
Network Working Group D. Thaler
Internet-Draft Microsoft
Intended status: Informational J. Klensin
Expires: May 14, 2010
 S. Cheshire
 Apple
 November 10, 2009

IAB Thoughts on Encodings for Internationalized Domain Names
draft-iab-idn-encoding-01.txt

Abstract

 This document explores issues with Internationalized Domain Names
 (IDNs) that result from the use of various encoding schemes such as
 Punycode and UTF-8.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 14, 2010.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Thaler, et al. Expires May 14, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft IDN Encodings November 2009

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

Table of Contents

1. Introduction . 3
1.1. APIs . 7

2. Use of Non-DNS Protocols 9
3. Use of Non-ASCII in DNS 10
3.1. Examples . 13

4. Recommendations . 15
5. Security Considerations 16
6. IANA Considerations . 17
7. IAB Members at the time of this writing 17
8. References . 17
8.1. Normative References 17
8.2. Informative References 18

 Authors' Addresses . 20

http://trustee.ietf.org/license-info

Thaler, et al. Expires May 14, 2010 [Page 2]

Internet-Draft IDN Encodings November 2009

1. Introduction

 The goal of this document is to explore what can be learned from some
 current difficulties in implementing Internationalized Domain Names
 (IDNs). Although some elements of this exploration may immediately
 feed back into current IETF work, it is explicitly not the intention
 for this document to influence any current working group charter.

 A domain name consists of a set of labels, conventionally written
 separated with dots. An Internationalized Domain Name (IDN) is a
 domain name that contains one or more labels that, in turn, contain
 one or more non-ASCII characters. Just as with plain ASCII domain
 names, each IDN label must be encoded using some mechanism before it
 can be transmitted in network packets, stored in memory, stored on
 disk, etc. These encodings need to be reversible, but they need not
 store domain names the same way humans conventionally write them on
 paper. For example, when transmitted over the network in DNS
 packets, domain name labels are *not* separated with dots.

 IDNA, discussed later in this document, is the standard that defines
 the use and coding of internationalized domain names for use on the
 public Internet. It is defined in several documents, with the
 primary one of those being "Internationalizing Domain Names in
 Applications (IDNA)" [RFC3490]. A revision to the IDNA Standard is
 undergoing IETF Last Call review as this document is being written.
 That revision is reflected in [IDNA2008-Defs] and associated
 materials. Except where noted, the two versions are approximately
 the same with regard to the issues discussed in this document.
 However, their terminology differs somewhat; this document reflects
 the terminology of the earlier version.

 Punycode [RFC3492] is a mechanism for encoding a Unicode [Unicode]
 string in ASCII characters using only letters, digits, and hyphens.
 When a Unicode label is encoded with Punycode, it is prefixed with
 "xn--", which assumes that other DNS labels are no longer allowed to
 start with these four characters. Consequently, when Punycode
 encoding is assumed, any DNS labels beginning with "xn--" now have a
 different meaning (the Punycode encoding of a label containing one or
 more non-ASCII characters) or no defined meaning at all (in the case
 of labels that are not well-formed Punycode).

 The term "ToASCII" refers to the process of encoding a label
 containing one or more non-ASCII characters as an ASCII string
 beginning with "xn--". It consists of a combination of a non-
 reversible character mapping operation (e.g., converting upper case
 characters to lower case characters), plus a reversible encoding
 algorithm ('Punycode') that encodes a sequence of Unicode code points
 (which may contain code points above 127) as a sequence of ASCII code

https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc3492

Thaler, et al. Expires May 14, 2010 [Page 3]

Internet-Draft IDN Encodings November 2009

 points (containing only ASCII code points for letters, digits and
 hyphens). The term "ToUnicode" refers to the process of reversing
 the Punycode encoding, but not reversing the (irreversible) character
 mapping operation.

 ISO-2022-JP [RFC1468] is a mechanism for encoding a string of ASCII
 and Japanese characters, where an ASCII character is preserved as-is.

 Unicode [Unicode] is a list of characters (including non-spacing
 marks that are used to form some other characters), where each
 character is assigned an integer value, called a code point. In
 simple terms a Unicode string is a string of integer code point
 values in the range 0 to 1,114,111 (10FFFF in base 16), which
 represent a string of Unicode characters. These integer code points
 must be encoded using some mechanism before they can be transmitted
 in network packets, stored in memory, stored on disk, etc. Some
 common ways of encoding these integer code point values in computer
 systems include UTF-8, UTF-16, and UTF-32. In addition to the
 material below, those forms and the tradeoffs among them are
 discussed in Chapter 2 of The Unicode Standard [Unicode].

