
Internet Architecture Board B. Carpenter
Internet-Draft B. Aboba (ed)
Intended Status: Informational S. Cheshire
Expires: December 3, 2012 3 June 2012

Design Considerations for Protocol Extensions
draft-iab-extension-recs-13

Abstract

 This document discusses architectural issues related to the
 extensibility of Internet protocols, with a focus on design
 considerations. It is intended to assist designers of both base
 protocols and extensions. Case studies are included. A companion
 document, RFC 4775/BCP 125, discusses procedures issues relating to
 the extensibility of IETF protocols.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 3, 2012.

IAB Informational [Page 1]

https://datatracker.ietf.org/doc/html/rfc4775
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Design Considerations for Extensions 3 June 2012

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

IAB Informational [Page 2]

Internet-Draft Design Considerations for Extensions 3 June 2012

Table of Contents

1. Introduction . 4
1.1 Requirements Language 5

2. Routine and Major Extensions 5
2.1 When is an Extension Routine? 5
2.2 What Constitutes a Major Extension? 6

3. Architectural Principles 7
3.1 Limited Extensibility 8
3.2 Design for Global Interoperability 8
3.3 Architectural Compatibility 12
3.4 Protocol Variations 14
3.5 Testability . 16
3.6 Parameter Parameter Registration 16
3.7 Extensions to Critical Protocols 17

4. Considerations for the Base Protocol 18
4.1 Version Numbers . 19
4.2 Reserved Fields . 22
4.3 Encoding Formats . 23
4.4 Parameter Space Design 23
4.5 Cryptographic Agility 26
4.6 Transport . 26
4.7 Handling of Unknown Extensions 28

5. Security Considerations 29
6. IANA Considerations . 29
7. References . 29
7.1 Normative References 29
7.2 Informative References 29

Acknowledgments . 34
IAB Members . . . 34
Appendix A - Examples . 35
A.1 Already documented cases 35
A.2 RADIUS Extensions . 35
A.3 TLS Extensions . 37
A.4 L2TP Extensions . 40

Change log . 40
Authors' Addresses . 41

IAB Informational [Page 3]

Internet-Draft Design Considerations for Extensions 3 June 2012

1. Introduction

 When developing protocols, IETF Working Groups (WGs) often include
 mechanisms whereby these protocols can be extended in the future. It
 is often a good principle to design extensibility into protocols; as
 described in "What Makes for a Successful Protocol" [RFC5218], a
 "wildly successful" protocol is one that becomes widely used in ways
 not originally anticipated. Well-designed extensibility mechanisms
 facilitate the evolution of protocols and help make it easier to roll
 out incremental changes in an interoperable fashion. However, at the
 same time experience has shown that extensions carry the risk of
 unintended consequences, such as interoperability problems or
 security vulnerabilities.

 The proliferation of extensions, even well designed ones, can be
 costly. As noted in "Simple Mail Transfer Protocol" [RFC5321]
 Section 2.2.1:

 Experience with many protocols has shown that protocols with few
 options tend towards ubiquity, whereas protocols with many options
 tend towards obscurity.

 Each and every extension, regardless of its benefits, must be
 carefully scrutinized with respect to its implementation,
 deployment, and interoperability costs.

 This is hardly a recent concern. "TCP Extensions Considered Harmful"
 [RFC1263] was published in 1991. "Extend" or "extension" occurs in
 the title of more than 400 existing Request For Comment (RFC)
 documents. Yet generic extension considerations have not been
 documented previously.

 The purpose of this document is to describe the architectural
 principles of sound extensibility design, in order to minimize such
 risks. Formal procedures for extending IETF protocols are discussed
 in "Procedures for Protocol Extensions and Variations" BCP 125
 [RFC4775].

 The rest of this document is organized as follows: Section 2
 discusses routine and major extensions. Section 3 describes
 architectural principles for protocol extensibility. Section 4
 explains how designers of base protocols can take steps to anticipate
 and facilitate the creation of such subsequent extensions in a safe
 and reliable manner.

 Readers are advised to study the whole document, since the
 considerations are closely linked.

https://datatracker.ietf.org/doc/html/rfc5218
https://datatracker.ietf.org/doc/html/rfc5321#section-2.2.1
https://datatracker.ietf.org/doc/html/rfc5321#section-2.2.1
https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/bcp125
https://datatracker.ietf.org/doc/html/rfc4775

IAB Informational [Page 4]

Internet-Draft Design Considerations for Extensions 3 June 2012

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

2. Routine and Major Extensions

 The risk of unintended consequences from an extension is especially
 high if the extension is performed by a different team than the
 original designers, who may stray outside implicit design constraints
 or assumptions. As a result, it is highly desirable for the original
 designers to articulate the design constraints and assumptions, so as
 to enable extensions to be done carefully and with a full
 understanding of the base protocol, existing implementations, and
 current operational practice.

 To assist extension designers and reviewers, protocol documents
 should provide guidelines explaining how extensions should be
 performed, and guidance on the appropriate use of protocol extension
 mechanisms should be developed.

 Protocol components that are designed with the specific intention of
 allowing extensibility should be clearly identified, with specific
 and complete instructions on how to extend them. This includes the
 process for adequate review of extension proposals: do they need
 community review and if so how much and by whom?

 The level of review required for protocol extensions will typically
 vary based on the nature of the extension. Routine extensions may
 require minimal review, while major extensions may require wide
 review. Guidance on which extensions may be considered 'routine' and
 which ones are 'major' are provided in the sections that follow.

2.1. When is an Extension Routine?

 An extension may be considered 'routine' if its handling is opaque to
 the protocol itself (e.g. does not substantially change the pattern
 of messages and responses). For this to apply, no changes to the
 base protocol can be required, nor can changes be required to
 existing and currently deployed implementations, unless they make use
 of the extension. Furthermore, existing implementations should not
 be impacted. This typically requires that implementations be able to
 ignore 'routine' extensions without ill-effects.

 Examples of routine extensions include the Dynamic Host Configuration
 Protocol (DHCP) vendor-specific option [RFC2132], Remote

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2132

IAB Informational [Page 5]

Internet-Draft Design Considerations for Extensions 3 June 2012

 Authentication Dial In User Service (RADIUS) Vendor-Specific
 Attributes [RFC2865], the enterprise Object IDentifier (OID) tree for
 Management Information Base (MIB) modules and vendor Multipurpose
 Internet Mail Extension (MIME) types. Such extensions can safely be
 made with minimal discussion.

 Processes that allow routine extensions with minimal or no review
 (such as the "First Come First Served" (FCFS) allocation policy
 described in "Guidelines for Writing an IANA Considerations Section
 in RFCs" [RFC5226]) should be used sparingly. In particular, they
 should be limited to cases that are unlikely to result in
 interoperability problems, or security or operational exposures.

 Experience has shown that even routine extensions may benefit from
 review by experts. For example, even though DHCP carries opaque
 data, defining a new option using completely unstructured data may
 lead to an option that is unnecessarily hard for clients and servers
 to process.

2.2. What Constitutes a Major Extension?

 Major extensions may have characteristics leading to a risk of
 interoperability failure. Where these characteristics are present,
 it is necessary to pay close attention to backward compatibility with
 implementations and deployments of the unextended protocol, and to
 the risk of inadvertent introduction of security or operational
 exposures.

 Extension designers should examine their design for the following
 issues:

 1. Modifications or extensions to the underlying protocol. An
 extension document should be considered to update the underlying
 protocol specification if an implementation of the underlying
 protocol would need to be updated to accommodate the extension.
 This should not be necessary if the underlying protocol was
 designed with a modular interface. Examples of extensions
 modifying the underlying protocol include specification of
 additional transports (see Section 4.6), changing protocol
 semantics or defining new message types that may require
 implementation changes in existing and deployed implementations of
 the protocol, even if they do not want to make use of the new
 functions. A base protocol that does not uniformly permit "silent
 discard" of unknown extensions may automatically enter this
 category, even for apparently minor extensions. Handling of
 "unknown" extensions is discussed in more detail in Section 4.7.

 2. Changes to the basic architectural assumptions. This may

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc5226

IAB Informational [Page 6]

Internet-Draft Design Considerations for Extensions 3 June 2012

 include architectural assumptions that are explicitly stated or
 those that have been assumed by implementers. For example, this
 would include adding a requirement for session state to a
 previously stateless protocol.

 3. New usage scenarios not originally intended or investigated.
 This can potentially lead to operational difficulties when
 deployed, even in cases where the "on-the-wire" format has not
 changed. For example, the level of traffic carried by the
 protocol may increase substantially, packet sizes may increase,
 and implementation algorithms that are widely deployed may not
 scale sufficiently or otherwise be up to the new task at hand.
 For example, a new DNS Resource Record (RR) type that is too big
 to fit into a single UDP packet could cause interoperability
 problems with existing DNS clients and servers.

 4. Changes to the extension model. Adverse impacts are very
 likely if the base protocol contains an extension mechanism and
 the proposed extension does not fit into the model used to create
 and define that mechanism. Extensions that have the same
 properties as those that were anticipated when an extension
 mechanism was devised are much less likely to be disruptive than
 extensions that don't fit the model.

 5. Changes to protocol syntax. Changes to protocol syntax bring
 with them the potential for backward compatibility issues. If at
 all possible, extensions should be designed for compatibility with
 existing syntax, so as to avoid interoperability failures.

 6. Interrelated extensions to multiple protocols. A set of
 interrelated extensions to multiple protocols typically carries a
 greater danger of interoperability issues or incompatibilities
 than a simple extension. Consequently, it is important that such
 proposals receive earlier and more in-depth review than unitary
 extensions.

3. Architectural Principles

 This section describes basic principles of protocol extensibility:

 1. Extensibility features should be limited to what is reasonably
 anticipated when the protocol is developed.

 2. Protocol extensions should be designed for global
 interoperability.

 3. Protocol extensions should be architecturally compatible with
 the base protocol.

IAB Informational [Page 7]

Internet-Draft Design Considerations for Extensions 3 June 2012

 4. Protocol extension mechanisms should not be used to create
 incompatible protocol variations.

 5. Extension mechanisms need to be testable.

 6. Protocol parameter assignments need to be coordinated to avoid
 potential conflicts.

 7. Extensions to critical protocols require special care.

3.1. Limited Extensibility

 Protocols should not be made more extensible than clearly necessary
 at inception, in order to enable optimization along dimensions (e.g.,
 bandwidth, state, memory requirements, deployment time, latency,
 etc.) important to the most common use cases.

