
Network Working Group D. Thaler, Ed.
Internet-Draft Microsoft
Intended status: Informational February 23, 2013
Expires: August 27, 2013

Issues in Identifier Comparison for Security Purposes
draft-iab-identifier-comparison-08.txt

Abstract

 Identifiers such as hostnames, URIs, IP addresses, and email
 addresses are often used in security contexts to identify security
 principals and resources. In such contexts, an identifier supplied
 via some protocol is often compared using some policy to make
 security decisions such as whether the security principal may access
 the resource, what level of authentication or encryption is required,
 etc. If the parties involved in a security decision use different
 algorithms to compare identifiers, then failure scenarios ranging
 from denial of service to elevation of privilege can result. This
 document provides a discussion of these issues that designers should
 consider when defining identifiers and protocols, and when
 constructing architectures that use multiple protocols.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 27, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Thaler Expires August 27, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Identifier Comparison February 2013

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Canonicalization . 5

2. Security Uses . 5
2.1. Types of Identifiers 7
2.2. False Positives and Negatives 7
2.3. Hypothetical Example 8

3. Common Identifiers . 9
3.1. Hostnames . 9
3.1.1. IPv4 Literals . 10
3.1.2. IPv6 Literals . 12
3.1.3. Internationalization 12
3.1.4. Resolution for comparison 13

3.2. Ports and Service Names 14
3.3. URIs . 14
3.3.1. Scheme component 15
3.3.2. Authority component 16
3.3.3. Path component . 16
3.3.4. Query component 17
3.3.5. Fragment component 17
3.3.6. Resolution for comparison 17

3.4. Email Address-like Identifiers 18
4. General Issues . 18
4.1. Conflation . 18
4.2. Internationalization 19
4.3. Scope . 20
4.4. Temporality . 21

5. Security Considerations 21
6. Acknowledgements . 22
7. IANA Considerations . 22
8. Informative References . 22

 Author's Address . 25

http://trustee.ietf.org/license-info

Thaler Expires August 27, 2013 [Page 2]

Internet-Draft Identifier Comparison February 2013

1. Introduction

 In computing and the Internet, various types of "identifiers" are
 used to identify humans, devices, content, etc. Before discussing
 security issues, we first give some background on some typical
 processes involving identifiers.

 As depicted in Figure 1, there are multiple processes relevant to our
 discussion.
 1. An identifier is first generated. If the identifier is intended
 to be unique, the generation process must include some mechanism,
 such as allocation by a central authority or verification among
 the members of a distributed authority, to help ensure
 uniqueness. However the notion of "unique" involves determining
 whether a putative identifier matches any other already-allocated
 identifier. As we will see, for many types of identifiers, this
 is not simply an exact binary match.

 After generating the identifier, it is often stored in two
 locations: with the requester or "holder" of the identifier, and
 with some repository of identifiers (e.g., DNS). For example, if
 the identifier was allocated by a central authority, the
 repository might be that authority. If the identifier identifies
 a device or content on a device, the repository might be that
 device.
 2. The identifier is distributed, either by the holder of the
 identifier or by a repository of identifiers, to others who could
 use the identifier. This distribution might be electronic, but
 sometimes it is via other channels such as voice, business card,
 billboard, or other form of advertisement. The identifier itself
 might be distributed directly, or it might be used to generate a
 portion of another type of identifier that is then distributed.
 For example, a URI or email address might include a server name,
 and hence distributing the URI or email address also inherently
 distributes the server name.
 3. The identifier is used by some party. Generally the user
 supplies the identifier which is (directly or indirectly) sent to
 the repository of identifiers. For example, using an email
 address to send email to the holder of an identifier may result
 in the email arriving at the holder's email server which has
 access to the mail stores.

 The repository of identifiers must then attempt to match the
 user-supplied identifier with an identifier in its repository.

Thaler Expires August 27, 2013 [Page 3]

Internet-Draft Identifier Comparison February 2013

 +------------+
 | Holder of | 1. Generation
 | identifier +<---------+
 +----+-------+ |
 | | Match
 | v/
 | +-------+-------+
 +----------+ Repository of |
 | | identifiers |
 | +-------+-------+
 2. Distribution | ^\
 | | Match
 v |
 +---------+-------+ |
 | User of | |
 | identifier +----------+
 +-----------------+ 3. Use

 Typical Identifier Processes

 Figure 1

 Another variation is where a user is given the identifier of a
 resource (e.g., a web site) to access securely, sometimes known as a
 "reference identifier" [RFC6125], and the server connected to then
 presents its identity at the time of use. In this case the user
 application attempts to match the presented identity against the
 reference identifier.

 One key aspect is that the identifier values passed in generation,
 distribution, and use, may all be in different forms. For example,
 an identifier might be exchanged in printed form at generation time,
 distributed to a user via voice, and then used electronically. As
 such, the match process can be complicated.

 Furthermore, in many uses, the relationship between holder,
 repositories, and users may be more involved. For example, when a
 hierarchy of web caches exist, each cache is itself a repository of a
 sort, and the match process is usually intended to be the same as on
 the origin server.

 Another aspect to keep in mind is that there can be multiple
 identifiers that refer to the same object (i.e., resource, human,
 device, etc.). For example, a human might have a passport number and
 a drivers license number, and an RFC might be available at multiple
 locations (rfc-editor.org and ietf.org). In this document we focus
 on comparing two identifiers to see whether they are the same
 identifier, rather than comparing two different identifiers to see

https://datatracker.ietf.org/doc/html/rfc6125

Thaler Expires August 27, 2013 [Page 4]

Internet-Draft Identifier Comparison February 2013

 whether they refer to the same entity (although a few issues with the
 latter are touched on in several places such as Section 3.1.4 and

Section 3.3.6).

