't interoperate with each other or with the original
 - are even more harmful to interoperability than extensions. In
 general, such variations should be avoided. Causes of protocol
 variations include incompatible protocol extensions, uncoordinated
 protocol development, and poorly designed "profiles".

 Protocol extension mechanisms should not be used to create
 incompatible forks in development. An extension may lead to
 interoperability failures unless the extended protocol correctly

https://datatracker.ietf.org/doc/html/rfc0822
https://datatracker.ietf.org/doc/html/rfc2822

IAB Informational [Page 9]

Internet-Draft Design Considerations for Extensions 4 February 2011

 supports all mandatory and optional features of the unextended base
 protocol, and implementations of the base protocol operate correctly
 in the presence of the extensions. In addition, it is necessary for
 an extension to interoperate with other extensions.

 As noted in "Uncoordinated Protocol Development Considered Harmful"
 [RFC5704], incompatible forks in development can result from the
 uncoordinated adaptation of a protocol, parameter or code-point.

Section 1 of [RFC5704] states:

 In particular, the IAB considers it an essential principle of the
 protocol development process that only one SDO maintains design
 authority for a given protocol, with that SDO having ultimate
 authority over the allocation of protocol parameter code-points
 and over defining the intended semantics, interpretation, and
 actions associated with those code-points.

 Profiling is a common technique for improving interoperability within
 a target environment or set of scenarios. Typically, profiles are
 constructed by narrowing potential implementation choices or by
 removing protocol features. However, in order to avoid creating
 interoperability problems when profiled implementations interact with
 others over the Global Internet, profilers need to remain cognizant
 of the implications of normative requirements.

 As noted in "Key words for use in RFCs to Indicate Requirement
 Levels" [RFC2119] Section 6, imperatives are to be used with care,
 and as a result, their removal within a profile is likely to result
 in serious consequences:

 Imperatives of the type defined in this memo must be used with
 care and sparingly. In particular, they MUST only be used where
 it is actually required for interoperation or to limit behavior
 which has potential for causing harm (e.g., limiting
 retransmissions) For example, they must not be used to try to
 impose a particular method on implementors where the method is not
 required for interoperability.

 As noted in [RFC2119] Sections 3 and 4, recommendations also cannot
 be removed from profiles without serious consideration:

 there may exist valid reasons in particular circumstances to
 ignore a particular item, but the full implications must be
 understood and carefully weighed before choosing a different
 course.

 As noted in [RFC2119] Section 5, implementations which do not support
 optional features still retain the obligation to ensure

https://datatracker.ietf.org/doc/html/rfc5704
https://datatracker.ietf.org/doc/html/rfc5704#section-1
https://datatracker.ietf.org/doc/html/rfc2119#section-6
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119#section-5

IAB Informational [Page 10]

Internet-Draft Design Considerations for Extensions 4 February 2011

 interoperation with implementations that do:

 An implementation which does not include a particular option MUST
 be prepared to interoperate with another implementation which does
 include the option, though perhaps with reduced functionality. In
 the same vein an implementation which does include a particular
 option MUST be prepared to interoperate with another
 implementation which does not include the option (except, of
 course, for the feature the option provides.)

3.5. Testability

 Experience has shown that it is insufficient merely to correctly
 specify extensibility and backwards compatibility in an RFC. It is
 also important that implementations respect the compatibility
 mechanisms; if not, non-interoperable pairs of implementations may
 arise. The TLS case study (Appendix A.3) shows how important this
 can be.

 In order to determine whether protocol extension mechanisms have been
 properly implemented, testing is required. However, for this to be
 possible, test cases need to be developed. If a base protocol
 document specifies extension mechanisms but does not utilize them or
 provide examples, it may not be possible to develop effective test
 cases based on the base protocol specification alone. As a result,
 base protocol implementations may not be properly tested and non-
 compliant extension behavior may not be detected until these
 implementations are widely deployed.

 To encourage correct implementation of extension mechanisms, base
 protocol specifications should clearly articulate the expected
 behavior of extension mechanisms and should include examples of
 correct and incorrect extension behavior.

3.6. Protocol Parameter Registration

 An extension is often likely to make use of additional values added
 to an existing IANA registry (in many cases, simply by adding a new
 Type-Length-Value (TLV) field). To avoid conflicting usage of the
 same value, as well as to prevent potential difficulties in
 determining and transferring parameter ownership, it is essential
 that all new values are properly registered by the applicable
 procedures.

 For general rules see "Guidelines for Writing an IANA Considerations
 Section in RFCs" [RFC5226], and for specific rules and registries see
 the individual protocol specification RFCs and the IANA web site. If
 this is not done, there is nothing to prevent two different

https://datatracker.ietf.org/doc/html/rfc5226

IAB Informational [Page 11]

Internet-Draft Design Considerations for Extensions 4 February 2011

 extensions picking the same value. When these two extensions "meet"
 each other on the Internet, failure is inevitable.

 A surprisingly common case of this is misappropriation of assigned
 Transmission Control Protocol (TCP) (or User Datagram Protocol (UDP))
 registered port numbers. This can lead to a client for one service
 attempting to communicate with a server for another service.
 Numerous cases could be cited, but not without embarrassing specific
 implementers.

 While in theory a "standards track" or "IETF consensus" parameter
 allocation policy may be instituted to encourage protocol parameter
 registration or to improve interoperability, in practice these
 policies, if administered clumsily, can have the opposite effect,
 discouraging protocol parameter registration and encouraging rampant
 self-allocation. These effects have also been observed in a number
 of instances.