 The process for defining new extensibility mechanisms should ensure
 that adequate review of proposed extensions will take place before
 widespread adoption.

 As noted in "What Makes for a Successful Protocol" [RFC5218], "wildly
 successful" protocols far exceed their original goals, in terms of
 scale, purpose (being used in scenarios far beyond the initial
 design), or both. This implies that all potential uses may not be
 known at inception. As a result, extensibility mechanisms may need
 to be revisited as additional use cases reveal themselves. However,
 this does not imply that an initial design needs to take all
 potential needs into account at inception.

3.2. Design for Global Interoperability

 As noted in [RFC4775] Section 3.1:

 According to its Mission Statement [RFC3935], the IETF produces
 high quality, relevant technical and engineering documents,
 including protocol standards. The mission statement goes on to
 say that the benefit of these standards to the Internet "is in
 interoperability - that multiple products implementing a standard
 are able to work together in order to deliver valuable functions
 to the Internet's users".

 One consequence of this mission is that the IETF designs protocols
 for the single Internet. The IETF expects its protocols to work
 the same everywhere. Protocol extensions designed for limited
 environments may be reasonable provided that products with these
 extensions interoperate with products without the extensions.
 Extensions that break interoperability are unacceptable when

https://datatracker.ietf.org/doc/html/rfc5218
https://datatracker.ietf.org/doc/html/rfc4775#section-3.1
https://datatracker.ietf.org/doc/html/rfc3935

IAB Informational [Page 8]

Internet-Draft Design Considerations for Extensions 3 June 2012

 products with and without the extension are mixed. It is the
 IETF's experience that this tends to happen on the Internet even
 when the original designers of the extension did not expect this
 to happen.

 Another consequence of this definition of interoperability is that
 the IETF values the ability to exchange one product implementing a
 protocol with another. The IETF often specifies mandatory-to-
 implement functionality as part of its protocols so that there is
 a core set of functionality sufficient for interoperability that
 all products implement. The IETF tries to avoid situations where
 protocols need to be profiled to specify which optional features
 are required for a given environment, because doing so harms
 interoperability on the Internet as a whole.

 Since the global Internet is more than a collection of incompatible
 protocols (or "profiles") for use in separate private networks,
 implementers supporting extensions in shipping products or multi-site
 experimental usage must assume that systems will need to interoperate
 on the global Internet.

 A key requirement for interoperable extension design is that the base
 protocol must be well designed for interoperability, and that
 extensions must have unambiguous semantics. Ideally, the protocol
 mechanisms for extension and versioning should be sufficiently well
 described that compatibility can be assessed on paper. Otherwise,
 when two "private" or "experimental" extensions encounter each other
 on a public network, unexpected interoperability problems may occur.
 However, as noted in the TLS case study (see Appendix A.3), it is not
 sufficient to design extensibility carefully; it also must be
 implemented carefully.

3.2.1. Private Extensions

 Experience shows that separate private networks often end up using
 equipment from the same vendors, or end up having portable equipment
 like laptop computers move between them, and networks that were
 originally envisaged as being separate can end up being connected
 later.

 Consider a "private" extension installed on a work computer which,
 being portable, is sometimes connected to a home network or a hotel
 network. If the "private" extension is incompatible with an
 unextended version of the same protocol, problems will occur.

 Similarly, problems can occur if "private" extensions conflict with
 each other. For example, imagine the situation where one site chose
 to use DHCP [RFC2132] option code 62 for one meaning, and a different

https://datatracker.ietf.org/doc/html/rfc2132

IAB Informational [Page 9]

Internet-Draft Design Considerations for Extensions 3 June 2012

 site chose to use DHCP option code 62 for a completely different,
 incompatible, meaning. It may be impossible for a vendor of portable
 computing devices to make a device that works correctly in both
 environments.

 One approach to solving this problem has been to reserve parts of an
 identifier namespace for "limited applicability" or "site-specific"
 use, such as "X-" headers in email messages [RFC822] or "P-" headers
 in SIP [RFC3427]. However, as noted in "Deprecating the X- Prefix
 and Similar Constructs in Application Protocols" Appendix B [XDASH]:

 The primary problem with the "X-" convention is that
 unstandardized parameters have a tendency to leak into the
 protected space of standardized parameters, thus introducing the
 need for migration from the "X-" name to a standardized name.
 Migration, in turn, introduces interoperability issues (and
 sometimes security issues) because older implementations will
 support only the "X-" name and newer implementations might support
 only the standardized name. To preserve interoperability, newer
 implementations simply support the "X-" name forever, which means
 that the unstandardized name has become a de facto standard (thus
 obviating the need for segregation of the name space into
 standardized and unstandardized areas in the first place).

 As a result, the notion of "X-" headers was removed from the Internet
 Message Format standard when it was updated in 2001 [RFC2822] and
 within SIP, [RFC5727] Section 4 deprecated the guidance provided in
 [RFC3427] on the creation of "P-" headers. More generally, as noted
 in [XDASH] Section 1:

 This document generalizes from the experience of the email and SIP
 communities by doing the following:

 1. Deprecates the "X-" convention for newly-defined parameters in
 application protocols, even where that convention was only
 implicit instead of being codified in a protocol specification (as
 was done for email in [RFC822]).

3.2.2. Local Use

 Values designated as "experimental" or "local use" are only
 appropriate for use in a limited set of circumstances such as for use
 in early implementations of an extension restricted to a single site.

 For example, "Experimental Values in IPv4, IPv6, ICMPv4, ICMPv6, UDP
 and TCP Headers" [RFC4727] discusses experimental values for IP and
 transport headers, and "Definition of the Differentiated Services
 Field (DS Field) in the IPv4 and IPv6 Headers" [RFC2474] defines

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc3427
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc5727#section-4
https://datatracker.ietf.org/doc/html/rfc3427
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc4727
https://datatracker.ietf.org/doc/html/rfc2474

IAB Informational [Page 10]

Internet-Draft Design Considerations for Extensions 3 June 2012

 experimental/local use ranges for differentiated services code
 points.

 Such values should be used with care and only for their stated
 purpose: experiments and local use. They are unsuitable for
 Internet-wide use, since they may be used for conflicting purposes
 and thereby cause interoperability failures. Packets containing
 experimental or local use values must not be allowed out of the
 domain in which they are meaningful.

 "Assigning Experimental and Testing Numbers Considered Useful" BCP 82
[RFC3692] Section 1 provides guidance on the use of experimental code

 points:

 Numbers in the experimentation range ... are not intended to be
 used in general deployments or be enabled by default in products
 or other general releases. In those cases where a product or
 release makes use of an experimental number, the end user must be
 required to explicitly enable the experimental feature and
 likewise have the ability to chose and assign which number from
 the experimental range will be used for a specific purpose (i.e.,
 so the end user can ensure that use of a particular number doesn't
 conflict with other on-going uses). Shipping a product with a
 specific value pre-enabled would be inappropriate and can lead to
 interoperability problems when the chosen value collides with a
 different usage, as it someday surely will.

 From the above, it follows that it would be inappropriate for a
 group of vendors, a consortia, or another Standards Development
 Organization to agree among themselves to use a particular value
 for a specific purpose and then agree to deploy devices using
 those values. By definition, experimental numbers are not
 guaranteed to be unique in any environment other than one where
 the local system administrator has chosen to use a particular
 number for a particular purpose and can ensure that a particular
 value is not already in use for some other purpose.

 Once an extension has been tested and shown to be useful, a
 permanent number could be obtained through the normal assignment
 procedures.

 However, as noted in [XDASH] Appendix B, assigning a parameter block
 for experimental use is only necessary when the parameter pool is
 limited:

 "Assigning Experimental and Testing Numbers Considered Useful" ...
 implies that the "X-" prefix is also useful for experimental
 parameters. However, BCP 82 addresses the need for protocol

https://datatracker.ietf.org/doc/html/bcp82
https://datatracker.ietf.org/doc/html/rfc3692#section-1
https://datatracker.ietf.org/doc/html/bcp82

IAB Informational [Page 11]

Internet-Draft Design Considerations for Extensions 3 June 2012

 numbers when the pool of such numbers is strictly limited (e.g.,
 DHCP options) or when a number is absolutely required even for
 purely experimental purposes (e.g., the Protocol field of the IP
 header). In almost all application protocols that make use of
 protocol parameters (including email headers, media types, HTTP
 headers, vCard parameters and properties, URNs, and LDAP field
 names), the name space is not limited or constrained in any way,
 so there is no need to assign a block of names for private use or
 experimental purposes ...

 Therefore it appears that segregating the parameter space into a
 standardized area and a unstandardized area has few if any
 benefits, and has at least one significant cost in terms of
 interoperability.

3.2.3. Multi-site Experiments

 Where an experiment is undertaken among a diverse set of experimental
 sites connected via the global Internet, the use of "experimental" or
 "local use" code points is inadvisable. This might include, for
 example, sites that take a prototype implementation of some protocol
 and use that both within their site but, importantly, among the full
 set of other sites interested in that protocol. In such a situation
 it is impractical and probably impossible to coordinate the de-
 confliction of "experimental" code points. As noted in [RFC5226]
 Section 4.1:

 For private or local use ... No attempt is made to prevent
 multiple sites from using the same value in different (and
 incompatible) ways ... assignments are not generally useful for
 broad interoperability. It is the responsibility of the sites
 making use of the Private Use range to ensure that no conflicts
 occur (within the intended scope of use).

 HIP and LISP are examples where a set of experimental sites are
 collaborating among themselves, but not necessarily in a tightly
 coordinated way. Both HIP and LISP have dealt with this by having
 unique non-experimental code points allocated to HIP and LISP,
 respectively, at time of publication of their respective Experimental
 RFCs.

3.3. Architectural Compatibility

 Since protocol extension mechanisms may impact interoperability, it
 is important that they be architecturally compatible with the base
 protocol.

 This includes understanding what current implementations do and how a

https://datatracker.ietf.org/doc/html/rfc5226#section-4.1
https://datatracker.ietf.org/doc/html/rfc5226#section-4.1

IAB Informational [Page 12]

Internet-Draft Design Considerations for Extensions 3 June 2012

 proposed extension will interact with deployed systems. Is it clear
 when a proposed extension (or its proposed usage) will operationally
 stress existing implementations or the underlying protocol itself if
 widely deployed? If this is not explained in the base protocol
 specification, is this covered in an extension design guidelines
 document?