1.1. Canonicalization

 Perhaps the most common algorithm for comparison involves first
 converting each identifier to a canonical form (a process known as
 "canonicalization" or "normalization"), and then testing the
 resulting canonical representations for bitwise equality. In so
 doing, it is thus critical that all entities involved agree on the
 same canonical form and use the same canonicalization algorithm so
 that the overall comparison process is also the same.

 Note that in some contexts, such as in internationalization, the
 terms "canonicalization" and "normalization" have a precise meaning.
 In this document, however, we use these terms synonymously in their
 more generic form, to mean conversion to some standard form.

 While the most common method of comparison includes canonicalization,
 comparison can also be done by defining an equivalence algorithm,
 where no single form is canonical. However in most cases, a
 canonical form is useful for other purposes, such as output, and so
 in such cases defining a canonical form suffices to define a
 comparison method.

2. Security Uses

 Identifiers such as hostnames, URIs, and email addresses are used in
 security contexts to identify security principals (i.e., entities
 that can be authenticated) and resources as well as other security
 parameters such as types and values of claims. Those identifiers are
 then used to make security decisions based on an identifier supplied
 via some protocol. For example:
 o Authentication: a protocol might match a security principal's
 identifier to look up expected keying material, and then match
 keying material.
 o Authorization: a protocol might match a resource name against some
 policy. For example, it might look up an access control list
 (ACL), and then look up the security principal's identifier (or a
 surrogate for it) in that ACL.
 o Accounting: a system might create an accounting record for a
 security principal's identifier or resource name, and then might
 later need to match a supplied identifier to (for example) add new
 filtering rules based on the records in order to stop an attack.

 If the parties involved in a security decision use different matching

Thaler Expires August 27, 2013 [Page 5]

Internet-Draft Identifier Comparison February 2013

 algorithms for the same identifiers, then failure scenarios ranging
 from denial of service to elevation of privilege can result, as we
 will see.

 This is especially complicated in cases involving multiple parties
 and multiple protocols. For example, there are many scenarios where
 some form of "security token service" is used to grant to a requester
 permission to access a resource, where the resource is held by a
 third party that relies on the security token service (see Figure 2).
 The protocol used to request permission (e.g., Kerberos or OAuth) may
 be different from the protocol used to access the resource (e.g.,
 HTTP). Opportunities for security problems arise when two protocols
 define different comparison algorithms for the same type of
 identifier, or when a protocol is ambiguously specified and two
 endpoints (e.g., a security token service and a resource holder)
 implement different algorithms within the same protocol.

 +----------+
 | security |
 | token |
 | service |
 +----------+
 ^
 | 1. supply credentials and
 | get token for resource
 | +--------+
 +----------+ 2. supply token and access resource |resource|
 |requester |=------------------------------------->| holder |
 +----------+ +--------+

 Simple Security Exchange

 Figure 2

 In many cases the situation is more complex. With certificates, the
 name in a certificate gets compared against names in ACLs or other
 things. In the case of web site security, the name in the
 certificate gets compared to a portion of the URI that a user may
 have typed into a browser. The fact that many different people are
 doing the typing, on many different types of systems, complicates the
 problem.

 Add to this the certificate enrollment step, and the certificate
 issuance step, and two more parties have an opportunity to adjust the
 encoding or worse, the software that supports them might make changes
 that the parties are unaware are happening.

Thaler Expires August 27, 2013 [Page 6]

Internet-Draft Identifier Comparison February 2013

2.1. Types of Identifiers

 In this document we will refer to the following types of identifiers:

 o Absolute: identifiers that can be compared byte-by-byte for
 equality. Two identifiers that have different bytes are defined
 to be different. For example, binary IP addresses are in this
 class.
 o Definite: identifiers that have a well-defined comparison
 algorithm on which all parties agree. For example, URI scheme
 names are required to be ASCII and are defined to match in a case-
 insensitive way; the comparison is thus definite since all parties
 agree on how to do a case-insensitive match among ASCII strings.
 o Indefinite: identifiers that have no single comparison algorithm
 on which all parties agree. For example, human names are in this
 class. Everyone might want the comparison to be tailored for
 their locale, for some definition of locale. In some cases, there
 may be limited subsets of parties that might be able to agree
 (e.g., ASCII users might all agree on a common comparison
 algorithm whereas users of other Latin scripts, such as Turkish,
 may not), but identifiers often tend to leak out of such limited
 environments.

2.2. False Positives and Negatives

 It is first worth discussing in more detail the effects of errors in
 the comparison algorithm. A "false positive" results when two
 identifiers compare as if they were equal, but in reality refer to
 two different objects (e.g., security principals or resources). When
 privilege is granted on a match, a false positive thus results in an
 elevation of privilege, for example allowing execution of an
 operation that should not have been permitted otherwise. When
 privilege is denied on a match (e.g., matching an entry in a block/
 deny list or a revocation list), a permissible operation is denied.
 At best, this can cause worse performance (e.g., a cache miss, or
 forcing redundant authentication), and at worst can result in a
 denial of service.

 A "false negative" results when two identifiers that in reality refer
 to the same thing compare as if they were different, and the effects
 are the reverse of those for false positives. That is, when
 privilege is granted on a match, the result is at best worse
 performance and at worst a denial of service; when privilege is
 denied on a match, elevation of privilege results.

 Figure 3 summarizes these effects.

Thaler Expires August 27, 2013 [Page 7]

Internet-Draft Identifier Comparison February 2013

 | "Grant on match" | "Deny on match"
 ---------------+------------------------+-----------------------
 False positive | Elevation of privilege | Denial of service
 ---------------+------------------------+-----------------------
 False negative | Denial of service | Elevation of privilege
 ---------------+------------------------+-----------------------

 Worst Effects of False Positives/Negatives

 Figure 3

 When designing a comparison algorithm, one can typically modify it to
 increase the likelihood of false positives and decrease the
 likelihood of false negatives, or vice versa. Which outcome is
 better depends on the context.