 In some cases, it may be appropriate to use values designated as
 "experimental" or "local use" in early implementations of an
 extension. For example, "Experimental Values in IPv4, IPv6, ICMPv4,
 ICMPv6, UDP and TCP Headers" [RFC4727] discusses experimental values
 for IP and transport headers, and "Definition of the Differentiated
 Services Field (DS Field) in the IPv4 and IPv6 Headers" [RFC2474]
 defines experimental/local use ranges for differentiated services
 code points. Such values should be used with care and only for their
 stated purpose: experiments and local use. They are unsuitable for
 Internet-wide use, since they may be used for conflicting purposes
 and thereby cause interoperability failures. Packets containing
 experimental or local use values must not be allowed out of the
 domain in which they are meaningful.

3.7. Extensions to Critical Infrastructure

 Some protocols (such as Domain Name Service (DNS) and Border Gateway
 Protocol (BGP)) have become critical components of the Internet
 infrastructure. When such protocols are extended, the potential
 exists for negatively impacting the reliability and security of the
 global Internet.

 As a result, special care needs to be taken with these extensions,
 such as taking explicit steps to isolate existing uses from new ones.
 For example, this can be accomplished by requiring the extension to
 utilize a different port or multicast address, or by implementing the
 extension within a separate process, without access to the data and
 control structures of the base protocol.

https://datatracker.ietf.org/doc/html/rfc4727
https://datatracker.ietf.org/doc/html/rfc2474

IAB Informational [Page 12]

Internet-Draft Design Considerations for Extensions 4 February 2011

4. Considerations for the Base Protocol

 Good extension design depends on a well designed base protocol.
 Interoperability stems from a number of factors, including:

 1. A well-written specification. Does the specification make
 clear what an implementor needs to support and does it define the
 impact that individual operations (e.g. a message sent to a peer)
 will have when invoked?

 2. Design for deployability. This includes understanding what
 current implementations do and how a proposed extension will
 interact with deployed systems. Will a proposed extension (or its
 proposed usage) operationally stress existing implementations or
 the underlying protocol itself if widely deployed?

 3. An adequate transition or coexistence story. What impact will
 the proposed extension have on implementations that do not
 understand it? Is there a way to negotiate or determine the
 capabilities of a peer? Can the extended protocol negotiate with
 an unextended partner to find a common subset of useful functions?

 4. Respecting underlying architectural or security assumptions.
 This includes assumptions that may not be well-documented, those
 that may have arisen as the result of operational experience, or
 those that only became understood after the original protocol was
 published. For example, do the extensions reverse the flow of
 data, allow formerly static parameters to be changed on the fly,
 or change assumptions relating to the frequency of reads/writes?

 5. Minimizing impact on critical infrastructure. Does the
 proposed extension (or its proposed usage) have the potential for
 negatively impacting critical infrastructure to the point where
 explicit steps would be appropriate to isolate existing uses from
 new ones?

 6. Data model extensions. Does the proposed extension extend the
 data model in a major way? For example, are new data types
 defined that may require code changes within existing
 implementations?

4.1. Version Numbers

 Any mechanism for extension by versioning must include provisions to
 ensure interoperability, or at least clean failure modes. Imagine
 someone creating a protocol and using a "version" field and
 populating it with a value (1, let's say), but giving no information
 about what would happen when a new version number appears in it.

IAB Informational [Page 13]

Internet-Draft Design Considerations for Extensions 4 February 2011

 That's bad protocol design and description; it should be clear what
 the expectation is and how you test it. For example, stating that
 1.X must be compatible with any version 1 code, but version 2 or
 greater is not expected to be compatible, has different implications
 than stating that version 1 must be a proper subset of version 2.

 An example is ROHC (Robust Header Compression). ROHCv1 [RFC3095]
 supports a certain set of profiles for compression algorithms. But
 experience had shown that these profiles had limitations, so the ROHC
 WG developed ROHCv2 [RFC5225]. A ROHCv1 implementation does not
 contain code for the ROHCv2 profiles. As the ROHC WG charter said
 during the development of ROHCv2:

 It should be noted that the v2 profiles will thus not be
 compatible with the original (ROHCv1) profiles, which means less
 complex ROHC implementations can be realized by not providing
 support for ROHCv1 (over links not yet supporting ROHC, or by
 shifting out support for ROHCv1 in the long run). Profile support
 is agreed through the ROHC channel negotiation, which is part of
 the ROHC framework and thus not changed by ROHCv2.

 Thus in this case both backwards-compatible and backwards-
 incompatible deployments are possible. The important point is a
 clearly thought out approach to the question of operational
 compatibility. In the past, protocols have utilized a variety of
 strategies for versioning, many of which have proven problematic.
 These include:

 1. No versioning support. This approach is exemplified by
 Extensible Authentication Protocol (EAP) [RFC3748] as well as
 Remote Authentication Dial In User Service (RADIUS) [RFC2865],
 both of which provide no support for versioning. While lack of
 versioning support protects against the proliferation of
 incompatible dialects, the need for extensibility is likely to
 assert itself in other ways, so that ignoring versioning entirely
 may not be the most forward thinking approach.