 As part of the definition of new extension mechanisms, it is
 important to address whether the mechanisms make use of features as
 envisaged by the original protocol designers, or whether a new
 extension mechanism is being invented. If a new extension mechanism
 is being invented, then architectural compatibility issues need to be
 addressed.

 To assist in the assessment of architectural compatibility, protocol
 documents should provide guidelines explaining how extensions should
 be performed, and guidance on the appropriate use of protocol
 extension mechanisms should be developed.

 Protocol components that are designed with the specific intention of
 allowing extensibility should be clearly identified, with specific
 and complete instructions on how to extend them. This includes the
 process for adequate review of extension proposals: do they need
 community review and if so how much and by whom?

 Documents relying on extension mechanisms need to explicitly identify
 the mechanisms being relied upon. For example, a document defining
 new data elements should not implicitly define new data types or
 protocol operations without explicitly describing those dependencies
 and discussing their impact. Where extension guidelines are
 available, mechanisms need to indicate whether they are compliant
 with those guidelines and if not, why not.

 Examples of extension guidelines documents include:

 1. "Guidelines for Extending the Extensible Provisioning Protocol
 (EPP)" [RFC3735], which provides guidelines for use of EPP's
 extension mechanisms to define new features and object management
 capabilities.

 2. "Guidelines for Authors and Reviewers of MIB Documents" BCP 111
 [RFC4181], which provides guidance to protocol designers creating
 new MIB modules.

 3. "Guidelines for Authors of Extensions to the Session Initiation
 Protocol (SIP)" [RFC4485], which outlines guidelines for authors
 of SIP extensions.

https://datatracker.ietf.org/doc/html/rfc3735
https://datatracker.ietf.org/doc/html/bcp111
https://datatracker.ietf.org/doc/html/rfc4181
https://datatracker.ietf.org/doc/html/rfc4485

IAB Informational [Page 13]

Internet-Draft Design Considerations for Extensions 3 June 2012

 4. "Considerations for Lightweight Directory Access Protocol
 (LDAP) Extensions" BCP 118 [RFC4521], which discusses
 considerations for designers of LDAP extensions.

 5. "RADIUS Design Guidelines" BCP 158 [RFC6158], which provides
 guidelines for the design of attributes used by the Remote
 Authentication Dial In User Service (RADIUS) protocol.

3.4. Protocol Variations

 Protocol variations - specifications that look very similar to the
 original but don't interoperate with each other or with the original
 - are even more harmful to interoperability than extensions. In
 general, such variations should be avoided. Causes of protocol
 variations include incompatible protocol extensions, uncoordinated
 protocol development, and poorly designed "profiles".

 Designing a protocol for extensibility may have the perverse side
 effect of making it easy to construct incompatible extensions.
 Protocol extension mechanisms should not be used to create
 incompatible forks in development. An extension may lead to
 interoperability failures unless the extended protocol correctly
 supports all mandatory and optional features of the unextended base
 protocol, and implementations of the base protocol operate correctly
 in the presence of the extensions. In addition, it is necessary for
 an extension to interoperate with other extensions.

 As noted in "Uncoordinated Protocol Development Considered Harmful"
[RFC5704] Section 1, incompatible forks in development can result

 from the uncoordinated adaptation of a protocol, parameter or code-
 point:

 In particular, the IAB considers it an essential principle of the
 protocol development process that only one SDO maintains design
 authority for a given protocol, with that SDO having ultimate
 authority over the allocation of protocol parameter code-points
 and over defining the intended semantics, interpretation, and
 actions associated with those code-points.

 Note that problems can occur even when one SDO maintains design
 authority, if protocol parameter code-points are reused. As an
 example, both RFC 5421 [RFC5421] and RFC 5422 [RFC5422] reused
 previously assigned EAP type codes. As described in the IESG note in
 [RFC5421]:

 The reuse of previously assigned EAP Type Codes is incompatible
 with EAP method negotiation as defined in RFC 3748.

https://datatracker.ietf.org/doc/html/bcp118
https://datatracker.ietf.org/doc/html/rfc4521
https://datatracker.ietf.org/doc/html/bcp158
https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/rfc5704#section-1
https://datatracker.ietf.org/doc/html/rfc5421
https://datatracker.ietf.org/doc/html/rfc5421
https://datatracker.ietf.org/doc/html/rfc5422
https://datatracker.ietf.org/doc/html/rfc5422
https://datatracker.ietf.org/doc/html/rfc5421
https://datatracker.ietf.org/doc/html/rfc3748

IAB Informational [Page 14]

Internet-Draft Design Considerations for Extensions 3 June 2012

3.4.1. Profiles

 Profiling is a common technique for improving interoperability within
 a target environment or set of scenarios. Generally speaking, there
 are two approaches to profiling:

 a) Removal or downgrading of normative requirements (thereby creating
 potential interoperability problems);

 b) Elevation of normative requirement levels (such as from a
 MAY/SHOULD to a MUST). This can be done in order to improve
 interoperability by narrowing potential implementation choices (such
 as when the underlying protocol is ill-defined enough to permit non-
 interoperable yet compliant implementations), or to meet specific
 operational requirements (such as enabling use of stronger
 cryptographic mechanisms than those mandated in the specification).

 While approach a) is potentially harmful, approach b) may be
 beneficial.

 In order to avoid creating interoperability problems when profiled
 implementations interact with others over the Global Internet,
 profilers need to remain cognizant of the implications of removing
 normative requirements. As noted in "Key words for use in RFCs to
 Indicate Requirement Levels" [RFC2119] Section 6, imperatives are to
 be used with care, and as a result, their removal within a profile is
 likely to result in serious consequences:

 Imperatives of the type defined in this memo must be used with
 care and sparingly. In particular, they MUST only be used where
 it is actually required for interoperation or to limit behavior
 which has potential for causing harm (e.g., limiting
 retransmissions) For example, they must not be used to try to
 impose a particular method on implementors where the method is not
 required for interoperability.

 As noted in [RFC2119] Sections 3 and 4, recommendations cannot be
 removed from profiles without serious consideration:

 there may exist valid reasons in particular circumstances to
 ignore a particular item, but the full implications must be
 understood and carefully weighed before choosing a different
 course.

 Even the removal of optional features and requirements can have
 consequences. As noted in [RFC2119] Section 5, implementations which
 do not support optional features still retain the obligation to
 ensure interoperation with implementations that do:

https://datatracker.ietf.org/doc/html/rfc2119#section-6
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119#section-5

IAB Informational [Page 15]

Internet-Draft Design Considerations for Extensions 3 June 2012

 An implementation which does not include a particular option MUST
 be prepared to interoperate with another implementation which does
 include the option, though perhaps with reduced functionality. In
 the same vein an implementation which does include a particular
 option MUST be prepared to interoperate with another
 implementation which does not include the option (except, of
 course, for the feature the option provides.)

3.5. Testability

 Experience has shown that it is insufficient merely to correctly
 specify extensibility and backwards compatibility in an RFC. It is
 also important that implementations respect the compatibility
 mechanisms; if not, non-interoperable pairs of implementations may
 arise. The TLS case study (Appendix A.3) shows how important this
 can be.

 In order to determine whether protocol extension mechanisms have been
 properly implemented, testing is required. However, for this to be
 possible, test cases need to be developed. If a base protocol
 document specifies extension mechanisms but does not utilize them or
 provide examples, it may not be possible to develop effective test
 cases based on the base protocol specification alone. As a result,
 base protocol implementations may not be properly tested and non-
 compliant extension behavior may not be detected until these
 implementations are widely deployed.

 To encourage correct implementation of extension mechanisms, base
 protocol specifications should clearly articulate the expected
 behavior of extension mechanisms and should include examples of
 correct extension behavior.

3.6. Protocol Parameter Registration

 As noted in [RFC4775] Section 3.2:

 An extension is often likely to make use of additional values
 added to an existing IANA registry ... It is essential that such
 new values are properly registered by the applicable procedures,
 including expert review where applicable ... Extensions may even
 need to create new IANA registries in some cases.

 Experience shows that the importance of this is often
 underestimated during extension design; designers sometimes assume
 that a new codepoint is theirs for the asking, or even simply for
 the taking.

 Before creating a new protocol parameter registry, existing

https://datatracker.ietf.org/doc/html/rfc4775#section-3.2

IAB Informational [Page 16]

Internet-Draft Design Considerations for Extensions 3 June 2012

 registries should be examined to determine one of them can be used
 instead (see http://www.iana.org/protocols/).

 To avoid conflicting usage of the same registry value, as well as to
 prevent potential difficulties in determining and transferring
 parameter ownership, it is essential that all new values are
 registered. If this is not done, there is nothing to prevent two
 different extensions picking the same value. When these two
 extensions "meet" each other on the Internet, failure is inevitable.

 A surprisingly common case of this is misappropriation of assigned
 Transmission Control Protocol (TCP) (or User Datagram Protocol (UDP))
 registered port numbers. This can lead to a client for one service
 attempting to communicate with a server for another service. Another
 common case is the use of unregistered URI schemes. Numerous cases
 could be cited, but not without embarrassing specific implementers.
 For general rules see [RFC5226], and for specific rules and
 registries see the individual protocol specification RFCs and the
 IANA web site.

 While in theory a "standards track" or "IETF consensus" parameter
 allocation policy may be instituted to encourage protocol parameter
 registration or to improve interoperability, in practice problems can
 arise if the procedures result in so much delay that requesters give
 up and "self-allocate" by picking presumably-unused code points.
 Where self-allocation is prevalent, the information contained within
 registries may become inaccurate, particularly when third parties are
 prohibited from updating entries so as to improve accuracy. In these
 situations, it is important to consider whether registration
 processes need to be changed to support the role of a registry as
 "documentation of how the Internet is operating".

3.7. Extensions to Critical Protocols

 Some protocols (such as Domain Name Service (DNS), Border Gateway
 Protocol (BGP)) or algorithms (such as congestion control) have
 become critical components of the Internet infrastructure. A
 critical component is one whose failure can lead to Internet-wide
 reliability and security issues or performance degradation. When
 such protocols or algorithms are extended, the potential exists for
 negatively impacting the reliability and security of the global
 Internet.