 Elevation of privilege is almost always seen as far worse than denial
 of service. Hence, for URIs for example, Section 6.1 of [RFC3986]
 states: "comparison methods are designed to minimize false negatives
 while strictly avoiding false positives".

 Thus URIs were defined with a "grant privilege on match" paradigm in
 mind, where it is critical to prevent elevation of privilege while
 minimizing denial of service. Using URIs in a "deny privilege on
 match" system can thus be problematic.

2.3. Hypothetical Example

 In this example, both security principals and resources are
 identified using URIs. Foo Corp has paid example.com for access to
 the Stuff service. Foo Corp allows its employees to create accounts
 on the Stuff service. Alice gets the account
 "http://example.com/Stuff/FooCorp/alice" and Bob gets
 "http://example.com/Stuff/FooCorp/bob". It turns out, however, that
 Foo Corp's URI canonicalizer includes URI fragment components in
 comparisons whereas example.com's does not, and Foo Corp does not
 disallow the # character in the account name. So Chuck, who is a
 malicious employee of Foo Corp, asks to create an account at
 example.com with the name alice#stuff. Foo Corp's URI logic checks
 its records for accounts it has created with stuff and sees that
 there is no account with the name alice#stuff. Hence, in its
 records, it associates the account alice#stuff with Chuck and will
 only issue tokens good for use with
 "http://example.com/Stuff/FooCorp/alice#stuff" to Chuck.

 Chuck, the attacker, goes to a security token service at Foo Corp and
 asks for a security token good for
 "http://example.com/Stuff/FooCorp/alice#stuff". Foo Corp issues the

https://datatracker.ietf.org/doc/html/rfc3986#section-6.1

Thaler Expires August 27, 2013 [Page 8]

Internet-Draft Identifier Comparison February 2013

 token since Chuck is the legitimate owner (in Foo Corp's view) of the
 alice#stuff account. Chuck then submits the security token in a
 request to "http://example.com/Stuff/FooCorp/alice".

 But example.com uses a URI canonicalizer that, for the purposes of
 checking equality, ignores fragments. So when example.com looks in
 the security token to see if the requester has permission from Foo
 Corp to access the given account it successfully matches the URI in
 the security token, "http://example.com/Stuff/FooCorp/alice#stuff",
 with the requested resource name
 "http://example.com/Stuff/FooCorp/alice".

 Leveraging the inconsistencies in the canonicalizers used by Foo Corp
 and example.com, Chuck is able to successfully launch an elevation of
 privilege attack and access Alice's resource.

 Furthermore, consider an attacker using a similar corporation such as
 "foocorp" (or any variation containing a non-ASCII character that
 some humans might expect to represent the same corporation). If the
 resource holder treats them as different, but the security token
 service treats them as the same, then again elevation of privilege
 can occur.

3. Common Identifiers

 In this section, we walk through a number of common types of
 identifiers and discuss various issues related to comparison that may
 affect security whenever they are used to identify security
 principals or resources. These examples illustrate common patterns
 that may arise with other types of identifiers.

3.1. Hostnames

 Hostnames (composed of dot-separated labels) are commonly used either
 directly as identifiers, or as components in identifiers such as in
 URIs and email addresses. Another example is in [RFC5280], sections
 7.2 and 7.3 (and updated in section 3 of
 [I-D.ietf-pkix-rfc5280-clarifications]), which specify use in X.509
 Public Key Infrastructure certificates.

 In this section we discuss a number of issues in comparing strings
 that appear to be some form of hostname.

 It is first worth pointing out that the term "hostname" itself is
 often ambiguous, and hence it is important that any use clarify which
 definition is intended. Some examples of definitions include:

https://datatracker.ietf.org/doc/html/rfc5280

Thaler Expires August 27, 2013 [Page 9]

Internet-Draft Identifier Comparison February 2013

 a. A Fully-Qualified Domain Name (FQDN),
 b. An FQDN that is associated with address records in the DNS,
 c. The leftmost label in an FQDN, or
 d. The leftmost label in an FQDN that is associated with address
 records.

 The use of different definitions in different places results in
 questions such as whether "example" and "example.com" are considered
 equal or not, and hence it is important when writing new
 specifications to be clear about what definition is meant.

Section 3 of [RFC6055] discusses the differences between a "hostname"
 vs. a "DNS name", where the former is a subset of the latter by using
 a restricted set of characters. If one canonicalizer uses the "DNS
 name" definition whereas another uses a "hostname" definition, a name
 might be valid in the former but invalid in the latter. As long as
 invalid identifiers are denied privilege, this difference will not
 result in elevation of privilege.

Section 3.1 of [RFC1034] discusses the difference between a
 "complete" domain name which ends with a dot (such as
 "example.com."), vs. a multi-label relative name such as
 "example.com" that assumes the root (".") is in the suffix search
 list. In most contexts these are considered equal, but there may be
 issues if different entities in a security architecture have
 different interpretations of a relative domain name.

 [IAB1123] briefly discusses issues with the ambiguity around whether
 a label will be "alphabetic", including among other issues, how
 "alphabetic" should be interpreted in an internationalized
 environment, and whether a hostname can be interpreted as an IP
 address. We explore this last issue in more detail below.

3.1.1. IPv4 Literals

 [RFC1123] section 2.1 states:

 Whenever a user inputs the identity of an Internet host, it SHOULD
 be possible to enter either (1) a host domain name or (2) an IP
 address in dotted-decimal ("#.#.#.#") form. The host SHOULD check
 the string syntactically for a dotted-decimal number before
 looking it up in the Domain Name System.

 and

 This last requirement is not intended to specify the complete
 syntactic form for entering a dotted-decimal host number; that is
 considered to be a user-interface issue.

https://datatracker.ietf.org/doc/html/rfc6055#section-3
https://datatracker.ietf.org/doc/html/rfc1034#section-3.1

Thaler Expires August 27, 2013 [Page 10]

Internet-Draft Identifier Comparison February 2013

 In specifying the inet_addr() API, the POSIX standard [IEEE-1003.1]
 defines "IPv4 dotted decimal notation" as allowing not only strings
 of the form "10.0.1.2", but also allows octal and hexadecimal, and
 addresses with less than four parts. For example, "10.0.258",
 "0xA000001", and "012.0x102" all represent the same IPv4 address in
 standard "IPv4 dotted decimal" notation. We will refer to this as
 the "loose" syntax of an IPv4 address literal.