 2. Highest mutually supported version (HMSV). In this approach,
 implementations exchange the version numbers of the highest
 version each supports, with the negotiation agreeing on the
 highest mutually supported protocol version. This approach
 implicitly assumes that later versions provide improved
 functionality, and that advertisement of a particular version
 number implies support for all lower version numbers. Where these
 assumptions are invalid, this approach breaks down, potentially
 resulting in interoperability problems. An example of this issue
 occurs in Protected EAP [PEAP] where implementations of higher
 versions may not necessarily provide support for lower versions.

https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc5225
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc2865

IAB Informational [Page 14]

Internet-Draft Design Considerations for Extensions 4 February 2011

 3. Assumed backward compatibility. In this approach,
 implementations may send packets with higher version numbers to
 legacy implementations supporting lower versions, but with the
 assumption that the legacy implementations will interpret packets
 with higher version numbers using the semantics and syntax defined
 for lower versions. This is the approach taken by Port-Based
 Access Control [IEEE-802.1X]. For this approach to work, legacy
 implementations need to be able to accept packets of known type
 with higher protocol versions without discarding them; protocol
 enhancements need to permit silent discard of unsupported
 extensions; implementations supporting higher versions need to
 refrain from mandating new features when encountering legacy
 implementations.

 4. Major/minor versioning. In this approach, implementations with
 the same major version but a different minor version are assumed
 to be backward compatible, but implementations are assumed to be
 required to negotiate a mutually supported major version number.
 This approach assumes that implementations with a lower minor
 version number but the same major version can safely ignore
 unsupported protocol messages.

 5. Min/max versioning. This approach is similar to HMSV, but
 without the implied obligation for clients and servers to support
 all versions back to version 1, in perpetuity. It allows clients
 and servers to cleanly drop support for early versions when those
 versions become so old that they are no longer relevant and no
 longer required. In this approach, the client initiating the
 connection reports the highest and lowest protocol versions it
 understands. The server reports back the chosen protocol version:

 a. If the server understands one or more versions in the client's
 range, it reports back the highest mutually understood version.

 b. If there is no mutual version, then the server reports back
 some version that it does understand (selected as described
 below). The connection is then typically dropped by client or
 server, but reporting this version number first helps facilitate
 useful error messages at the client end:

 * If there is no mutual version, and the server speaks any
 version higher than client max, it reports the lowest version it
 speaks which is greater than the client max. The client can
 then report to the user, "You need to upgrade to at least
 version <xx>."

 * Else, the server reports the highest version it speaks. The
 client can then report to the user, "You need to request the

IAB Informational [Page 15]

Internet-Draft Design Considerations for Extensions 4 February 2011

 server operator to upgrade to at least version <min>."

 Protocols generally do not need any version-negotiation mechanism
 more complicated than the mechanisms described here. The nature of
 protocol version-negotiation mechanisms is that, by definition, they
 don't get widespread real-world testing until *after* the base
 protocol has been deployed for a while, and its deficiencies have
 become evident. This means that, to be useful, a protocol version
 negotiation mechanism should be simple enough that it can reasonably
 be assumed that all the implementers of the first protocol version at
 least managed to implement the version-negotiation mechanism
 correctly.

4.2. Reserved Fields

 Protocols commonly include one or more "reserved" fields, clearly
 intended for future extensions. It is good practice to specify the
 value to be inserted in such a field by the sender (typically zero)
 and the action to be taken by the receiver when seeing some other
 value (typically no action). In packet format diagrams, such fields
 are typically labeled "MBZ", to be read as, "Must Be Zero on
 transmission, Must Be Ignored on reception." A common mistake of
 inexperienced protocol implementers is to think that "MBZ" means that
 it's their software's job to verify that the value of the field is
 zero on reception, and reject the packet if not. This is a mistake,
 and such software will fail when it encounters future versions of the
 protocol where these previously reserved fields are given new defined
 meanings. Similarly, protocols should carefully specify how
 receivers should react to unknown TLVs etc., such that failures occur
 only when that is truly the intended outcome.

4.3. Encoding Formats

 Using widely-supported encoding formats leads to better
 interoperability and easier extensibility. An excellent example is
 the Simple Network Management Protocol (SNMP) SMI. Guidelines exist
 for defining the MIB objects that SNMP carries [RFC4181]. Also,
 multiple textual conventions have been published, so that MIB
 designers do not have to reinvent the wheel when they need a commonly
 encountered construct. For example, the "Textual Conventions for
 Internet Network Addresses" [RFC4001] can be used by any MIB designer
 needing to define objects containing IP addresses, thus ensuring
 consistency as the body of MIBs is extended.

4.4. Parameter Space Design

 In some protocols the parameter space is either infinite (e.g. Header
 field names) or sufficiently large that it is unlikely to be

https://datatracker.ietf.org/doc/html/rfc4181
https://datatracker.ietf.org/doc/html/rfc4001

IAB Informational [Page 16]

Internet-Draft Design Considerations for Extensions 4 February 2011

 exhausted. In other protocols, the parameter space is finite, and in
 some cases, has proven inadequate to accommodate demand. Common
 mistakes include:

 a. A version field that is too small (e.g. two bits or less). When
 designing a version field, existing as well as potential versions of
 a protocol need to be taken into account. For example, if a protocol
 is being standardized for which there are existing implementations
 with known interoperability issues, more than one version for "pre-
 standard" implementations may be required. If two "pre-standard"
 versions are required in addition to a version for an IETF standard,
 then a two-bit version field would only leave one additional version
 code-point for a future update, which could be insufficient. This
 problem was encountered during the development of the PEAPv2 protocol
 [PEAP].

 b. A small parameter space (e.g. 8-bits or less) along with a First
 Come, First Served (FCFS) allocation policy. In general, an FCFS
 allocation policy is only appropriate in situations where parameter
 exhaustion is highly unlikely. In situations where substantial
 demand is anticipated within a parameter space, the space should
 either be designed to be sufficient to handle that demand, or vendor
 extensibility should be provided to enable vendors to self-allocate.
 The combination of a small parameter space, an FCFS allocation
 policy, and no support for vendor extensibility is particularly
 likely to prove ill-advised. An example of such a combination was
 the design of the original 8-bit EAP Method Type space [RFC2284].