 As a result, special care needs to be taken with these extensions,
 such as taking explicit steps to isolate existing uses from new ones.
 For example, this can be accomplished by requiring the extension to
 utilize a different port or multicast address, or by implementing the
 extension within a separate process, without access to the data and

http://www.iana.org/protocols/
https://datatracker.ietf.org/doc/html/rfc5226

IAB Informational [Page 17]

Internet-Draft Design Considerations for Extensions 3 June 2012

 control structures of the base protocol.

 Experience has shown that even when a mechanism has proven benign in
 other uses, unforeseen issues may result when adding it to a critical
 protocol. For example, both ISIS and OSPF support opaque Link State
 Attributes (LSAs) which are propagated by intermediate nodes that
 don't understand the LSA. Within Interior Gateway Protocols (IGPs),
 support for opaque LSAs has proven useful without introducing
 instability.

 However, within BGP, 'attribute tunneling' has resulted in large
 scale routing instabilities, since remote nodes may reset the LOCAL
 session if the tunneled attributes are malformed or aren't
 understood. This has required modification to BGP error handling, as
 noted in "Error Handling for Optional Transitive Attribute BGP
 Attributes" [Transitive].

 In general, when extending protocols with local failure conditions,
 tunneling of attributes that may trigger failures in non-adjacent
 nodes should be avoided. This is particularly problematic when the
 originating node receives no indicators of remote failures it may
 have triggered.

4. Considerations for the Base Protocol

 Good extension design depends on a well-designed base protocol. To
 promote interoperability, designers should:

 1. Ensure a well-written base protocol specification. Does the
 base protocol specification make clear what an implementer needs
 to support and does it define the impact that individual
 operations (e.g., a message sent to a peer) will have when
 invoked?

 2. Design for backward compatibility. Does the base protocol
 specification describe how to determine the capabilities of a
 peer, and negotiate the use of extensions? Does it indicate how
 implementations handle extensions that they do not understand? Is
 it possible for an extended implementation to negotiate with an
 unextended peer to find a common subset of useful functions?

 3. Respect underlying architectural or security assumptions. Is
 there a document describing the underlying architectural
 assumptions, as well as considerations that have arisen in
 operational experience? Or are there undocumented considerations
 that have arisen as the result of operational experience, after
 the original protocol was published?

IAB Informational [Page 18]

Internet-Draft Design Considerations for Extensions 3 June 2012

 For example, will backward compatibility issues arise if
 extensions reverse the flow of data, allow formerly static
 parameters to be changed on the fly, or change assumptions
 relating to the frequency of reads/writes?

 4. Minimize impact on critical infrastructure. For a protocol
 that represents a critical element of Internet infrastructure, it
 is important to explain when it is appropriate to isolate new uses
 of the protocol from existing ones.

 For example, is it explained when a proposed extension (or usage)
 has the potential for negatively impacting critical infrastructure
 to the point where explicit steps would be appropriate to isolate
 existing uses from new ones?

 5. Provide guidance on data model extensions. Is there a document
 that explains when a protocol extension is routine and when it
 represents a major change?

 For example, is it clear when a data model extension represents a
 major versus a routine change? Are there guidelines describing
 when an extension (such as a new data type) is likely to require a
 code change within existing implementations?

4.1. Version Numbers

 Any mechanism for extension by versioning must include provisions to
 ensure interoperability, or at least clean failure modes. Imagine
 someone creating a protocol and using a "version" field and
 populating it with a value (1, let's say), but giving no information
 about what would happen when a new version number appears in it.
 This would be a bad protocol design and description; it should be
 clear what the expectation is and how it can be tested. For example,
 stating that 1.X must be compatible with any version 1 code, but
 version 2 or greater is not expected to be compatible, has different
 implications than stating that version 1 must be a proper subset of
 version 2.

 An example of an under-specified versioning mechanism is provided by
 the MIME-Version header, originally defined in "MIME (Multipurpose
 Internet Mail Extensions)" [RFC1341]. As noted in [RFC1341] Section

1:

 A MIME-Version header field ... uses a version number to declare a
 message to be conformant with this specification and allows mail
 processing agents to distinguish between such messages and those
 generated by older or non-conformant software, which is presumed
 to lack such a field.

https://datatracker.ietf.org/doc/html/rfc1341
https://datatracker.ietf.org/doc/html/rfc1341

IAB Informational [Page 19]

Internet-Draft Design Considerations for Extensions 3 June 2012

 Beyond this, [RFC1341] provided little guidance on versioning
 behavior, or even the format of the MIME-Version header, which was
 specified to contain "text". [RFC1521] which obsoleted [RFC1341],
 better defined the format of the version field, but still did not
 clarify the versioning behavior:

 Thus, future format specifiers, which might replace or extend
 "1.0", are constrained to be two integer fields, separated by a
 period. If a message is received with a MIME-version value other
 than "1.0", it cannot be assumed to conform with this
 specification ...

 It is not possible to fully specify how a mail reader that
 conforms with MIME as defined in this document should treat a
 message that might arrive in the future with some value of MIME-
 Version other than "1.0". However, conformant software is
 encouraged to check the version number and at least warn the user
 if an unrecognized MIME- version is encountered.

 Thus, even though [RFC1521] defined a MIME-Version header with a
 syntax suggestive of a "Major/Minor" versioning scheme, in practice
 the MIME-Version header was little more than a decoration.

 A better example is ROHC (Robust Header Compression). ROHCv1
 [RFC3095] supports a certain set of profiles for compression
 algorithms. But experience had shown that these profiles had
 limitations, so the ROHC WG developed ROHCv2 [RFC5225]. A ROHCv1
 implementation does not contain code for the ROHCv2 profiles. As the
 ROHC WG charter said during the development of ROHCv2:

 It should be noted that the v2 profiles will thus not be
 compatible with the original (ROHCv1) profiles, which means less
 complex ROHC implementations can be realized by not providing
 support for ROHCv1 (over links not yet supporting ROHC, or by
 shifting out support for ROHCv1 in the long run). Profile support
 is agreed through the ROHC channel negotiation, which is part of
 the ROHC framework and thus not changed by ROHCv2.

 Thus in this case both backwards-compatible and backwards-
 incompatible deployments are possible. The important point is a
 clearly thought out approach to the question of operational
 compatibility. In the past, protocols have utilized a variety of
 strategies for versioning, many of which have proven problematic.
 These include:

 1. No versioning support. This approach is exemplified by
 Extensible Authentication Protocol (EAP) [RFC3748] as well as
 Remote Authentication Dial In User Service (RADIUS) [RFC2865],

https://datatracker.ietf.org/doc/html/rfc1341
https://datatracker.ietf.org/doc/html/rfc1521
https://datatracker.ietf.org/doc/html/rfc1341
https://datatracker.ietf.org/doc/html/rfc1521
https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc5225
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc2865

IAB Informational [Page 20]

Internet-Draft Design Considerations for Extensions 3 June 2012

 both of which provide no support for versioning. While lack of
 versioning support protects against the proliferation of
 incompatible dialects, the need for extensibility is likely to
 assert itself in other ways, so that ignoring versioning entirely
 may not be the most forward thinking approach.

 2. Highest mutually supported version (HMSV). In this approach,
 implementations exchange the version numbers of the highest
 version each supports, with the negotiation agreeing on the
 highest mutually supported protocol version. This approach
 implicitly assumes that later versions provide improved
 functionality, and that advertisement of a particular version
 number implies support for all lower version numbers. Where these
 assumptions are invalid, this approach breaks down, potentially
 resulting in interoperability problems. An example of this issue
 occurs in Protected Extensible Authentication Protocol [PEAP]
 where implementations of higher versions may not necessarily
 provide support for lower versions.

 3. Assumed backward compatibility. In this approach,
 implementations may send packets with higher version numbers to
 legacy implementations supporting lower versions, but with the
 assumption that the legacy implementations will interpret packets
 with higher version numbers using the semantics and syntax defined
 for lower versions. This is the approach taken by Port-Based
 Access Control [IEEE-802.1X]. For this approach to work, legacy
 implementations need to be able to accept packets of known types
 with higher protocol versions without discarding them; protocol
 enhancements need to permit silent discard of unsupported
 extensions; implementations supporting higher versions need to
 refrain from mandating new features when encountering legacy
 implementations.

 4. Major/minor versioning. In this approach, implementations with
 the same major version but a different minor version are assumed
 to be backward compatible, but implementations are required to
 negotiate a mutually supported major version number. This
 approach assumes that implementations with a lower minor version
 number but the same major version can safely ignore unsupported
 protocol messages.

 5. Min/max versioning. This approach is similar to HMSV, but
 without the implied obligation for clients and servers to support
 all versions back to version 1, in perpetuity. It allows clients
 and servers to cleanly drop support for early versions when those
 versions become so old that they are no longer relevant and no
 longer required. In this approach, the client initiating the
 connection reports the highest and lowest protocol versions it

IAB Informational [Page 21]

Internet-Draft Design Considerations for Extensions 3 June 2012

 understands. The server reports back the chosen protocol version:

 a. If the server understands one or more versions in the client's
 range, it reports back the highest mutually understood version.

 b. If there is no mutual version, then the server reports back
 some version that it does understand (selected as described
 below). The connection is then typically dropped by client or
 server, but reporting this version number first helps facilitate
 useful error messages at the client end:

 * If there is no mutual version, and the server speaks any
 version higher than client max, it reports the lowest version it
 speaks which is greater than the client max. The client can
 then report to the user, "You need to upgrade to at least
 version <xx>."

 * Else, the server reports the highest version it speaks. The
 client can then report to the user, "You need to request the
 server operator to upgrade to at least version <min>."

 Protocols generally do not need any version-negotiation mechanism
 more complicated than the mechanisms described here. The nature of
 protocol version-negotiation mechanisms is that, by definition, they
 don't get widespread real-world testing until *after* the base
 protocol has been deployed for a while, and its deficiencies have
 become evident. This means that, to be useful, a protocol version
 negotiation mechanism should be simple enough that it can reasonably
 be assumed that all the implementers of the first protocol version at
 least managed to implement the version-negotiation mechanism
 correctly.

4.2. Reserved Fields

 Protocols commonly include one or more "reserved" fields, clearly
 intended for future extensions. It is good practice to specify the
 value to be inserted in such a field by the sender (typically zero)
 and the action to be taken by the receiver when seeing some other
 value (typically no action). In packet format diagrams, such fields
 are typically labeled "MBZ", to be read as, "Must Be Zero on
 transmission, Must Be Ignored on reception."