 UTF-8 [RFC3629] is a mechanism for encoding a Unicode code point in a
 variable number of 8-bit octets, where an ASCII code point is
 preserved as-is. Those octets encode a string of integer code point
 values, which represent a string of Unicode characters.

 UTF-16 (formerly UCS-2) is a mechanism for encoding a Unicode code
 point in one or two 16-bit integers, described in detail in Sections
 3.9 and 3.10 of The Unicode Standard [Unicode]. A UTF-16 string
 encodes a string of integer code point values that represent a string
 of Unicode characters.

 UTF-32 (formerly UCS-4), also described in [Unicode] Sections 3.9 and
 3.10, is a mechanism for encoding a Unicode code point in a single
 32-bit integer. A UTF-32 string is thus a string of 32-bit integer
 code point values, which represent a string of Unicode characters.

 Note that UTF-16 and UTF-32 codings result in some all-zero octets
 when code points occur early in the Unicode sequence.

 Different applications, APIs, and protocols use different encoding
 schemes today. Historically, many of them were originally defined to
 use only ASCII. Internationalizing Domain Names in Applications
 (IDNA) [RFC3490] defined a mechanism that required changes to
 applications, but in attempt not to change APIs or servers, specified
 that Punycode is to be used. In some ways this could be seen as not
 changing the existing APIs, in the sense that the strings being
 passed to and from the APIs were still apparently ASCII strings. In

https://datatracker.ietf.org/doc/html/rfc1468
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3490

Thaler, et al. Expires May 14, 2010 [Page 4]

Internet-Draft IDN Encodings November 2009

 other ways it was a very profound change to the existing APIs,
 because while those strings were still syntactically valid ASCII
 strings, they no longer meant the same thing as they used to. What
 looked like a plain ASCII string to one piece of software or library
 could be seen by another piece of software or library (with the
 application of out-of-band information) to be in fact an encoding of
 a Unicode string.

Section 1.3 of the IDNA specification [RFC3490] states:

 The IDNA protocol is contained completely within applications. It
 is not a client-server or peer-to-peer protocol: everything is
 done inside the application itself. When used with a DNS resolver
 library, IDNA is inserted as a "shim" between the application and
 the resolver library. When used for writing names into a DNS
 zone, IDNA is used just before the name is committed to the zone.

 Figure 1 depicts a simplistic architecture that a naive reader might
 assume from the paragraph quoted above. (A variant of this same
 picture appears in Section 6 of the IDNA specification [RFC3490]
 further strengthening this assumption.)

 +---+
 |Host |
 | +-------------+ |
 | | Application | |
 | +------+------+ |
 | | |
 | +----+----+ |
 | | DNS | |
 | | Resolver| |
 | | Library | |
 | +----+----+ |
 | | |
 +---+
 |
 _________|_________
 / \
 / \
 / \
 | Internet |
 \ /
 \ /
 ___________________/

 Simplistic Architecture

 Figure 1

https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc3490

Thaler, et al. Expires May 14, 2010 [Page 5]

Internet-Draft IDN Encodings November 2009

 There are, however, two problems with this simplistic architecture
 that cause it to differ from reality.

 First, resolver APIs on Operating Systems (OSs) today (MacOS,
 Windows, Linux, etc.) are not DNS-specific. They typically provide a
 layer of indirection so that the application can work independent of
 the name resolution mechanism, which could be DNS, mDNS
 [I-D.cheshire-dnsext-multicastdns], LLMNR [RFC4795], NetBIOS-over-TCP
 [RFC1001][RFC1002], etc/hosts file [RFC0952], NIS [NIS], or anything
 else. For example, "Basic Socket Interface Extensions for IPv6"
 [RFC3493] specifies the getaddrinfo() API and contains many phrases
 like "For example, when using the DNS" and "any type of name
 resolution service (for example, the DNS)". Importantly, DNS is
 mentioned only as an example, and the application has no knowledge as
 to whether DNS or some other protocol will be used.

 Second, even with the DNS protocol, private name spaces (sometimes
 including private uses of the DNS), do not necessarily use the same
 character set encoding scheme as the public Internet name space.