 In section 6.1 of [RFC3493] getaddrinfo() is defined to support the
 same (loose) syntax as inet_addr():

 If the specified address family is AF_INET or AF_UNSPEC, address
 strings using Internet standard dot notation as specified in
 inet_addr() are valid.

 In contrast, section 6.3 of the same RFC states, specifying
 inet_pton():

 If the af argument of inet_pton() is AF_INET, the src string shall
 be in the standard IPv4 dotted-decimal form: ddd.ddd.ddd.ddd where
 "ddd" is a one to three digit decimal number between 0 and 255.
 The inet_pton() function does not accept other formats (such as
 the octal numbers, hexadecimal numbers, and fewer than four
 numbers that inet_addr() accepts).

 As shown above, inet_pton() uses what we will refer to as the
 "strict" form of an IPv4 address literal. Some platforms also use
 the strict form with getaddrinfo() when the AI_NUMERICHOST flag is
 passed to it.

 Both the strict and loose forms are standard forms, and hence a
 protocol specification is still ambiguous if it simply defines a
 string to be in the "standard IPv4 dotted decimal form". And, as a
 result of these differences, names such as "10.11.12" are ambiguous
 as to whether they are an IP address or a hostname, and even
 "10.11.12.13" can be ambiguous because of the "SHOULD" in RFC 1123
 above making it optional whether to treat it as an address or a name.

 Protocols and data formats that can use addresses in string form for
 security purposes need to resolve these ambiguities. For example,
 for the host component of URIs, section 3.2.2 of [RFC3986] resolves
 the first ambiguity by only allowing the strict form, and the second
 ambiguity by specifying that it is considered an IPv4 address
 literal. New protocols and data formats should similarly consider
 using the strict form rather than the loose form in order to better
 match user expectations.

 A string might be valid under the "loose" definition, but invalid

https://datatracker.ietf.org/doc/html/rfc3493#section-6.1
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.2

Thaler Expires August 27, 2013 [Page 11]

Internet-Draft Identifier Comparison February 2013

 under the "strict" definition. As long as invalid identifiers are
 denied privilege, this difference will not result in elevation of
 privilege. Some protocols, however, use strings that can be either
 an IP address literal or a hostname. Such strings are at best
 Definite identifiers, and often turn out to be Indefinite
 identifiers. (See Section 4.1 for more discussion.)

 Furthermore, when strings can contain non-ASCII characters, they can
 contain other characters that may look like dots or digits to a human
 viewing and/or entering the identifier, especially to one who might
 expect digits to appear in his or her native script.

3.1.2. IPv6 Literals

 IPv6 addresses similarly have a wide variety of alternate but
 semantically identical string representations, as defined in section

2.2 of [RFC4291] and section 2 of [I-D.ietf-6man-uri-zoneid]. As
 discussed in section 3.2.5 of [RFC5952], this fact causes problems in
 security contexts if comparison (such as in X.509 certificates), is
 done between strings rather than between the binary representations
 of addresses.

 [RFC5952] recently specified a recommended canonical string format as
 an attempt to solve this problem, but it may not be ubiquitously
 supported at present. And, when strings can contain non-ASCII
 characters, the same issues (and more, since hexadecimal and colons
 are allowed) arise as with IPv4 literals.

 Whereas (binary) IPv6 addresses are Absolute identifiers, IPv6
 address literals are Definite identifiers, since string-to-address
 conversion for IPv6 address literals is unambiguous.

3.1.3. Internationalization

 The IETF policy on character sets and languages [RFC2277] requires
 support for UTF-8 in protocols, and as a result many protocols now do
 support non-ASCII characters. When a hostname is sent in a UTF-8
 field, there are a number of ways it may be encoded. For example,
 hostname labels might be encoded directly in UTF-8, or might first be
 Punycode-encoded [RFC3492] or even percent-encoded from UTF-8.

 For example, in URIs, [RFC3986] section 3.2.2 specifically allows for
 the use of percent-encoded UTF-8 characters in the hostname, as well
 as the use of IDNA encoding [RFC3490] using the Punycode algorithm.

 Percent-encoding is unambiguous for hostnames since the percent
 character cannot appear in the strict definition of a "hostname",
 though it can appear in a DNS name.

https://datatracker.ietf.org/doc/html/rfc4291#section-2.2
https://datatracker.ietf.org/doc/html/rfc4291#section-2.2
https://datatracker.ietf.org/doc/html/rfc5952#section-3.2.5
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc3490

Thaler Expires August 27, 2013 [Page 12]

Internet-Draft Identifier Comparison February 2013

 Punycode-encoded labels (or "A-labels") on the other hand can be
 ambiguous if hosts are actually allowed to be named with a name
 starting with "xn--", and false positives can result. While this may
 be extremely unlikely for normal scenarios, it nevertheless provides
 a possible vector for an attacker.

 A hostname comparator thus needs to decide whether a Punycode-encoded
 label should or should not be considered a valid hostname label, and
 if so, then whether it should match a label encoded in some other
 form such as a percent-encoded Unicode label (U-label).

 For example, Section 3 of "Transport Layer Security (TLS) Extensions"
 [RFC6066], states:

 "HostName" contains the fully qualified DNS hostname of the
 server, as understood by the client. The hostname is represented
 as a byte string using ASCII encoding without a trailing dot.
 This allows the support of internationalized domain names through
 the use of A-labels defined in [RFC5890]. DNS hostnames are case-
 insensitive. The algorithm to compare hostnames is described in

[RFC5890], Section 2.3.2.4.