 A common mistake of inexperienced protocol implementers is to think
 that "MBZ" means that it's their software's job to verify that the
 value of the field is zero on reception, and reject the packet if
 not. This is a mistake, and such software will fail when it
 encounters future versions of the protocol where these previously
 reserved fields are given new defined meanings. Similarly, protocols

IAB Informational [Page 22]

Internet-Draft Design Considerations for Extensions 3 June 2012

 should carefully specify how receivers should react to unknown
 extensions (headers, TLVs etc.), such that failures occur only when
 that is truly the intended outcome.

4.3. Encoding Formats

 Using widely-supported encoding formats leads to better
 interoperability and easier extensibility.

 As described in "IAB Thoughts on Encodings for International Domain
 Names" [RFC6055], the number of encodings should be minimized and
 complex encodings are generally a bad idea. As soon as one moves
 outside the ASCII repertoire, issues relating to collation, string
 valid code points, encoding, normalization and comparison arise that
 extensions must handle with care. See [draft-iab-identifier-

comparison], [draft-ietf-precis-problem-statement] and [draft-ietf-
precis-framework].

 An example is the Simple Network Management Protocol (SNMP) Structure
 of Managed Information (SMI). Guidelines exist for defining the
 Management Information Base (MIB) objects that SNMP carries
 [RFC4181]. Also, multiple textual conventions have been published,
 so that MIB designers do not have to reinvent the wheel when they
 need a commonly encountered construct. For example, the "Textual
 Conventions for Internet Network Addresses" [RFC4001] can be used by
 any MIB designer needing to define objects containing IP addresses,
 thus ensuring consistency as the body of MIBs is extended.

4.4. Parameter Space Design

 In some protocols the parameter space is either infinite (e.g.,
 Header field names) or sufficiently large that it is unlikely to be
 exhausted. In other protocols, the parameter space is finite, and in
 some cases, has proven inadequate to accommodate demand. Common
 mistakes include:

 a. A version field that is too small (e.g., two bits or less). When
 designing a version field, existing as well as potential versions of
 a protocol need to be taken into account. For example, if a protocol
 is being standardized for which there are existing implementations
 with known interoperability issues, more than one version for "pre-
 standard" implementations may be required. If two "pre-standard"
 versions are required in addition to a version for an IETF standard,
 then a two-bit version field would only leave one additional version
 code-point for a future update, which could be insufficient. This
 problem was encountered during the development of the PEAPv2 protocol
 [PEAP].

https://datatracker.ietf.org/doc/html/rfc6055
https://datatracker.ietf.org/doc/html/draft-iab-identifier-comparison
https://datatracker.ietf.org/doc/html/draft-iab-identifier-comparison
https://datatracker.ietf.org/doc/html/draft-ietf-precis-problem-statement
https://datatracker.ietf.org/doc/html/draft-ietf-precis-framework
https://datatracker.ietf.org/doc/html/draft-ietf-precis-framework
https://datatracker.ietf.org/doc/html/rfc4181
https://datatracker.ietf.org/doc/html/rfc4001

IAB Informational [Page 23]

Internet-Draft Design Considerations for Extensions 3 June 2012

 b. A small parameter space (e.g., 8-bits or less) along with a First
 Come, First Served (FCFS) allocation policy. In general, an FCFS
 allocation policy is only appropriate in situations where parameter
 exhaustion is highly unlikely. In situations where substantial
 demand is anticipated within a parameter space, the space should
 either be designed to be sufficient to handle that demand, or vendor
 extensibility should be provided to enable vendors to self-allocate.
 The combination of a small parameter space, an FCFS allocation
 policy, and no support for vendor extensibility is particularly
 likely to prove ill-advised. An example of such a combination was
 the design of the original 8-bit EAP Method Type space [RFC2284].

 Once the potential for parameter exhaustion becomes apparent, it is
 important that it be addressed as quickly as possible. Protocol
 changes can take years to appear in implementations and by then the
 exhaustion problem could become acute.

 Options for addressing a protocol parameter exhaustion problem
 include:

Rethinking the allocation regime
 Where it becomes apparent that the size of a parameter space is
 insufficient to meet demand, it may be necessary to rethink the
 allocation mechanism, in order to prevent or delay parameter space
 exhaustion. In revising parameter allocation mechanisms, it is
 important to consider both supply and demand aspects so as to avoid
 unintended consequences such as self-allocation or the development
 of black markets for the re-sale of protocol parameters.

 For example, a few years after approval of RFC 2284 [RFC2284], it
 became clear that the combination of a FCFS allocation policy and
 lack of support for vendor-extensions had created the potential for
 exhaustion of the EAP Method Type space within a few years. To
 address the issue, [RFC3748] Section 6.2 changed the allocation
 policy for EAP Method Types from FCFS to Expert Review, with
 Specification Required. Since this allocation policy revision did
 not change the demand for EAP Method Types, it would have been
 likely to result in self-allocation within the standards space, had
 mechanisms not been provided to expand the method type space
 (including support for vendor-specific method types).

Support for vendor-specific parameters
 If the demand that cannot be accommodated is being generated by
 vendors, merely making allocation harder could make things worse if
 this encourages vendors to self-allocate, creating interoperability
 problems. In such a situation, support for vendor-specific
 parameters should be considered, allowing each vendor to self-
 allocate within their own vendor-specific space based on a vendor's

https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc3748#section-6.2

IAB Informational [Page 24]

Internet-Draft Design Considerations for Extensions 3 June 2012

 Private Enterprise Code (PEC). For example, in the case of the EAP
 Method Type space, [RFC3748] Section 6.2 also provided for an
 Expanded Type space for "functions specific only to one vendor's
 implementation".

Extensions to the parameter space
 If the goal is to stave off exhaustion in the face of high demand,
 a larger parameter space may be helpful; this may require a new
 version of the protocol (such as was required for IPv6). Where
 vendor-specific parameter support is available, this may be
 achieved by allocating a PEC for IETF use. Otherwise it may be
 necessary to try to extend the size of the parameter fields, which
 could require a new protocol version or other substantial protocol
 changes.

Parameter reclamation
 In order to gain time, it may be necessary to reclaim unused
 parameters. However, it may not be easy to determine whether a
 parameter that has been allocated is in use or not, particularly if
 the entity that obtained the allocation no longer exists or has
 been acquired (possibly multiple times).

Parameter Transfer
 When all the above mechanisms have proved infeasible and parameter
 exhaustion looms in the near future, enabling the transfer of
 ownership of protocol parameters can be considered as a means for
 improving allocation efficiency. However, enabling transfer of
 parameter ownership can be far from simple if the parameter
 allocation process was not originally designed to enable title
 searches and ownership transfers.

 A parameter allocation process designed to uniquely allocate code-
 points is fundamentally different from one designed to enable title
 search and transfer. If the only goal is to ensure that a
 parameter is not allocated more than once, the parameter registry
 will only need to record the initial allocation. On the other
 hand, if the goal is to enable transfer of ownership of a protocol
 parameter, then it is important not only to record the initial
 allocation, but also to track subsequent ownership changes, so as
 to make it possible to determine and transfer title. Given the
 difficulty of converting from a unique allocation regime to one
 requiring support for title search and ownership transfer, it is
 best for the desired capabilities to be carefully thought through
 at the time of registry establishment.

https://datatracker.ietf.org/doc/html/rfc3748#section-6.2

IAB Informational [Page 25]

Internet-Draft Design Considerations for Extensions 3 June 2012

4.5. Cryptographic Agility

 Extensibility with respect to cryptographic algorithms is desirable
 in order to provide resilience against the compromise of any
 particular algorithm. "Guidance for Authentication, Authorization,
 and Accounting (AAA) Key Management" BCP 132 [RFC4962] Section 3
 provides some basic advice:

 The ability to negotiate the use of a particular cryptographic
 algorithm provides resilience against compromise of a particular
 cryptographic algorithm ... This is usually accomplished by
 including an algorithm identifier and parameters in the protocol,
 and by specifying the algorithm requirements in the protocol
 specification. While highly desirable, the ability to negotiate
 key derivation functions (KDFs) is not required. For
 interoperability, at least one suite of mandatory-to-implement
 algorithms MUST be selected ...

 This requirement does not mean that a protocol must support both
 public-key and symmetric-key cryptographic algorithms. It means
 that the protocol needs to be structured in such a way that
 multiple public-key algorithms can be used whenever a public-key
 algorithm is employed. Likewise, it means that the protocol needs
 to be structured in such a way that multiple symmetric-key
 algorithms can be used whenever a symmetric-key algorithm is
 employed.

 In practice, the most difficult challenge in providing cryptographic
 agility is providing for a smooth transition in the event that a
 mandatory-to-implement algorithm is compromised. Since it may take
 significant time to provide for widespread implementation of a
 previously undeployed alternative, it is often advisable to recommend
 implementation of alternative algorithms of distinct lineage in
 addition to those made mandatory-to-implement, so that an alternative
 algorithm is readily available. If such a recommended alternative is
 not in place, then it would be wise to issue such a recommendation as
 soon as indications of a potential weakness surface. This is
 particularly important in the case of potential weakness in
 algorithms used to authenticate and integrity-protect the
 cryptographic negotiation itself, such as KDFs or message integrity
 checks (MICs). Without secure alternatives to compromised KDF or MIC
 algorithms, it may not be possible to secure the cryptographic
 negotiation while retaining backward compatibility.

4.6. Transport

 In the past, IETF protocols have been specified to operate over
 multiple transports. Often the protocol was originally specified to

https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/rfc4962#section-3

IAB Informational [Page 26]

Internet-Draft Design Considerations for Extensions 3 June 2012

 utilize a single transport, but limitations were discovered in
 subsequent deployment, so that additional transports were
 subsequently specified.

 In a number of cases, the protocol was originally specified to
 operate over UDP, but subsequent operation disclosed one or more of
 the following issues, leading to the specification of alternative
 transports:

 a. Payload fragmentation (often due to the introduction of
 extensions or additional usage scenarios);

 b. Problems with congestion control, transport reliability or
 efficiency;

 c. Lack of deployment in multicast scenarios, which had been a
 motivator for UDP transport.

 On the other hand, there are also protocols that were originally
 specified to operate over reliable transport that have subsequently
 defined transport over UDP, due to one or more of the following
 issues:

 d. NAT traversal concerns that were more easily addressed with UDP
 transport;

 e. Scalability problems, which could be improved by UDP transport.