 We will discuss each of the above issues in subsequent sections. For
 reference, Figure 2 depicts a more realistic architecture on typical
 hosts today (which don't have IDNA inserted as a shim immediately
 above the DNS resolver library). More generally, the host may be
 attached to one or more local networks, each of which may or may not
 be connected to the public Internet and may or may not have a private
 name space.

https://datatracker.ietf.org/doc/html/rfc4795
https://datatracker.ietf.org/doc/html/rfc1001
https://datatracker.ietf.org/doc/html/rfc0952
https://datatracker.ietf.org/doc/html/rfc3493

Thaler, et al. Expires May 14, 2010 [Page 6]

Internet-Draft IDN Encodings November 2009

 +---+
 |Host |
 | +-------------+ |
 | | Application | |
 | +------+------+ |
 | | |
 | +------+------+ |
 | | Generic | |
 | | Name | |
 | | Resolution | |
 | | API | |
 | +------+------+ |
 | | |
 | +-----+------+---+--+-------+-----+ |
 | | | | | | | |
 | +-+-++--+--++--+-++---+---++--+--++-+-+ |
 | |DNS||LLMNR||mDNS||NetBIOS||hosts||...| |
 | +---++-----++----++-------++-----++---+ |
 | |
 +---+
 |
 ______|______
 / \
 / \
 / local \
 \ network /
 \ /
 _____________/
 |
 _________|_________
 / \
 / \
 / \
 | Internet |
 \ /
 \ /
 ___________________/

 Realistic Architecture

 Figure 2

1.1. APIs

Section 6.2 of the IDNA specification [RFC3490] states:

https://datatracker.ietf.org/doc/html/rfc3490

Thaler, et al. Expires May 14, 2010 [Page 7]

Internet-Draft IDN Encodings November 2009

 It is expected that new versions of the resolver libraries in the
 future will be able to accept domain names in other charsets than
 ASCII, and application developers might one day pass not only
 domain names in Unicode, but also in local script to a new API for
 the resolver libraries in the operating system. Thus the ToASCII
 and ToUnicode operations might be performed inside these new
 versions of the resolver libraries.

 Resolver APIs such as getaddrinfo() and its predecessor
 gethostbyname() were defined to accept "char *" arguments, meaning
 they accept a string of bytes, terminated with a NULL (0) byte.
 Because of the use of a NULL octet as a string terminator, this is
 sufficient for ASCII strings, Punycode strings, and even ISO-2022-JP
 and UTF-8 strings (unless an implementation artificially precludes
 them), but not UTF-16 or UTF-32 strings. Several operating systems
 historically used in Japan will accept (and expect) ISO-2022-JP
 strings in such APIs. Some platforms used worldwide also have new
 versions of the APIs (e.g., GetAddrInfoW() on Windows) that accept
 other encoding schemes such as UTF-16.

 It is worth noting that an API using "char *" arguments can
 distinguish between ASCII, Punycode, ISO-2022-JP, and UTF-8 labels in
 names if the coding is known to be one of those four. An example
 method is as follows:
 o if the label contains an ESC (0x1B) byte the label is ISO-2022-JP;
 otherwise,
 o if any byte in the label has the high bit set, the label is UTF-8;
 otherwise,
 o if the label starts with "xn--" then it contains a string in
 Punycode encoding; otherwise,
 o the label is ASCII.
 Again this assumes that ASCII labels never start with "xn--", and
 also that UTF-8 strings never contain an ESC character. Also the
 above is merely an illustration; UTF-8 can be detected and
 distinguished from other 8-bit encodings with high precision [MJD].

 It is more difficult or impossible to distinguish the ISO 8859
 character sets from each other. Similarly, it is not possible in
 general to distinguish between ISO-2022-JP and any other encoding
 based on ISO 2022 code table switching.

 Although it is possible (as in the example above) to distinguish some
 encodings when not explicitly specified, it is cleaner to have the
 encodings specified explicitly, such as specifying UTF-16 for
 GetAddrInfoW(), or specifying explicitly which APIs expect UTF-8
 strings.

Thaler, et al. Expires May 14, 2010 [Page 8]

Internet-Draft IDN Encodings November 2009

2. Use of Non-DNS Protocols

 As noted earlier, typical name resolution libraries are not DNS-
 specific. Furthermore, some protocols are defined to use encoding
 schemes other than Punycode. For example, mDNS
 [I-D.cheshire-dnsext-multicastdns] specifies that UTF-8 be used.
 Indeed, the IETF policy on character sets and languages [RFC2277]
 states:

 Protocols MUST be able to use the UTF-8 charset, which consists of
 the ISO 10646 coded character set combined with the UTF-8
 character encoding scheme, as defined in [10646] Annex R
 (published in Amendment 2), for all text. Protocols MAY specify,
 in addition, how to use other charsets or other character encoding
 schemes for ISO 10646, such as UTF-16, but lack of an ability to
 use UTF-8 is a violation of this policy; such a violation would
 need a variance procedure ([BCP9] section 9) with clear and solid
 justification in the protocol specification document before being
 entered into or advanced upon the standards track. For existing
 protocols or protocols that move data from existing datastores,
 support of other charsets, or even using a default other than
 UTF-8, may be a requirement. This is acceptable, but UTF-8
 support MUST be possible.