 Once the potential for parameter exhaustion becomes apparent, it is
 important that it be addressed as quickly as possible. Protocol
 changes can take years to appear in implementations and by then the
 exhaustion problem could become acute.

 Options for addressing a protocol parameter exhaustion problem
 include:

Rethinking the allocation regime
 Where it becomes apparent that the size of a parameter space is
 insufficient to meet demand, it may be necessary to rethink the
 allocation mechanism, in order to prevent rapid parameter space
 exhaustion. For example, a few years after approval of RFC 2284
 [RFC2284], it became clear that the combination of a FCFS
 allocation policy and lack of support for vendor-extensions had
 created the potential for exhaustion of the EAP Method Type space
 within a few years. To address the issue, [RFC3748] Section 6.2
 changed the allocation policy for EAP Method Types from FCFS to
 Expert Review, with Specification Required.

https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc3748#section-6.2

IAB Informational [Page 17]

Internet-Draft Design Considerations for Extensions 4 February 2011

Support for vendor-specific parameters
 If the demand that cannot be accommodated is being generated by
 vendors, merely making allocation harder could make things worse if
 this encourages vendors to self-allocate, creating interoperability
 problems. In such a situation, support for vendor-specific
 parameters should be considered, allowing each vendor to self-
 allocate within their own vendor-specific space based on a vendor's
 Private Enterprise Code (PEC). For example, in the case of the EAP
 Method Type space, [RFC3748] Section 6.2 also provided for an
 Expanded Type space for "functions specific only to one vendor's
 implementation".

Extensions to the parameter space
 If the goal is to stave off exhaustion in the face of high demand,
 a larger parameter space may be helpful. Where vendor-specific
 parameter support is available, this may be achieved by allocating
 an PEC for IETF use. Otherwise it may be necessary to try to extend
 the size of the parameter fields, which could require a new
 protocol version or other substantial protocol changes.

Parameter reclamation
 In order to gain time, it may be necessary to reclaim unused
 parameters. However, it may not be easy to determine whether a
 parameter that has been allocated is in use or not, particularly if
 the entity that obtained the allocation no longer exists or has
 been acquired (possibly multiple times).

Parameter Transfer
 When all the above mechanisms have proved infeasible and parameter
 exhaustion looms in the near future, enabling the transfer of
 ownership of protocol parameters can be considered as a means for
 improving allocation efficiency. However, enabling transfer of
 parameter ownership can be far from simple if the parameter
 allocation process was not originally designed to enable title
 searches and ownership transfers.

 A parameter allocation process designed to uniquely allocate code-
 points is fundamentally different from one designed to enable title
 search and transfer. If the only goal is to ensure that a
 parameter is not allocated more than once, the parameter registry
 will only need to record the initial allocation. On the other
 hand, if the goal is to enable transfer of ownership of a protocol
 parameter, then it is important not only to record the initial
 allocation, but also to track subsequent ownership changes, so as
 to make it possible to determine and transfer title. Given the
 difficulty of converting from a unique allocation regime to one
 requiring support for title search and ownership transfer, it is
 best for the desired capabilities to be carefully thought through

https://datatracker.ietf.org/doc/html/rfc3748#section-6.2

IAB Informational [Page 18]

Internet-Draft Design Considerations for Extensions 4 February 2011

 at the time of registry establishment.

4.5. Cryptographic Agility

 Extensibility with respect to cryptographic algorithms is desirable
 in order to provide resilience against the compromise of any
 particular algorithm. "Guidance for Authentication, Authorization,
 and Accounting (AAA) Key Management" BCP 132 [RFC4962] Section 3
 provides some basic advice:

 The ability to negotiate the use of a particular cryptographic
 algorithm provides resilience against compromise of a particular
 cryptographic algorithm... This is usually accomplished by
 including an algorithm identifier and parameters in the protocol,
 and by specifying the algorithm requirements in the protocol
 specification. While highly desirable, the ability to negotiate
 key derivation functions (KDFs) is not required. For
 interoperability, at least one suite of mandatory-to-implement
 algorithms MUST be selected...

 This requirement does not mean that a protocol must support both
 public-key and symmetric-key cryptographic algorithms. It means
 that the protocol needs to be structured in such a way that
 multiple public-key algorithms can be used whenever a public-key
 algorithm is employed. Likewise, it means that the protocol needs
 to be structured in such a way that multiple symmetric-key
 algorithms can be used whenever a symmetric-key algorithm is
 employed.