 For some additional discussion of security issues that arise with
 internationalization, see [TR36].

3.1.4. Resolution for comparison

 Some systems (specifically Java URLs [JAVAURL]) use the rule that if
 two hostnames resolve to the same IP address(es) then the hostnames
 are considered equal. That is, the canonicalization algorithm
 involves name resolution with an IP address being the canonical form.

 For example, if resolution was done via DNS, and DNS contained:

 example.com. IN A 10.0.0.6
 example.net. CNAME example.com.
 example.org. IN A 10.0.0.6

 then the algorithm might treat all three names as equal, even though
 the third name might refer to a different entity.

 With the introduction of dynamic IP addresses, private IP addresses,
 multiple IP addresses per name, multiple address families (e.g., IPv4
 vs. IPv6), devices that roam to new locations, commonly deployed DNS
 tricks that result in the answer depending on factors such as the
 requester's location and the load on the server whose address is
 returned, etc., this method of comparison cannot be relied upon.
 There is no guarantee that two names for the same host will resolve

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc5890#section-2.3.2.4

Thaler Expires August 27, 2013 [Page 13]

Internet-Draft Identifier Comparison February 2013

 the name to the same IP addresses, nor that the addresses resolved
 refer to the same entity such as when the names resolve to private IP
 addresses, nor even that the system has connectivity (and the
 willingness to wait for the delay) to resolve names at the time the
 answer is needed. The lifetime of the identifier, and of any cached
 state from a previous resolution, also affects security (see

Section 4.4).

 In addition, a comparison mechanism that relies on the ability to
 resolve identifiers such as hostnames to other identifies such as IP
 addresses leaks information about security decisions to outsiders if
 these queries are publicly observable. (See
 [I-D.iab-privacy-considerations] for a deeper discussion of
 information disclosure.)

 Finally, it is worth noting that resolving two identifiers to
 determine if they refer to the same entity can be thought of as a use
 of such identifiers, as opposed to actually comparing the identifiers
 themselves, which is the focus of this document.

3.2. Ports and Service Names

 Port numbers and service names are discussed in depth in [RFC6335].
 Historically, there were port numbers, service names used in SRV
 records, and mnemonic identifiers for assigned port numbers (known as
 port "keywords" at [IANA-PORT]). The latter two are now unified, and
 various protocols use one or more of these types in strings. For
 example, the common syntax used by many URI schemes allows port
 numbers but not service names. Some implementations of the
 getaddrinfo() API support strings that can be either port numbers or
 port keywords (but not service names).

 For protocols that use service names that must be resolved, the
 issues are the same as those for resolution of addresses in

Section 3.1.4. In addition, Section 5.1 of [RFC6335] clarifies that
 service names/port keywords must contain at least one letter. This
 prevents confusion with port numbers in strings where both are
 allowed.

3.3. URIs

 This section looks at issues related to using URIs for security
 purposes. For example, [RFC5280], section 7.4, specifies comparison
 of URIs in certificates. Examples of URIs in security token-based
 access control systems include WS-*, SAML-P and OAuth WRAP. In such
 systems, a variety of participants in the security infrastructure are
 identified by URIs. For example, requesters of security tokens are
 sometimes identified with URIs. The issuers of security tokens and

https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc6335#section-5.1
https://datatracker.ietf.org/doc/html/rfc5280#section-7.4

Thaler Expires August 27, 2013 [Page 14]

Internet-Draft Identifier Comparison February 2013

 the relying parties who are intended to consume security tokens are
 frequently identified by URIs. Claims in security tokens often have
 their types defined using URIs and the values of the claims can also
 be URIs.

 URIs are defined with multiple components, each of which has its own
 rules. We cover each in turn below. However, it is also important
 to note that there exist multiple comparison algorithms. [RFC3986]
 section 6.2 states:

 A variety of methods are used in practice to test URI equivalence.
 These methods fall into a range, distinguished by the amount of
 processing required and the degree to which the probability of
 false negatives is reduced. As noted above, false negatives
 cannot be eliminated. In practice, their probability can be
 reduced, but this reduction requires more processing and is not
 cost-effective for all applications.
 If this range of comparison practices is considered as a ladder,
 the following discussion will climb the ladder, starting with
 practices that are cheap but have a relatively higher chance of
 producing false negatives, and proceeding to those that have
 higher computational cost and lower risk of false negatives.

 The ladder approach has both pros and cons. On the pro side, it
 allows some uses to optimize for security, and other uses to optimize
 for cost, thus allowing URIs to be applicable to a wide range of
 uses. A disadvantage is that when different approaches are taken by
 different components in the same system using the same identifiers,
 the inconsistencies can result in security issues.

3.3.1. Scheme component

 [RFC3986] defines URI schemes as being case-insensitive ASCII and in
section 6.2.2.1 specifies that scheme names should be normalized to

 lower-case characters.

 New schemes can be defined over time. In general two URIs with an
 unrecognized scheme cannot be safely compared, however. This is
 because the canonicalization and comparison rules for the other
 components may vary by scheme. For example, a new URI scheme might
 have a default port of X, and without that knowledge, a comparison
 algorithm cannot know whether "example.com" and "example.com:X"
 should be considered to match in the authority component. Hence for
 security purposes, it is safest for unrecognized schemes to be
 treated as invalid identifiers. However, if the URIs are only used
 with a "grant access on match" paradigm then unrecognized schemes can
 be supported by doing a generic case-sensitive comparison, at the
 expense of some false negatives.

https://datatracker.ietf.org/doc/html/rfc3986#section-6.2
https://datatracker.ietf.org/doc/html/rfc3986#section-6.2

Thaler Expires August 27, 2013 [Page 15]

Internet-Draft Identifier Comparison February 2013

3.3.2. Authority component

 The authority component is scheme-specific, but many schemes follow a
 common syntax that allows for userinfo, host, and port.