 Since specification of a single transport offers the highest
 potential for interoperability, protocol designers should carefully
 consider not only initial but potential future requirements in the
 selection of a transport protocol. Where UDP transport is selected,
 the guidance provided in "Unicast UDP Usage Guidelines for
 Application Designers" [RFC5405] should be taken into account.

 After significant deployment has occurred, there are few satisfactory
 options for addressing problems with the originally selected
 transport protocol. While specification of additional transport
 protocols is possible, removal of a widely implemented transport
 protocol is likely to result in interoperability problems and should
 be avoided.

 Mandating support for the initially selected transport protocol,
 while designating additional transport protocols as optional may have
 limitations. Since optional transport protocols are typically
 introduced due to the advantages they afford in certain scenarios, in
 those situations implementations not supporting optional transport
 protocols may exhibit degraded performance or may even fail.

https://datatracker.ietf.org/doc/html/rfc5405

IAB Informational [Page 27]

Internet-Draft Design Considerations for Extensions 3 June 2012

 While mandating support for multiple transport protocols may appear
 attractive, designers need to realistically evaluate the likelihood
 that implementers will conform to the requirements. For example,
 where resources are limited (such as in embedded systems),
 implementers may choose to only support a subset of the mandated
 transport protocols, resulting in non-interoperable protocol
 variants.

4.7. Handling of Unknown Extensions

 IETF protocols have utilized several techniques for handling of
 unknown extensions. One technique (often used for vendor-specific
 extensions) is to specify that unknown extensions be "silently
 discarded".

 While this approach can deliver a high level of interoperability,
 there are situations in which it is problematic. For example, where
 security functionality is involved, "silent discard" may not be
 satisfactory, particularly if the recipient does not provide feedback
 as to whether it supports the extension or not. This can lead to
 operational security issues that are difficult to detect and correct,
 as noted in Appendix A.2 and "common RADIUS Implementation Issues and
 Suggested Fixes" [RFC5080] Section 2.5.

 In order to ensure that a recipient supports an extension, a
 recipient encountering an unknown extension may be required to
 explicitly reject it and to return an error, rather than proceeding.
 This can be accomplished via a "Mandatory" bit in a TLV-based
 protocol such as L2TP [RFC2661], or a "Require" or "Proxy-Require"
 header in a text-based protocol such as SIP [RFC3261] or HTTP
 [RFC2616].

 Since a mandatory extension can result in an interoperability failure
 when communicating with a party that does not support the extension,
 this designation may not be permitted for vendor-specific extensions,
 and may only be allowed for standards-track extensions. To enable
 fallback operation with degraded functionality, it is good practice
 for the recipient to indicate the reason for the failure, including a
 list of unsupported extensions. The initiator can then retry without
 the offending extensions.

 Typically only the recipient will find itself in the position of
 rejecting a mandatory extension, since the initiator can explicitly
 indicate which extensions are supported, with the recipient choosing
 from among the supported extensions. This can be accomplished via an
 exchange of TLVs, such as in IKEv2 [RFC5996] or Diameter [RFC3588],
 or via use of "Accept", "Accept-Encoding", "Accept-Language", "Allow"
 and "Supported" headers in a text-based protocol such as SIP

https://datatracker.ietf.org/doc/html/rfc5080#section-2.5
https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc3588

IAB Informational [Page 28]

Internet-Draft Design Considerations for Extensions 3 June 2012

 [RFC3261] or HTTP [RFC2616].

5. Security Considerations

 An extension must not introduce new security risks without also
 providing adequate counter-measures, and in particular it must not
 inadvertently defeat security measures in the unextended protocol.
 Thus, the security analysis for an extension needs to be as thorough
 as for the original protocol - effectively it needs to be a
 regression analysis to check that the extension doesn't inadvertently
 invalidate the original security model.

 This analysis may be simple (e.g., adding an extra opaque data
 element is unlikely to create a new risk) or quite complex (e.g.,
 adding a handshake to a previously stateless protocol may create a
 completely new opportunity for an attacker).

 When the extensibility of a design includes allowing for new and
 presumably more powerful cryptographic algorithms to be added,
 particular care is needed to ensure that the result is in fact
 increased security. For example, it may be undesirable from a
 security viewpoint to allow negotiation down to an older, less secure
 algorithm.

6. IANA Considerations

 [RFC Editor: please remove this section prior to publication.]

 This document has no IANA Actions.

7. References

7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4775] Bradner, S., Carpenter, B., and T. Narten, "Procedures for
 Protocol Extensions and Variations", BCP 125, RFC 4775,
 December 2006.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 5226, May 2008.

7.2. Informative References

[XDASH] Saint-Andre, P., Crocker, D. and M. Nottingham, "Deprecating
 the X- Prefix and Similar Constructs in Application

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp125
https://datatracker.ietf.org/doc/html/rfc4775
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

IAB Informational [Page 29]

Internet-Draft Design Considerations for Extensions 3 June 2012

 Protocols", draft-ietf-appsawg-xdash-05.txt, Internet draft
 (work in progress), April 2012.

[IEEE-802.1X]
 Institute of Electrical and Electronics Engineers, "Local and
 Metropolitan Area Networks: Port-Based Network Access
 Control", IEEE Standard 802.1X-2004, December 2004.

[PEAP] Palekar, A., Simon, D., Salowey, J., Zhou, H., Zorn, G. and S.
 Josefsson, "Protected EAP Protocol (PEAP) Version 2", draft-

josefsson-pppext-eap-tls-eap-10.txt, Expired Internet draft
 (work in progress), October 2004.

[RFC822] Crocker, D., "Standard for the format of ARPA Internet text
 messages", STD 11, RFC 822, August 1982.

[RFC1263] O'Malley, S. and L. Peterson, "TCP Extensions Considered
 Harmful", RFC 1263, October 1991.

[RFC1341] Freed, N. and N. Borenstein, "MIME (Multipurpose Internet Mail
 Extensions): Mechanisms for Specifying and Describing the
 Format of Internet Message Bodies", RFC 1341, June 1992.

[RFC1521] Borenstein, N. and N. Freed, "MIME (Multipurpose Internet Mail
 Extensions) Part One: Mechanisms for Specifying and Describing
 the Format of Internet Message Bodies", RFC 1521, September
 1993.

[RFC2058] Rigney, C., Rubens, A., Simpson, W. and S. Willens, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2058,
 January 1997.

[RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, March 1997.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
2246, January 1999.

[RFC2284] Blunk, L. and J. Vollbrecht, "PPP Extensible Authentication
 Protocol (EAP)", RFC 2284, March 1998.

[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition
 of the Differentiated Services Field (DS Field) in the IPv4
 and IPv6 Headers", RFC 2474, December 1998.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
 L., Leach, P., and T. Berners-Lee, "Hypertext Transfer
 Protocol -- HTTP/1.1", RFC 2616, June 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-xdash-05.txt
https://datatracker.ietf.org/doc/html/draft-josefsson-pppext-eap-tls-eap-10.txt
https://datatracker.ietf.org/doc/html/draft-josefsson-pppext-eap-tls-eap-10.txt
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/rfc1341
https://datatracker.ietf.org/doc/html/rfc1521
https://datatracker.ietf.org/doc/html/rfc2058
https://datatracker.ietf.org/doc/html/rfc2132
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2616

IAB Informational [Page 30]

Internet-Draft Design Considerations for Extensions 3 June 2012

[RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G.,
 and B. Palter, "Layer Two Tunneling Protocol "L2TP"", RFC

2661, August 1999.

[RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)",RFC 2671,
 August 1999.

[RFC2822] Resnick, P., "Internet Message Format", RFC 2822, April 2001.

[RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2865, June
 2000.

[RFC2882] Mitton, D., "Network Access Servers Requirements: Extended
 RADIUS Practices", RFC 2882, July 2000.

[RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
 Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le, K.,
 Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke,
 T., Yoshimura, T., and H. Zheng, "RObust Header Compression
 (ROHC): Framework and four profiles: RTP, UDP, ESP, and
 uncompressed", RFC 3095, July 2001.

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

[RFC3427] Mankin, A., Bradner, S., Mahy, R., Willis, D., Ott, J., and B.
 Rosen, "Change Process for the Session Initiation Protocol
 (SIP)", BCP 67, RFC 3427, December 2002.

[RFC3575] Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575, July 2003.

[RFC3588] Calhoun, P., Loughney, J., Guttman, E., Zorn, G. and J. Arkko,
 "Diameter Base Protocol", RFC 3588, September 2003.

[RFC3597] Gustafsson, A., "Handling of Unknown DNS Resource Record (RR)
 Types", RFC 3597, September 2003.

[RFC3692] Narten, T., "Assigning Experimental and Testing Numbers
 Considered Useful", BCP 82, RFC 3692, January 2004.

[RFC3735] Hollenbeck, S., "Guidelines for Extending the Extensible
 Provisioning Protocol (EPP)", RFC 3735, March 2004.

[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J. and H.
 Lefkowetz, "Extensible Authentication Protocol (EAP)", RFC

https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2882
https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/bcp67
https://datatracker.ietf.org/doc/html/rfc3427
https://datatracker.ietf.org/doc/html/rfc3575
https://datatracker.ietf.org/doc/html/rfc3588
https://datatracker.ietf.org/doc/html/rfc3597
https://datatracker.ietf.org/doc/html/bcp82
https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/rfc3735

IAB Informational [Page 31]

Internet-Draft Design Considerations for Extensions 3 June 2012

 3748, June 2004.

[RFC3935] Alvestrand, H., "A Mission Statement for the IETF", RFC 3935,
 October 2004.

[RFC4001] Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network
 Addresses", RFC 4001, February 2005.

[RFC4181] Heard, C., "Guidelines for Authors and Reviewers of MIB
 Documents", BCP 111, RFC 4181, September 2005.

[RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and
 T. Wright, "Transport Layer Security (TLS) Extensions", RFC

4366, April 2006.

[RFC4485] Rosenberg, J. and H. Schulzrinne, "Guidelines for Authors of
 Extensions to the Session Initiation Protocol (SIP)", RFC

4485, May 2006.

[RFC4521] Zeilenga, K., "Considerations for Lightweight Directory Access
 Protocol (LDAP) Extensions", BCP 118, RFC 4521, June 2006.