 In practice, the most difficult challenge in providing cryptographic
 agility is providing for a smooth transition in the event that a
 mandatory-to-implement algorithm is compromised. Since it may take
 significant time to provide for widespread implementation of a
 previously undeployed alternative, it is often advisable to recommend
 implementation of alternative algorithms of distinct lineage in
 addition to those made mandatory-to-implement, so that an alternative
 algorithm is readily available. If such a recommended alternative is
 not in place, then it would be wise to issue such a recommendation as
 soon as indications of a potential weakness surface. This is
 particularly important in the case of potential weakness in
 algorithms used to authenticate and integrity-protect the
 cryptographic negotiation itself, such as KDFs or message integrity
 checks (MICs). Without secure alternatives to compromised KDF or MIC
 algorithms, it may not be possible to secure the cryptographic
 negotiation against a bidding-down attack while retaining backward
 compatibility.

https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/rfc4962#section-3

IAB Informational [Page 19]

Internet-Draft Design Considerations for Extensions 4 February 2011

5. Security Considerations

 An extension must not introduce new security risks without also
 providing adequate counter-measures, and in particular it must not
 inadvertently defeat security measures in the unextended protocol.
 Thus, the security analysis for an extension needs to be as thorough
 as for the original protocol - effectively it needs to be a
 regression analysis to check that the extension doesn't inadvertently
 invalidate the original security model.

 This analysis may be simple (e.g. adding an extra opaque data element
 is unlikely to create a new risk) or quite complex (e.g. adding a
 handshake to a previously stateless protocol may create a completely
 new opportunity for an attacker).

 When the extensibility of a design includes allowing for new and
 presumably more powerful cryptographic algorithms to be added,
 particular care is needed to ensure that the result is in fact
 increased security. For example, it may be undesirable from a
 security viewpoint to allow negotiation down to an older, less secure
 algorithm.

6. IANA Considerations

 [RFC Editor: please remove this section prior to publication.]

 This document has no IANA Actions.

7. References

7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4775] Bradner, S., Carpenter, B., and T. Narten, "Procedures
 for Protocol Extensions and Variations", BCP 125, RFC

4775, December 2006.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

7.2. Informative References

[I-D.ietf-radext-design]
 DeKok, A. and G. Weber, "RADIUS Design Guidelines",

draft-ietf-radext-design-19.txt, Internet draft (work in

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp125
https://datatracker.ietf.org/doc/html/rfc4775
https://datatracker.ietf.org/doc/html/rfc4775
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/draft-ietf-radext-design-19.txt

IAB Informational [Page 20]

Internet-Draft Design Considerations for Extensions 4 February 2011

 progress), November 2010.

[IEEE-802.1X] Institute of Electrical and Electronics Engineers, "Local
 and Metropolitan Area Networks: Port-Based Network Access
 Control", IEEE Standard 802.1X-2004, December 2004.

[PEAP] Palekar, A., Simon, D., Salowey, J., Zhou, H., Zorn, G.
 and S. Josefsson, "Protected EAP Protocol (PEAP) Version
 2", draft-josefsson-pppext-eap-tls-eap-10.txt, Expired
 Internet draft (work in progress), October 2004.

[RFC0822] Crocker, D., "Standard for the format of ARPA Internet
 text messages", STD 11, RFC 822, August 1982.

[RFC1263] O'Malley, S. and L. Peterson, "TCP Extensions Considered
 Harmful", RFC 1263, October 1991.

[RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP
 Vendor Extensions", RFC 2132, March 1997.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

[RFC2284] Blunk, L. and J. Vollbrecht, "PPP Extensible
 Authentication Protocol (EAP)", RFC 2284, March 1998.

[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474, December
 1998.

[RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
 G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",

RFC 2661, August 1999.

[RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)",RFC
2671, August 1999.

[RFC2822] Resnick, P., "Internet Message Format", RFC 2822, April
 2001.

[RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",

RFC 2865, June 2000.

[RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima,
 H., Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T.,
 Le, K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro,

https://datatracker.ietf.org/doc/html/draft-josefsson-pppext-eap-tls-eap-10.txt
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/rfc2132
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2865

IAB Informational [Page 21]

Internet-Draft Design Considerations for Extensions 4 February 2011

 K., Wiebke, T., Yoshimura, T., and H. Zheng, "RObust
 Header Compression (ROHC): Framework and four profiles:
 RTP, UDP, ESP, and uncompressed", RFC 3095, July 2001.

[RFC3427] Mankin, A., Bradner, S., Mahy, R., Willis, D., Ott, J.,
 and B. Rosen, "Change Process for the Session Initiation
 Protocol (SIP)", BCP 67, RFC 3427, December 2002.

[RFC3575] Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575, July
 2003.

[RFC3597] Gustafsson, A., "Handling of Unknown DNS Resource Record
 (RR) Types", RFC 3597, September 2003.

[RFC3735] Hollenbeck, S., "Guidelines for Extending the Extensible
 Provisioning Protocol (EPP)", RFC 3735, March 2004.

[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J. and H.
 Lefkowetz, "Extensible Authentication Protocol (EAP)",

RFC 3748, June 2004.

[RFC3935] Alvestrand, H., "A Mission Statement for the IETF", RFC
3935, October 2004.

[RFC4001] Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network
 Addresses", RFC 4001, February 2005.

[RFC4181] Heard, C., "Guidelines for Authors and Reviewers of MIB
 Documents", BCP 111, RFC 4181, September 2005.

[RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen,
 J., and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, April 2006.

[RFC4485] Rosenberg, J. and H. Schulzrinne, "Guidelines for Authors
 of Extensions to the Session Initiation Protocol (SIP)",

RFC 4485, May 2006.

[RFC4521] Zeilenga, K., "Considerations for Lightweight Directory
 Access Protocol (LDAP) Extensions", BCP 118, RFC 4521,
 June 2006.