 Applications that convert an IDN to Punycode before calling
 getaddrinfo() will result in name resolution failures if the Punycode
 name is directly used in such protocols. Having libraries or
 protocols to convert from Punycode to the encoding scheme defined by
 the protocol (e.g., UTF-8) would require changes to APIs and/or
 servers, which IDNA was intended to avoid.

 As a result, applications that assume that non-ASCII names are
 resolved using the public DNS and blindly convert them to Punycode
 without knowledge of what protocol will be selected by the name
 resolution library, have problems. Furthermore, name resolution
 libraries often try multiple protocols until one succeeds, because
 they are defined to use a common name space. For example, the hosts
 file, DNS, and NetBIOS-over-TCP are all defined to be able to share a
 common syntax (e.g., see ([RFC0952], [RFC1001] section 11.1.1, and

[RFC1034] section 2.1). This means that when an application passes a
 name to be resolved, resolution may in fact be attempted using
 multiple protocols, each with a potentially different encoding
 scheme. For this to work successfully, the name must be converted to
 the appropriate encoding scheme only after the choice is made to use
 that protocol. In general, this cannot be done by the application
 since the choice of protocol is not made by the application.

https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc0952
https://datatracker.ietf.org/doc/html/rfc1001#section-11.1.1
https://datatracker.ietf.org/doc/html/rfc1034#section-2.1

Thaler, et al. Expires May 14, 2010 [Page 9]

Internet-Draft IDN Encodings November 2009

3. Use of Non-ASCII in DNS

 A common misconception is that DNS only supports names that can be
 expressed using letters, digits, and hyphens.

 This misconception originally stemmed from the definition in 1985 of
 an "Internet host name" (and net, gateway, and domain name) for use
 in the "hosts" file [RFC0952]. An Internet host name was defined
 therein as including only letters, digits, and hyphens, where upper
 and lower case letters were to be treated as identical. The DNS
 specification [RFC1034] section 3.5 entitled "Preferred name syntax"
 then repeated this definition in 1987, saying that this "syntax will
 result in fewer problems with many applications that use domain names
 (e.g., mail, TELNET)".

 The confusion was thus left as to whether the "preferred" name syntax
 was a mandatory restriction in DNS, or merely "preferred".

 The definition of an Internet host name was updated in 1989
 ([RFC1123] section 2.1) to allow names starting with a digit (to
 support IPv4 addresses in dotted-decimal form). Section 6.1 of
 "Requirements for Internet Hosts -- Application and Support"
 [RFC1123] discusses the use of DNS (and the hosts file) for resolving
 host names to IP addresses and vice versa. This led to confusion as
 to whether all names in DNS are "host names", or whether a "host
 name" is merely a special case of a DNS name.

 By 1997, things had progressed to a state where it was necessary to
 clarify these areas of confusion. "Clarifications to the DNS
 Specification" [RFC2181] section 11 states:

 The DNS itself places only one restriction on the particular
 labels that can be used to identify resource records. That one
 restriction relates to the length of the label and the full name.
 The length of any one label is limited to between 1 and 63 octets.
 A full domain name is limited to 255 octets (including the
 separators). The zero length full name is defined as representing
 the root of the DNS tree, and is typically written and displayed
 as ".". Those restrictions aside, any binary string whatever can
 be used as the label of any resource record. Similarly, any
 binary string can serve as the value of any record that includes a
 domain name as some or all of its value (SOA, NS, MX, PTR, CNAME,
 and any others that may be added). Implementations of the DNS
 protocols must not place any restrictions on the labels that can
 be used.

 Hence, it clarified that the restriction to letters, digits, and
 hyphens does not apply to DNS names in general, nor to records that

https://datatracker.ietf.org/doc/html/rfc0952
https://datatracker.ietf.org/doc/html/rfc1034#section-3.5
https://datatracker.ietf.org/doc/html/rfc1123#section-2.1
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc2181#section-11

Thaler, et al. Expires May 14, 2010 [Page 10]

Internet-Draft IDN Encodings November 2009

 include "domain names". Hence the "preferred" name syntax described
 in the original DNS specification [RFC1034] is indeed merely
 "preferred", not mandatory.

 Since there is no restriction even to ASCII, let alone letter-digit-
 hyphen use, DNS is in conformance with the IETF requirement to allow
 UTF-8 [RFC2277].