[RFC4727] Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4,
 ICMPv6, UDP, and TCP Headers", RFC 4727, November 2006.

[RFC4929] Andersson, L. and A. Farrel, "Change Process for Multiprotocol
 Label Switching (MPLS) and Generalized MPLS (GMPLS) Protocols
 and Procedures", BCP 129, RFC 4929, June 2007.

[RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management", BCP 132,

RFC 4962, July 2007.

[RFC5080] Nelson, D. and A. DeKok, "Common Remote Authentication Dial In
 User Service (RADIUS) Implementation Issues and Suggested
 Fixes", RFC 5080, December 2007.

[RFC5218] Thaler, D., and B. Aboba, "What Makes for a Successful
 Protocol?", RFC 5218, July 2008.

[RFC5225] Pelletier, G. and K. Sandlund, "RObust Header Compression
 Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-
 Lite", RFC 5225, April 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

https://datatracker.ietf.org/doc/html/rfc3935
https://datatracker.ietf.org/doc/html/rfc4001
https://datatracker.ietf.org/doc/html/bcp111
https://datatracker.ietf.org/doc/html/rfc4181
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4485
https://datatracker.ietf.org/doc/html/rfc4485
https://datatracker.ietf.org/doc/html/bcp118
https://datatracker.ietf.org/doc/html/rfc4521
https://datatracker.ietf.org/doc/html/rfc4727
https://datatracker.ietf.org/doc/html/bcp129
https://datatracker.ietf.org/doc/html/rfc4929
https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/rfc5080
https://datatracker.ietf.org/doc/html/rfc5218
https://datatracker.ietf.org/doc/html/rfc5225
https://datatracker.ietf.org/doc/html/rfc5246

IAB Informational [Page 32]

Internet-Draft Design Considerations for Extensions 3 June 2012

[RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

[RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines for
 Application Designers", RFC 5405 (BCP 145), November 2008.

[RFC5421] Cam-Winget, N. and H. Zhou, "Basic Password Exchange within
 the Flexible Authentication via Secure Tunneling Extensible
 Authentication Protocol (EAP-FAST)", RFC 5421, March 2009.

[RFC5422] Cam-Winget, N., McGrew, D., Salowey, J. and H. Zhou, "Dynamic
 Provisioning Using Flexible Authentication via Secure
 Tunneling Extensible Authentication Protocol (EAP-FAST)", RFC

5422, March 2009.

[RFC5704] Bryant, S. and M. Morrow, "Uncoordinated Protocol Development
 Considered Harmful", RFC 5704, November 2009.

[RFC5727] Peterson, J., Jennings, C. and R. Sparks, "Change Process for
 the Session Initiation Protocol (SIP) and the Real-time
 Applications and Infrastructure Area", BCP 67, RFC 5727, March
 2010.

[RFC5996] Kaufman, C., Hoffman, P., Nir, Y. and P. Eronen, "Internet Key
 Exchange Protocol Version 2 (IKEv2)", RFC 5996, September
 2010.

[RFC6055] Thaler, D., Klensin, J. and S. Cheshire, "IAB Thoughts on
 Encodings for Internationalized Domain Names", RFC 6055,
 February 2011.

[RFC6158] DeKok, A. and G. Weber, "RADIUS Design Guidelines", BCP 158,
RFC 6158, March 2011.

[Transitive]
 Scudder, J., Chen, E., Mohapatra, P. and K. Patel, "Revised
 Error Handling for BGP UPDATE Messages", Internet draft (work
 in progress), draft-ietf-idr-optional-transitive-04, October,
 2011.

https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5405
https://datatracker.ietf.org/doc/html/bcp145
https://datatracker.ietf.org/doc/html/rfc5421
https://datatracker.ietf.org/doc/html/rfc5422
https://datatracker.ietf.org/doc/html/rfc5422
https://datatracker.ietf.org/doc/html/rfc5704
https://datatracker.ietf.org/doc/html/bcp67
https://datatracker.ietf.org/doc/html/rfc5727
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc6055
https://datatracker.ietf.org/doc/html/bcp158
https://datatracker.ietf.org/doc/html/rfc6158
https://datatracker.ietf.org/doc/html/draft-ietf-idr-optional-transitive-04

IAB Informational [Page 33]

Internet-Draft Design Considerations for Extensions 3 June 2012

Acknowledgments

 This document is heavily based on an earlier draft under a different
 title by Scott Bradner and Thomas Narten.

 That draft stated: The initial version of this document was put
 together by the IESG in 2002. Since then, it has been reworked in
 response to feedback from John Loughney, Henrik Levkowetz, Mark
 Townsley, Randy Bush and others.

 Valuable comments and suggestions on the current form of the document
 were made by Loa Andersson, Leslie Daigle, Phillip Hallam-Baker, Ted
 Hardie, Alfred Hoenes, John Klensin, Eric Rescorla, Adam Roach, Pekka
 Savola and Alan DeKok. The text on TLS experience was contributed by
 Yngve Pettersen.

IAB Members at the Time of Approval

 Bernard Aboba
 Jari Arkko
 Marc Blanchet
 Ross Callon
 Alissa Cooper
 Spencer Dawkins
 Joel Halpern
 Russ Housley
 David Kessens
 Danny McPherson
 Jon Peterson
 Dave Thaler
 Hannes Tschofenig

IAB Informational [Page 34]

Internet-Draft Design Considerations for Extensions 3 June 2012

Appendix A. Examples

 This section discusses some specific examples, as case studies.

A.1. Already documented cases

 There are certain documents that specify a change process or describe
 extension considerations for specific IETF protocols:

 The SIP change process [RFC3427], [RFC4485], [RFC5727]
 The (G)MPLS change process (mainly procedural) [RFC4929]
 LDAP extensions [RFC4521]
 EPP extensions [RFC3735]
 DNS extensions [RFC2671][RFC3597]
 SMTP extensions [RFC5321]

 It is relatively common for MIBs, which are all in effect extensions
 of the SMI data model, to be defined or extended outside the IETF.

BCP 111 [RFC4181] offers detailed guidance for authors and reviewers.

A.2. RADIUS Extensions

 The RADIUS [RFC2865] protocol was designed to be extensible via
 addition of Attributes to a Data Dictionary on the server, without
 requiring code changes. However, this extensibility model assumed
 that Attributes would conform to a limited set of data types and that
 vendor extensions would be limited to use by vendors, in situations
 in which interoperability was not required. Subsequent developments
 have stretched those assumptions.

 From the beginning, uses of the RADIUS protocol extended beyond the
 scope of the original protocol definition (and beyond the scope of
 the RADIUS Working Group charter). In addition to rampant self-
 allocation within the limited RADIUS standard attribute space,
 vendors defined their own RADIUS commands. This lead to the rapid
 proliferation of vendor-specific protocol variants. To this day,
 many common implementation practices have not been documented. As
 noted in "Extended RADIUS Practices" [RFC2882] Section 1:

 The RADIUS Working Group was formed in 1995 to document the
 protocol of the same name, and was chartered to stay within a set
 of bounds for dial-in terminal servers. Unfortunately the real
 world of Network Access Servers (NASes) hasn't stayed that small
 and simple, and continues to evolve at an amazing rate.

 This document shows some of the current implementations on the
 market have already outstripped the capabilities of the RADIUS
 protocol. A quite a few features have been developed completely

https://datatracker.ietf.org/doc/html/rfc3427
https://datatracker.ietf.org/doc/html/rfc4485
https://datatracker.ietf.org/doc/html/rfc5727
https://datatracker.ietf.org/doc/html/rfc4929
https://datatracker.ietf.org/doc/html/rfc4521
https://datatracker.ietf.org/doc/html/rfc3735
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/bcp111
https://datatracker.ietf.org/doc/html/rfc4181
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2882#section-1

IAB Informational [Page 35]

Internet-Draft Design Considerations for Extensions 3 June 2012

 outside the protocol. These features use the RADIUS protocol
 structure and format, but employ operations and semantics well
 beyond the RFC documents.

 The limited set of data types defined in [RFC2865] has lead to
 subsequent documents defining new data types. Since new data types
 are typically defined implicitly as part of defining a new attribute,
 and because RADIUS client and server implementations differ in their
 support of these additional specifications, there is no definitive
 registry of RADIUS data types and data type support has been
 inconsistent. To catalog commonly implemented data types as well as
 to provide guidance for implementers as well as attribute designers,
 "RADIUS Design Guidelines" [RFC6158] Section 2.1 includes advice on
 basic and complex data types. Unfortunately, these guidelines were
 published 14 years after the RADIUS protocol was first documented in
 [RFC2058].

Section 6.2 of the RADIUS specification [RFC2865] defines a mechanism
 for Vendor-Specific extensions (Attribute 26), and states that use of
 Vendor-Specific extensions:

 should be encouraged instead of allocation of global attribute
 types, for functions specific only to one vendor's implementation
 of RADIUS, where no interoperability is deemed useful.

 However, in practice usage of Vendor-Specific Attributes (VSAs) has
 been considerably broader than this. In particular, VSAs have been
 used by Standards Development Organizations (SDOs) to define their
 own extensions to the RADIUS protocol. This has caused a number of
 problems.

 One issue concerns the data model for VSAs. Since it was not
 envisaged that multi-vendor VSA implementations would need to
 interoperate, the RADIUS specification [RFC2865] does not define the
 data model for VSAs, and allows multiple sub-attributes to be
 included within a single Attribute of type 26. Since this enables
 VSAs to be defined which would not be supportable by current
 implementations if placed within the standard RADIUS attribute space,
 this has caused problems in standardizing widely deployed VSAs, as
 discussed in "RADIUS Design Guidelines" BCP 158 [RFC6158] Section

2.4:

 RADIUS attributes can often be developed within the vendor space
 without loss (and possibly even with gain) in functionality. As a
 result, translation of RADIUS attributes developed within the
 vendor space into the standard space may provide only modest
 benefits, while accelerating the exhaustion of the standard space.
 We do not expect that all RADIUS attribute specifications

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc6158#section-2.1
https://datatracker.ietf.org/doc/html/rfc2058
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/bcp158
https://datatracker.ietf.org/doc/html/rfc6158

IAB Informational [Page 36]

Internet-Draft Design Considerations for Extensions 3 June 2012

 requiring interoperability will be developed within the IETF, and
 allocated from the standard space. A more scalable approach is to
 recognize the flexibility of the vendor space, while working
 toward improvements in the quality and availability of RADIUS
 attribute specifications, regardless of where they are developed.