[RFC4727] Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4,
 ICMPv6, UDP, and TCP Headers", RFC 4727, November 2006.

https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/bcp67
https://datatracker.ietf.org/doc/html/rfc3427
https://datatracker.ietf.org/doc/html/rfc3575
https://datatracker.ietf.org/doc/html/rfc3597
https://datatracker.ietf.org/doc/html/rfc3735
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3935
https://datatracker.ietf.org/doc/html/rfc3935
https://datatracker.ietf.org/doc/html/rfc4001
https://datatracker.ietf.org/doc/html/bcp111
https://datatracker.ietf.org/doc/html/rfc4181
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4485
https://datatracker.ietf.org/doc/html/bcp118
https://datatracker.ietf.org/doc/html/rfc4521
https://datatracker.ietf.org/doc/html/rfc4727

IAB Informational [Page 22]

Internet-Draft Design Considerations for Extensions 4 February 2011

[RFC4929] Andersson, L. and A. Farrel, "Change Process for
 Multiprotocol Label Switching (MPLS) and Generalized MPLS
 (GMPLS) Protocols and Procedures", BCP 129, RFC 4929,
 June 2007.

[RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management", BCP

132, RFC 4962, July 2007.

[RFC5080] Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, December 2007.

[RFC5218] Thaler, D., and B. Aboba, "What Makes for a Successful
 Protocol?", RFC 5218, July 2008.

[RFC5225] Pelletier, G. and K. Sandlund, "RObust Header Compression
 Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and
 UDP-Lite", RFC 5225, April 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5704] Bryant, S. and M. Morrow, "Uncoordinated Protocol
 Development Considered Harmful", RFC 5704, November 2009.

[RFC5727] Peterson, J., Jennings, C. and R. Sparks, "Change Process
 for the Session Initiation Protocol (SIP) and the Real-
 time Applications and Infrastructure Area", RFC 5727,
 March 2010.

https://datatracker.ietf.org/doc/html/bcp129
https://datatracker.ietf.org/doc/html/rfc4929
https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/rfc5080
https://datatracker.ietf.org/doc/html/rfc5218
https://datatracker.ietf.org/doc/html/rfc5225
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5704
https://datatracker.ietf.org/doc/html/rfc5727

IAB Informational [Page 23]

Internet-Draft Design Considerations for Extensions 4 February 2011

Acknowledgments

 This document is heavily based on an earlier draft under a different
 title by Scott Bradner and Thomas Narten.

 That draft stated: The initial version of this document was put
 together by the IESG in 2002. Since then, it has been reworked in
 response to feedback from John Loughney, Henrik Levkowetz, Mark
 Townsley, Randy Bush and others.

 Valuable comments and suggestions on the current form of the document
 were made by Jari Arkko, Ted Hardie, Loa Andersson, Eric Rescorla,
 Pekka Savola, Leslie Daigle, Alfred Hoenes, Adam Roach and Phillip
 Hallam-Baker.

 The text on TLS experience was contributed by Yngve Pettersen.

IAB Members at the Time of this Writing

 Bernard Aboba
 Marcelo Bagnulo
 Ross Callon
 Spencer Dawkins
 Vijay Gill
 Russ Housley
 John Klensin
 Olaf Kolkman
 Danny McPherson
 Jon Peterson
 Andrei Robachevsky
 Dave Thaler
 Hannes Tschofenig

IAB Informational [Page 24]

Internet-Draft Design Considerations for Extensions 4 February 2011

Appendix A. Examples

 This section discusses some specific examples, as case studies.

A.1. Already documented cases

 There are certain documents that specify a change process or describe
 extension considerations for specific IETF protocols:

 The SIP change process [RFC3427], [RFC4485], [RFC5727]
 The (G)MPLS change process (mainly procedural) [RFC4929]
 LDAP extensions [RFC4521]
 EPP extensions [RFC3735]
 DNS extensions [RFC2671][RFC3597]

 It is relatively common for MIBs, which are all in effect extensions
 of the SMI data model, to be defined or extended outside the IETF.

BCP 111 [RFC4181] offers detailed guidance for authors and reviewers.

A.2. RADIUS Extensions

 The RADIUS [RFC2865] protocol was designed to be extensible via
 addition of Attributes to a Data Dictionary on the server, without
 requiring code changes. However, this extensibility model assumed
 that Attributes would conform to a limited set of data types and that
 vendor extensions would be limited to use by vendors, in situations
 in which interoperability was not required. Subsequent developments
 have stretched those assumptions.

Section 6.2 of the RADIUS specification [RFC2865] defines a mechanism
 for Vendor-Specific extensions (Attribute 26), and states that use of
 Vendor-Specific extensions:

 should be encouraged instead of allocation of global attribute
 types, for functions specific only to one vendor's implementation
 of RADIUS, where no interoperability is deemed useful.

 However, in practice usage of Vendor-Specific Attributes (VSAs) has
 been considerably broader than this. In particular, VSAs have been
 used by Standards Development Organizations (SDOs) to define their
 own extensions to the RADIUS protocol.