3.3.2.1. Host

Section 3.1 discussed issues with hostnames in general. In addition,
[RFC3986] section 3.2.2 allows future changes using the IPvFuture

 production. As with IPv4 and IPv6 literals, IPvFuture formats may
 have issues with multiple semantically identical string
 representations, and may also be semantically identical to an IPv4 or
 IPv6 address. As such, false negatives may be common if IPvFuture is
 used.

3.3.2.2. Port

 See discussion in Section 3.2.

3.3.2.3. Userinfo

 [RFC3986] defines the userinfo production that allows arbitrary data
 about the user of the URI to be placed before '@' signs in URIs. For
 example: "ftp://alice:bob@example.com/bar" has the value "alice:bob"
 as its userinfo. When comparing URIs in a security context, one must
 decide whether to treat the userinfo as being significant or not.
 Some URI comparison services for example treat
 "ftp://alice:ick@example.com" and "ftp://example.com" as being equal.

 When the userinfo is treated as being significant, it has additional
 considerations (e.g., whether it is case-sensitive or not) which we
 cover in Section 3.4.

3.3.3. Path component

 [RFC3986] supports the use of path segment values such as "./" or
 "../" for relative URIs. As discussed in section 6.2.2.3 of
 [RFC3986], they are intended only for use within a reference relative
 to some other base URI, but [RFC3986] section 5.2.4 nevertheless
 defines an algorithm to remove them as part of URI normalization.

 Unless a scheme states otherwise, the path component is defined to be
 case-sensitive. However, if the resource is stored and accessed
 using a filesystem using case-insensitive paths, there will be many
 paths that refer to the same resource. As such, false negatives can
 be common in this case.

https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.2.3
https://datatracker.ietf.org/doc/html/rfc3986#section-5.2.4

Thaler Expires August 27, 2013 [Page 16]

Internet-Draft Identifier Comparison February 2013

3.3.4. Query component

 There is the question as to whether "http://example.com/foo",
 "http://example.com/foo?", and "http://example.com/foo?bar" are each
 considered equal or different.

 Similarly, it is unspecified whether the order of values matters.
 For example, should "http://example.com/blah?ick=bick&foo=bar" be
 considered equal to "http://example.com/blah?foo=bar&ick=bick"? And
 if a domain name is permitted to appear in a query component (e.g.,
 in a reference to another URI), the same issues in Section 3.1 apply.

3.3.5. Fragment component

 Some URI formats include fragment identifiers. These are typically
 handles to locations within a resource and are used for local
 reference. A classic example is the use of fragments in HTTP URIs
 where a URI of the form "http://example.com/blah.html#ick" means
 retrieve the resource "http://example.com/blah.html" and, once it has
 arrived locally, find the HTML anchor named ick and display that.

 So, for example, when a user clicks on the link
 "http://example.com/blah.html#baz" a browser will check its cache by
 doing a URI comparison for "http://example.com/blah.html" and, if the
 resource is present in the cache, a match is declared.

 Hence comparisons for security purposes typically ignore the fragment
 component and treat all fragments as equal to the full resource.
 However, if one were actually trying to compare the piece of a
 resource that was identified by the fragment identifier, ignoring it
 would result in potential false positives.

3.3.6. Resolution for comparison

 As with Section 3.1.4 for hostnames, it may be tempting to define a
 URI comparison algorithm based on whether they resolve to the same
 content. Similar problems exist, however, including content that
 dynamically changes over time or based on factors such as the
 requester's location, potential lack of external connectivity at the
 time/place comparison is done, potentially undesirable delay
 introduced, etc.

 In addition, as noted in Section 3.1.4, resolution leaks information
 about security decisions to outsiders if the queries are publicly
 observable.

Thaler Expires August 27, 2013 [Page 17]

Internet-Draft Identifier Comparison February 2013

3.4. Email Address-like Identifiers

Section 3.4.1 of [RFC5322] defines the syntax of an email address-
 like identifier, and Section 3.2 of [RFC6532] updates it to support
 internationalization. [RFC5280], section 7.5, further discusses the
 use of internationalized email addresses in certificates.

 [RFC6532] use in certificates points to [RFC6530], where Section 13
 of that document contains a discussion of many issues resulting from
 internationalization.

 Email address-like identifiers have a local part and a domain part.
 The issues with the domain part are essentially the same as with
 hostnames, covered earlier in Section 3.1.

 The local part is left for each domain to define. People quite
 commonly use email addresses as usernames with web sites such as
 banks or shopping sites, but the site doesn't know whether
 foo@example.com is the same person as FOO@example.com. Thus email
 address-like identifiers are typically Indefinite identifiers.

 To avoid false positives, some security mechanisms (such as
 [RFC5280]) compare the local part using an exact match. Hence, like
 URIs, email address-like identifiers are designed for use in grant-
 on-match security schemes, not in deny-on-match schemes.

 Furthermore, when such identifiers are actually used as email
 addresses, Section 2.4 of [RFC5321] states that the local part of a
 mailbox must be treated as case sensitive, but if a mailbox is stored
 and accessed using a fileystem using case-insensitive paths, there
 may be many paths that refer to the same mailbox. As such, false
 negatives can be common in this case.

4. General Issues

4.1. Conflation

 There are a number of examples (some in the preceding sections) of
 strings that conflate two types of identifiers, using some heuristic
 to try to determine which type of identifier is given. Similarly,
 two ways of encoding the same type of identifier might be conflated
 within the same string.