 It is therefore NOT RECOMMENDED that specifications intended
 solely for use by a vendor or SDO be translated into the standard
 space.

 Another issue is how implementations should handle unknown VSAs.
[RFC2865] Section 5.26 states:

 Servers not equipped to interpret the vendor-specific information
 sent by a client MUST ignore it (although it may be reported).
 Clients which do not receive desired vendor-specific information
 SHOULD make an attempt to operate without it, although they may do
 so (and report they are doing so) in a degraded mode.

 However, since VSAs do not contain a "mandatory" bit, RADIUS clients
 and servers may not know whether it is safe to ignore unknown VSAs.
 For example, in the case where VSAs pertain to security (e.g.,
 Filters), it may not be safe to ignore them. As a result, "Common
 Remote Authentication Dial In User Service (RADIUS) Implementation
 Issues and Suggested Fixes" [RFC5080] Section 2.5 includes the
 following caution:

 To avoid misinterpretation of service requests encoded within
 VSAs, RADIUS servers SHOULD NOT send VSAs containing service
 requests to RADIUS clients that are not known to understand them.
 For example, a RADIUS server should not send a VSA encoding a
 filter without knowledge that the RADIUS client supports the VSA.

 In addition to extending RADIUS by use of VSAs, SDOs have also
 defined new values of the Service-Type attribute in order to create
 new RADIUS commands. Since the RADIUS specification [RFC2865]
 defined Service-Type values as being allocated First Come, First
 Served (FCFS), this permitted new RADIUS commands to be allocated
 without IETF review. This oversight has since been fixed in "IANA
 Considerations for RADIUS" [RFC3575].

A.3. TLS Extensions

 The Secure Sockets Layer (SSL) v2 protocol was developed by Netscape
 to be used to secure online transactions on the Internet. It was
 later replaced by SSL v3, also developed by Netscape. SSL v3 was
 then further developed by the IETF as the Transport Layer Security
 (TLS) 1.0 [RFC2246].

https://datatracker.ietf.org/doc/html/rfc2865#section-5.26
https://datatracker.ietf.org/doc/html/rfc5080#section-2.5
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3575
https://datatracker.ietf.org/doc/html/rfc2246

IAB Informational [Page 37]

Internet-Draft Design Considerations for Extensions 3 June 2012

 The SSL v3 protocol was not explicitly specified to be extended.
 Even TLS 1.0 did not define an extension mechanism explicitly.
 However, extension "loopholes" were available. Extension mechanisms
 were finally defined in "Transport Layer Security (TLS) Extensions"
 [RFC4366]:

 o New versions
 o New cipher suites
 o Compression
 o Expanded handshake messages
 o New record types
 o New handshake messages

 The protocol also defines how implementations should handle unknown
 extensions.

 Of the above extension methods, new versions and expanded handshake
 messages have caused the most interoperability problems.
 Implementations are supposed to ignore unknown record types but to
 reject unknown handshake messages.

 The new version support in SSL/TLS includes a capability to define
 new versions of the protocol, while allowing newer implementations to
 communicate with older implementations. As part of this
 functionality, some Key Exchange methods include functionality to
 prevent version rollback attacks.

 The experience with this upgrade functionality in SSL and TLS is
 decidedly mixed:

 o SSL v2 and SSL v3/TLS are not compatible. It is possible to use
 SSL v2 protocol messages to initiate a SSL v3/TLS connection, but
 it is not possible to communicate with a SSL v2 implementation
 using SSL v3/TLS protocol messages.
 o There are implementations that refuse to accept handshakes using
 newer versions of the protocol than they support.
 o There are other implementations that accept newer versions, but
 have implemented the version rollback protection clumsily.

 The SSL v2 problem has forced SSL v3 and TLS clients to continue to
 use SSL v2 Client Hellos for their initial handshake with almost all
 servers until 2006, much longer than would have been desirable, in
 order to interoperate with old servers.

 The problem with incorrect handling of newer versions has also forced
 many clients to actually disable the newer protocol versions, either
 by default, or by automatically disabling the functionality, to be
 able to connect to such servers. Effectively, this means that the

https://datatracker.ietf.org/doc/html/rfc4366

IAB Informational [Page 38]

Internet-Draft Design Considerations for Extensions 3 June 2012

 version rollback protection in SSL and TLS is non-existent if talking
 to a fatally compromised older version.

 SSL v3 and TLS also permitted expansion of the Client Hello and
 Server Hello handshake messages. This functionality was fully
 defined by the introduction of TLS Extensions, which makes it
 possible to add new functionality to the handshake, such as the name
 of the server the client is connecting to, request certificate status
 information, indicate Certificate Authority support, maximum record
 length, etc. Several of these extensions also introduce new
 handshake messages.

 It has turned out that many SSL v3 and TLS implementations that do
 not support TLS Extensions, did not, as required by the protocol
 specifications, ignore the unknown extensions, but instead failed to
 establish connections. Several of the implementations behaving in
 this manner are used by high profile Internet sites, such as online
 banking sites, and this has caused a significant delay in the
 deployment of clients supporting TLS Extensions, and several of the
 clients that have enabled support are using heuristics that allow
 them to disable the functionality when they detect a problem.

 Looking forward, the protocol version problem, in particular, can
 cause future security problems for the TLS protocol. The strength of
 the digest algorithms (MD5 and SHA-1) used by SSL and TLS is
 weakening. If MD5 and SHA-1 weaken to the point where it is feasible
 to mount successful attacks against older SSL and TLS versions, the
 current error recovery used by clients would become a security
 vulnerability (among many other serious problems for the Internet).

 To address this issue, TLS 1.2 [RFC5246] makes use of a newer
 cryptographic hash algorithm (SHA-256) during the TLS handshake by
 default. Legacy ciphersuites can still be used to protect
 application data, but new ciphersuites are specified for data
 protection as well as for authentication within the TLS handshake.
 The hashing method can also be negotiated via a Hello extension.
 Implementations are encouraged to implement new ciphersuites, and to
 enable the negotiation of the ciphersuite used during a TLS session
 to be governed by policy, thus enabling a more rapid transition away
 from weakened ciphersuites.

 The lesson to be drawn from this experience is that it isn't
 sufficient to design extensibility carefully; it must also be
 implemented carefully by every implementer, without exception. Test
 suites and certification programs can help provide incentives for
 implementers to pay attention to implementing extensibility
 mechanisms correctly.

https://datatracker.ietf.org/doc/html/rfc5246

IAB Informational [Page 39]

Internet-Draft Design Considerations for Extensions 3 June 2012

A.4. L2TP Extensions

 Layer Two Tunneling Protocol (L2TP) [RFC2661] carries Attribute-Value
 Pairs (AVPs), with most AVPs having no semantics to the L2TP protocol
 itself. However, it should be noted that L2TP message types are
 identified by a Message Type AVP (Attribute Type 0) with specific AVP
 values indicating the actual message type. Thus, extensions relating
 to Message Type AVPs would likely be considered major extensions.

 L2TP also provides for Vendor-Specific AVPs. Because everything in
 L2TP is encoded using AVPs, it would be easy to define vendor-
 specific AVPs that would be considered major extensions.

 L2TP also provides for a "mandatory" bit in AVPs. Recipients of L2TP
 messages containing AVPs they do not understand but that have the
 mandatory bit set, are expected to reject the message and terminate
 the tunnel or session the message refers to. This leads to
 interesting interoperability issues, because a sender can include a
 vendor-specific AVP with the M-bit set, which then causes the
 recipient to not interoperate with the sender. This sort of behavior
 is counter to the IETF ideals, as implementations of the IETF
 standard should interoperate successfully with other implementations
 and not require the implementation of non-IETF extensions in order to
 interoperate successfully. Section 4.2 of the L2TP specification
 [RFC2661] includes specific wording on this point, though there was
 significant debate at the time as to whether such language was by
 itself sufficient.

 Fortunately, it does not appear that the potential problems described
 above have yet become a problem in practice. At the time of this
 writing, the authors are not aware of the existence of any vendor-
 specific AVPs that also set the M-bit.

Change log [RFC Editor: please remove this section]

 -13: 2012-6-03. Resolved issue 166.
 -12: 2012-5-27. Resolved issues 127, 128, 129, 133 and 161.
 -11: 2012-2-22. Resolved issue 126.
 -10: 2012-2-12. Resolved issues 106 and 108.
 -09: 2011-10-30. Resolved additional issues.
 -08: 2011-10-22. Resolved additional issues.
 -07: 2011-7-24. Resolved issues raised in Call for Comment.
 -06: 2011-3-1. Incorporated corrections and organizational updates.
 -05: 2011-2-4. Added to the Security Considerations section.
 -04: 2011-2-1. Added material on cryptographic agility.
 -03: 2011-1-25. Updates and reorganization.
 -02: 2010-7-12. Updates by Bernard Aboba.
 -01: 2010-4-7. Updates by Stuart Cheshire.

https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/rfc2661

IAB Informational [Page 40]

Internet-Draft Design Considerations for Extensions 3 June 2012

draft-iab-extension-recs-00: 2009-4-24. Updated boilerplate,
 author list.

 -04: 2008-10-24. Updated author addresses, editorial fixes.

 -03: 2008-10-17. Updated references, added material relating to
 versioning.

 -02: 2007-06-15. Reorganized Sections 2 and 3.

 -01: 2007-03-04. Updated according to comments, especially the
 wording about TLS, added various specific examples.

draft-carpenter-extension-recs-00: original version, 2006-10-12.
 Derived from draft-iesg-vendor-extensions-02.txt dated 2004-06-04 by
 focusing on architectural issues; the procedural issues were moved to

RFC 4775.

Authors' Addresses

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland, 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

 Bernard Aboba
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052

 EMail: bernard_aboba@hotmail.com

 Stuart Cheshire
 Apple Computer, Inc.
 1 Infinite Loop
 Cupertino, CA 95014

 EMail: cheshire@apple.com

https://datatracker.ietf.org/doc/html/draft-iab-extension-recs-00
https://datatracker.ietf.org/doc/html/draft-carpenter-extension-recs-00
https://datatracker.ietf.org/doc/html/draft-iesg-vendor-extensions-02.txt
https://datatracker.ietf.org/doc/html/rfc4775

IAB Informational [Page 41]