 This has caused a number of problems. Since the VSA mechanism was
 not designed for interoperability, VSAs do not contain a "mandatory"
 bit. As a result, RADIUS clients and servers may not know whether it
 is safe to ignore unknown attributes. For example, Section 5 of the
 RADIUS specification [RFC2865] states:

https://datatracker.ietf.org/doc/html/rfc3427
https://datatracker.ietf.org/doc/html/rfc4485
https://datatracker.ietf.org/doc/html/rfc5727
https://datatracker.ietf.org/doc/html/rfc4929
https://datatracker.ietf.org/doc/html/rfc4521
https://datatracker.ietf.org/doc/html/rfc3735
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/bcp111
https://datatracker.ietf.org/doc/html/rfc4181
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865

IAB Informational [Page 25]

Internet-Draft Design Considerations for Extensions 4 February 2011

 A RADIUS server MAY ignore Attributes with an unknown Type. A
 RADIUS client MAY ignore Attributes with an unknown Type.

 However, in the case where the VSAs pertain to security (e.g.
 Filters) it may not be safe to ignore them, since the RADIUS
 specification [RFC2865] also states:

 A NAS that does not implement a given service MUST NOT implement
 the RADIUS attributes for that service. For example, a NAS that
 is unable to offer ARAP service MUST NOT implement the RADIUS
 attributes for ARAP. A NAS MUST treat a RADIUS access-accept
 authorizing an unavailable service as an access-reject instead."

 Detailed discussion of the issues arising from this can be found in
 "Common Remote Authentication Dial In User Service (RADIUS)
 Implementation Issues and Suggested Fixes" [RFC5080] Section 2.5.

 Since it was not envisaged that multi-vendor VSA implementations
 would need to interoperate, the RADIUS specification [RFC2865] does
 not define the data model for VSAs, and allows multiple sub-
 attributes to be included within a single Attribute of type 26.
 However, this enables VSAs to be defined which would not be
 supportable by current implementations if placed within the standard
 RADIUS attribute space. This has caused problems in standardizing
 widely deployed VSAs, as discussed in "RADIUS Design Guidelines"
 [I-D.ietf-radext-design].

 In addition to extending RADIUS by use of VSAs, SDOs have also
 defined new values of the Service-Type attribute in order to create
 new RADIUS commands. Since the RADIUS specification [RFC2865]
 defined Service-Type values as being allocated First Come, First
 Served (FCFS), this essentially enabled new RADIUS commands to be
 allocated without IETF review. This oversight has since been fixed
 in "IANA Considerations for RADIUS" [RFC3575].

A.3. TLS Extensions

 The Secure Sockets Layer (SSL) v2 protocol was developed by Netscape
 to be used to secure online transactions on the Internet. It was
 later replaced by SSL v3, also developed by Netscape. SSL v3 was
 then further developed by the IETF as the Transport Layer Security
 (TLS) 1.0 [RFC2246].

 The SSL v3 protocol was not explicitly specified to be extended.
 Even TLS 1.0 did not define an extension mechanism explicitly.
 However, extension "loopholes" were available. Extension mechanisms
 were finally defined in "Transport Layer Security (TLS) Extensions"
 [RFC4366]:

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc5080#section-2.5
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3575
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4366

IAB Informational [Page 26]

Internet-Draft Design Considerations for Extensions 4 February 2011

 o New versions
 o New cipher suites
 o Compression
 o Expanded handshake messages
 o New record types
 o New handshake messages

 The protocol also defines how implementations should handle unknown
 extensions.

 Of the above extension methods, new versions and expanded handshake
 messages have caused the most interoperability problems.
 Implementations are supposed to ignore unknown record types but to
 reject unknown handshake messages.

 The new version support in SSL/TLS includes a capability to define
 new versions of the protocol, while allowing newer implementations to
 communicate with older implementations. As part of this
 functionality some Key Exchange methods include functionality to
 prevent version rollback attacks.

 The experience with this upgrade functionality in SSL and TLS is
 decidedly mixed:

 o SSL v2 and SSL v3/TLS are not compatible. It is possible to use
 SSL v2 protocol messages to initiate a SSL v3/TLS connection, but
 it is not possible to communicate with a SSL v2 implementation
 using SSL v3/TLS protocol messages.
 o There are implementations that refuse to accept handshakes using
 newer versions of the protocol than they support.
 o There are other implementations that accept newer versions, but
 have implemented the version rollback protection clumsily.

 The SSL v2 problem has forced SSL v3 and TLS clients to continue to
 use SSL v2 Client Hellos for their initial handshake with almost all
 servers until 2006, much longer than would have been desirable, in
 order to interoperate with old servers.

 The problem with incorrect handling of newer versions has also forced
 many clients to actually disable the newer protocol versions, either
 by default, or by automatically disabling the functionality, to be
 able to connect to such servers. Effectively, this means that the
 version rollback protection in SSL and TLS is non-existent if talking
 to a fatally compromised older version.

 SSL v3 and TLS also permitted expansion of the Client Hello and
 Server Hello handshake messages. This functionality was fully
 defined by the introduction of TLS Extensions, which makes it

IAB Informational [Page 27]

Internet-Draft Design Considerations for Extensions 4 February 2011

 possible to add new functionality to the handshake, such as the name
 of the server the client is connecting to, request certificate status
 information, indicate Certificate Authority support, maximum record
 length, etc. Several of these extensions also introduce new
 handshake messages.

 It has turned out that many SSL v3 and TLS implementations that do
 not support TLS Extensions, did not, as required by the protocol
 specifications, ignore the unknown extensions, but instead failed to
 establish connections. Several of the implementations behaving in
 this manner are used by high profile Internet sites, such as online
 banking sites, and this has caused a significant delay in the
 deployment of clients supporting TLS Extensions, and several of the
 clients that have enabled support are using heuristics that allow
 them to disable the functionality when they detect a problem.