 Some examples include:
 1. A string that might be an IPv4 address literal or an IPv6 address
 literal

https://datatracker.ietf.org/doc/html/rfc5322#section-3.4.1
https://datatracker.ietf.org/doc/html/rfc6532#section-3.2
https://datatracker.ietf.org/doc/html/rfc5280#section-7.5
https://datatracker.ietf.org/doc/html/rfc6530
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5321#section-2.4

Thaler Expires August 27, 2013 [Page 18]

Internet-Draft Identifier Comparison February 2013

 2. A string that might be an IP address literal or a hostname
 3. A string that might be a port number or a service name
 4. A DNS label that might be literal or be Punycode-encoded

 Strings that allow such conflation can only be considered Definite if
 there exists a well-defined rule to determine which identifier type
 is meant. One way to do so is to ensure that the valid syntax for
 the two is disjoint (e.g., distinguishing IPv4 vs. IPv6 address
 literals by the use of colons in the latter). A second way to do so
 is to define a precedence rule that results in some identifiers being
 inaccessible via a conflated string (e.g., a host literally named
 "xn--de-jg4avhby1noc0d" may be inaccessible due to the "xn--" prefix
 denoting the use of Punycode encoding). In some cases, such
 inaccessible space may be reserved so that the actual set of
 identifiers in use are unambiguous. For example, Section 2.5.5.2 of
 [RFC4291] defines a range of the IPv6 address space for representing
 IPv4 addresses.

4.2. Internationalization

 In addition to the issues with hostnames discussed in Section 3.1.3,
 there are a number of internationalization issues that apply to many
 types of Definite and Indefinite identifiers.

 First, there is no DNS mechanism for identifying whether non-
 identical strings would be seen by a human as being equivalent.
 There are problematic examples even with ASCII (Basic Latin) strings
 including regional spelling variations such as "color" and "colour"
 and many non-English cases including partially-numeric strings in
 Arabic script contexts, Chinese strings in Simplified and Traditional
 forms, and so on. Attempts to produce such alternate forms
 algorithmically could produce false positives and hence have an
 adverse affect on security.

 Second, some strings are visually confusable with others, and hence
 if a security decision is made by a user based on visual inspection,
 many opportunities for false positives exist. As such, using visual
 inspection for security is unreliable. In addition to the security
 issues, visual confusability also adversely affects the usability of
 identifiers distributed via visual mediums. Similar issues can arise
 with audible confusability when using audio (e.g., for radio
 distribution, accessibility to the blind, etc.) in place of a visual
 medium.

 Determining whether a string is a valid identifier should typically
 be done after, or as part of, canonicalization. Otherwise an
 attacker might use the canonicalization algorithm to inject (e.g.,
 via percent encoding, NFKC, or non-shortest-form UTF-8) delimiters

https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2

Thaler Expires August 27, 2013 [Page 19]

Internet-Draft Identifier Comparison February 2013

 such as '@' in an email address-like identifier, or a '.' in a
 hostname.

 Any case-insensitive comparisons need to define how comparison is
 done, since such comparisons may vary by locale of the endpoint. As
 such, using case-insensitive comparisons in general often result in
 identifiers being either Indefinite or, if the legal character set is
 restricted (e.g., to ASCII), then Definite.

 See also [WEBER] for a more visual discussion of many of these
 issues.

 Finally, the set of permitted characters and the canonical form of
 the characters (and hence the canonicalization algorithm) sometimes
 varies by protocol today, even when the intent is to use the same
 identifier, such as when one protocol passes identifiers to the
 other. See [I-D.ietf-precis-problem-statement] for further
 discussion.

4.3. Scope

 Another issue arises when an identifier (e.g., "localhost",
 "10.11.12.13", etc.) is not globally unique. [RFC3986] Section 1.1
 states:

 URIs have a global scope and are interpreted consistently
 regardless of context, though the result of that interpretation
 may be in relation to the end-user's context. For example,
 "http://localhost/" has the same interpretation for every user of
 that reference, even though the network interface corresponding to
 "localhost" may be different for each end-user: interpretation is
 independent of access.

 Whenever a non-globally-unique identifier is passed to another entity
 outside of the scope of uniqueness, it will refer to a different
 resource, and can result in a false positive. This problem is often
 addressed by using the identifier together with some other unique
 identifier of the context. For example "alice" may uniquely identify
 a user within a system, but must be used with "example.com" (as in
 "alice@example.com") to uniquely identify the context outside of that
 system.

 It is also worth noting that non-globally-scoped IPv6 addresses can
 be written with, or otherwise associated with, a "zone ID" to
 identify the context (see [RFC4007] for more information). However,
 zone IDs are only unique within a host, so they typically narrow,
 rather than expand, the scope of uniqueness of the resulting
 identifier.

https://datatracker.ietf.org/doc/html/rfc3986#section-1.1
https://datatracker.ietf.org/doc/html/rfc4007

Thaler Expires August 27, 2013 [Page 20]

Internet-Draft Identifier Comparison February 2013

4.4. Temporality

 Often identifiers are not unique across all time, but have some
 lifetime associated with them after which they may be reassigned to
 another entity. For example, bob@example.com might be assigned to an
 employee of the Example company, but if he leaves and another Bob is
 later hired, the same identifier might be reused. As another
 example, IP address 203.0.113.1 might be assigned to one subscriber,
 and then later reassigned to another subscriber. Security issues can
 arise if updates are not made in all entities that store the
 identifier (e.g., in an access control list as discussed in

Section 2, or in a resolution cache as discussed in Section 3.1.4).
 This issue is similar to the issue of scope discussed in Section 4.3,
 except that the scope of uniqueness is temporal rather than
 topological.

5. Security Considerations

 This entire document is about security considerations.

 To minimize elevation of privilege issues, any system that requires
 the ability to use both deny and allow operations within the same
 identifier space should avoid the use of Indefinite identifiers in
 security comparisons.

 To minimize future security risks, any new identifiers being designed
 should specify an Absolute or Definite comparison algorithm, and if
 extensibility is allowed (e.g., as new schemes in URIs allow) then
 the comparison algorithm should remain invariant so that unrecognized
 extensions can be compared. That is, security risks can be reduced
 by specifying the comparison algorithm, making sure to resolve any
 ambiguities pointed out in this document (e.g., "standard dotted
 decimal").