 Looking forward, the protocol version problem, in particular, can
 cause future security problems for the TLS protocol. The strength of
 the digest algorithms (MD5 and SHA-1) used by SSL and TLS is
 weakening. If MD5 and SHA-1 weaken to the point where it is feasible
 to mount successful attacks against older SSL and TLS versions, the
 current error recovery used by clients would become a security
 vulnerability (among many other serious problems for the Internet).

 To address this issue, TLS 1.2 [RFC5246] makes use of a newer
 cryptographic hash algorithm (SHA-256) during the TLS handshake by
 default. Legacy ciphersuites can still be used to protect
 application data, but new ciphersuites are specified for data
 protection as well as for authentication within the TLS handshake.
 The hashing method can also be negotiated via a Hello extension.
 Implementations are encouraged to implement new ciphersuites, and to
 enable the negotiation of the ciphersuite used during a TLS session
 to be governed by policy, thus enabling a more rapid transition away
 from weakened ciphersuites.

 The lesson to be drawn from this experience is that it isn't
 sufficient to design extensibility carefully; it must also be
 implemented carefully by every implementer, without exception. Test
 suites and certification programs can help provide incentives for
 implementers to pay attention to implementing extensibility
 mechanisms correctly.

A.4. L2TP Extensions

 Layer Two Tunneling Protocol (L2TP) [RFC2661] carries Attribute-Value
 Pairs (AVPs), with most AVPs having no semantics to the L2TP protocol
 itself. However, it should be noted that L2TP message types are
 identified by a Message Type AVP (Attribute Type 0) with specific AVP

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2661

IAB Informational [Page 28]

Internet-Draft Design Considerations for Extensions 4 February 2011

 values indicating the actual message type. Thus, extensions relating
 to Message Type AVPs would likely be considered major extensions.

 L2TP also provides for Vendor-Specific AVPs. Because everything in
 L2TP is encoded using AVPs, it would be easy to define vendor-
 specific AVPs that would be considered major extensions.

 L2TP also provides for a "mandatory" bit in AVPs. Recipients of L2TP
 messages containing AVPs they do not understand but that have the
 mandatory bit set, are expected to reject the message and terminate
 the tunnel or session the message refers to. This leads to
 interesting interoperability issues, because a sender can include a
 vendor-specific AVP with the M-bit set, which then causes the
 recipient to not interoperate with the sender. This sort of behavior
 is counter to the IETF ideals, as implementations of the IETF
 standard should interoperate successfully with other implementations
 and not require the implementation of non-IETF extensions in order to
 interoperate successfully. Section 4.2 of the L2TP specification
 [RFC2661] includes specific wording on this point, though there was
 significant debate at the time as to whether such language was by
 itself sufficient.

 Fortunately, it does not appear that the potential problems described
 above have yet become a problem in practice. At the time of this
 writing, the authors are not aware of the existence of any vendor-
 specific AVPs that also set the M-bit.

Change log [RFC Editor: please remove this section]

draft-iab-extension-recs-04: 2011-2-3. Added a section on
 cryptographic agility. Additional reorganization.

draft-iab-extension-recs-03: 2011-1-25. Updates and reorganization
 to reflect comments from the IETF community.

draft-iab-extension-recs-02: 2010-7-12. Updates by Bernard Aboba

draft-iab-extension-recs-01: 2010-4-7. Updates by Stuart
 Cheshire.

draft-iab-extension-recs-00: 2009-4-24. Updated boilerplate,
 author list.

draft-carpenter-extension-recs-04: 2008-10-24. Updated author
 addresses, fixed editorial issues.

draft-carpenter-extension-recs-03: 2008-10-17. Updated references,
 added material relating to versioning.

https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/draft-iab-extension-recs-04
https://datatracker.ietf.org/doc/html/draft-iab-extension-recs-03
https://datatracker.ietf.org/doc/html/draft-iab-extension-recs-02
https://datatracker.ietf.org/doc/html/draft-iab-extension-recs-01
https://datatracker.ietf.org/doc/html/draft-iab-extension-recs-00
https://datatracker.ietf.org/doc/html/draft-carpenter-extension-recs-04
https://datatracker.ietf.org/doc/html/draft-carpenter-extension-recs-03

IAB Informational [Page 29]

Internet-Draft Design Considerations for Extensions 4 February 2011

draft-carpenter-extension-recs-02: 2007-06-15. Reorganized Sections
 2 and 3.

draft-carpenter-extension-recs-01: 2007-03-04. Updated according to
 comments, especially the wording about TLS, added various specific
 examples.

draft-carpenter-extension-recs-00: original version, 2006-10-12.
 Derived from draft-iesg-vendor-extensions-02.txt dated 2004-06-04 by
 focusing on architectural issues; the more procedural issues in that
 draft were moved to RFC 4775.

Authors' Addresses

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland, 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

 Bernard Aboba
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052

 EMail: bernard_aboba@hotmail.com

 Stuart Cheshire
 Apple Computer, Inc.
 1 Infinite Loop
 Cupertino, CA 95014

 EMail: cheshire@apple.com

https://datatracker.ietf.org/doc/html/draft-carpenter-extension-recs-02
https://datatracker.ietf.org/doc/html/draft-carpenter-extension-recs-01
https://datatracker.ietf.org/doc/html/draft-carpenter-extension-recs-00
https://datatracker.ietf.org/doc/html/draft-iesg-vendor-extensions-02.txt
https://datatracker.ietf.org/doc/html/rfc4775

IAB Informational [Page 30]