 Some issues (such as unrecognized extensions) can be mitigated by
 treating such identifiers as invalid. Validity checking of
 identifiers is further discussed in [RFC3696].

 Perhaps the hardest issues arise when multiple protocols are used
 together, such as in the figure in Section 2, where the two protocols
 are defined or implemented using different comparison algorithms.
 When constructing an architecture that uses multiple such protocols,
 designers should pay attention to any differences in comparison
 algorithms among the protocols, in order to fully understand the
 security risks. An area for future work is how to deal with such
 security risks in current systems.

https://datatracker.ietf.org/doc/html/rfc3696

Thaler Expires August 27, 2013 [Page 21]

Internet-Draft Identifier Comparison February 2013

6. Acknowledgements

 Yaron Goland contributed to the discussion on URIs. Patrik Faltstrom
 contributed to the background on identifiers. John Klensin
 contributed text in a number of different sections. Additional
 helpful feedback and suggestions came from Bernard Aboba, Fred Baker,
 Leslie Daigle, Mark Davis, Jeff Hodges, Russ Housley, Christian
 Huitema, Magnus Nystrom, and Chris Weber.

7. IANA Considerations

 This document requires no actions by the IANA.

8. Informative References

 [I-D.iab-privacy-considerations]
 Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols",

draft-iab-privacy-considerations-03 (work in progress),
 July 2012.

 [I-D.ietf-6man-uri-zoneid]
 Carpenter, B., Cheshire, S., and R. Hinden, "Representing
 IPv6 Zone Identifiers in Address Literals and Uniform
 Resource Identifiers", draft-ietf-6man-uri-zoneid-06 (work
 in progress), December 2012.

 [I-D.ietf-pkix-rfc5280-clarifications]
 Yee, P., "Updates to the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", draft-ietf-pkix-rfc5280-clarifications-11
 (work in progress), November 2012.

 [I-D.ietf-precis-problem-statement]
 Blanchet, M. and A. Sullivan, "Stringprep Revision and
 PRECIS Problem Statement",

draft-ietf-precis-problem-statement-09 (work in progress),
 January 2013.

 [IAB1123] IAB, "The interpretation of rules in the ICANN gTLD
 Applicant Guidebook", February 2012, <http://www.iab.org/
 documents/correspondence-reports-documents/2012-2/
 iab-statement-the-interpretation-of-rules-in-the-icann-
 gtld-applicant-guidebook>.

https://datatracker.ietf.org/doc/html/draft-iab-privacy-considerations-03
https://datatracker.ietf.org/doc/html/draft-ietf-6man-uri-zoneid-06
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-rfc5280-clarifications-11
https://datatracker.ietf.org/doc/html/draft-ietf-precis-problem-statement-09
http://www.iab.org/

Thaler Expires August 27, 2013 [Page 22]

Internet-Draft Identifier Comparison February 2013

 [IANA-PORT]
 IANA, "PORT NUMBERS", June 2011,
 <http://www.iana.org/assignments/port-numbers>.

 [IEEE-1003.1]
 IEEE and The Open Group, "The Open Group Base
 Specifications, Issue 6 IEEE Std 1003.1, 2004 Edition",
 IEEE Std 1003.1, 2004.

 [JAVAURL] Oracle, "Class URL, Java(TM) Platform, Standard Ed. 7",
 2011, <http://docs.oracle.com/javase/7/docs/api/java/net/

URL.html>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

 [RFC1123] Braden, R., "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, October 1989.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",

RFC 3490, March 2003.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, March 2003.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",

RFC 3493, February 2003.

 [RFC3696] Klensin, J., "Application Techniques for Checking and
 Transformation of Names", RFC 3696, February 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4007] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and
 B. Zill, "IPv6 Scoped Address Architecture", RFC 4007,
 March 2005.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

http://www.iana.org/assignments/port-numbers
http://docs.oracle.com/javase/7/docs/api/java/net/URL.html
http://docs.oracle.com/javase/7/docs/api/java/net/URL.html
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3696
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4007
https://datatracker.ietf.org/doc/html/rfc4291

Thaler Expires August 27, 2013 [Page 23]

Internet-Draft Identifier Comparison February 2013

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952, August 2010.

 [RFC6055] Thaler, D., Klensin, J., and S. Cheshire, "IAB Thoughts on
 Encodings for Internationalized Domain Names", RFC 6055,
 February 2011.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, March 2011.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,

RFC 6335, August 2011.

 [RFC6530] Klensin, J. and Y. Ko, "Overview and Framework for
 Internationalized Email", RFC 6530, February 2012.

 [RFC6532] Yang, A., Steele, S., and N. Freed, "Internationalized
 Email Headers", RFC 6532, February 2012.

 [TR36] Unicode Consortium, "Unicode Security Considerations",
 Unicode Technical Report 36, August 2004,
 <http://www.unicode.org/reports/tr36/>.

 [WEBER] Weber, C., "Attacking Software Globalization", March 2010,
 <http://www.lookout.net/files/

Chris_Weber_Character%20Transformations%20v1.7_IUC33.pdf>.

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5952
https://datatracker.ietf.org/doc/html/rfc6055
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/bcp165
https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc6530
https://datatracker.ietf.org/doc/html/rfc6532
http://www.unicode.org/reports/tr36/
http://www.lookout.net/files/Chris_Weber_Character%20Transformations%20v1.7_IUC33.pdf
http://www.lookout.net/files/Chris_Weber_Character%20Transformations%20v1.7_IUC33.pdf

Thaler Expires August 27, 2013 [Page 24]

Internet-Draft Identifier Comparison February 2013

Author's Address

 Dave Thaler (editor)
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 703 8835
 Email: dthaler@microsoft.com

Thaler Expires August 27, 2013 [Page 25]