 Using UTF-16 or UTF-32 encoding, however, would not be ideal for use
 in DNS packets or APIs because existing software already uses ASCII,
 and UTF-16 and UTF-32 strings can contain all-zero octets that
 existing software may interpret as the end of the string. To use
 UTF-16 or UTF-32 one would need some way of knowing whether the
 string was encoded using ASCII, UTF-16, or UTF-32, and indeed for
 UTF-16 or UTF-32 whether it was big-endian or little-endian encoding.
 In contrast, UTF-8 works well because any 7-bit ASCII string is also
 a UTF-8 string representing the same characters.

 If a private name space is defined to use UTF-8 (and not other
 encodings such as UTF-16 or UTF-32), there's no need for a mechanism
 to know whether a string was encoded using ASCII or UTF-8, because
 (for any string that can be represented using ASCII) the
 representations are exactly the same. In other words, for any string
 that can be represented using ASCII it doesn't matter whether it is
 interpreted as ASCII or UTF-8 because both encodings are the same,
 and for any string that can't be represented using ASCII, it's
 obviously UTF-8. In addition, unlike UTF-16 and UTF-32, ASCII and
 UTF-8 are both byte-oriented encodings so the question of big-endian
 or little-endian encoding doesn't apply.

 While implementations of the DNS protocol must not place any
 restrictions on the labels that can be used, applications that use
 the DNS are free to impose whatever restrictions they like, and many
 have. The above rules permit a domain name label that contains
 unusual characters, such as embedded spaces which many applications
 would consider a bad idea. For example, the SMTP protocol [RFC5321],
 but going back to the original specification in [RFC0821], constrains
 the character set usable in email addresses. There is now an effort
 underway to permit SMTP to support internationalized email addresses
 via an extension.

 Shortly after the DNS Clarifications [RFC2181] and IETF character
 sets and languages policy [RFC2277] were published, the need for
 internationalized names within private name spaces (i.e., within
 enterprises) arose. The current (and past, predating Punycode)
 practice within enterprises that support other languages is to put
 UTF-8 names in their internal DNS servers in a private name space.
 For example, "Using the UTF-8 Character Set in the Domain Name

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc5321
https://datatracker.ietf.org/doc/html/rfc0821
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc2277

Thaler, et al. Expires May 14, 2010 [Page 11]

Internet-Draft IDN Encodings November 2009

 System" [I-D.skwan-utf8-dns-00] was first written in 1997, and was
 then widely deployed in Windows. The use of UTF-8 names in DNS was
 similarly implemented and deployed in MacOS, simply by virtue of the
 fact that applications blindly passed UTF-8 strings to the name
 resolution APIs, and the name resolution APIs blindly passed those
 UTF-8 strings to the DNS servers, and the DNS servers correctly
 answered those queries, and from the user's point of view everything
 worked properly without any special new code being written, except
 that ASCII is matched case-insensitively whereas UTF-8 is not
 (although some enterprise DNS servers reportedly attempt to do case-
 insensitive matching on UTF-8 within private name spaces). Within a
 private name space, and especially in light of the IETF UTF-8 policy
 [RFC2277], it was reasonable to assume within a private name space
 that binary strings were encoded in UTF-8.

 [EDITOR'S NOTE: There are also normalization/mapping issues.
 Currently we only explore encoding issues.]

 Five years after UTF-8 was already in use in private name spaces in
 DNS, Punycode began to be developed (during the period from 2002
 [I-D.ietf-idn-punycode-00] to 2003 [RFC3492]) for use in the public
 DNS name space. This publication thus resulted in having to use
 different encodings for different name spaces (where UTF-8 for
 private name spaces was already deployed). Hence, referring back to
 Figure 2, a different encoding scheme may be in use on the Internet
 vs. a local network.

 In general a host may be connected to zero or more networks using
 private name spaces, plus potentially the public name space.
 Applications that convert an IDN to Punycode before calling
 getaddrinfo() will result in name resolution failures if the name is
 actually registered in a private name space in some other encoding
 (e.g., UTF-8). Having libraries or protocols convert from Punycode
 to the encoding used by a private name space (e.g., UTF-8) would
 require changes to APIs and/or servers, which IDNA was intended to
 avoid.

 Also, a fully-qualified domain name (FQDN) to be resolved may be
 obtained directly from an application, or it may be composed by the
 DNS resolver itself from a single label obtained from an application
 by using a configured suffix search list, and the resulting FQDN may
 use multiple encodings in different labels. For more information on
 the suffix search list, see section 6 of "Common DNS Implementation
 Errors and Suggested Fixes" [RFC1536], the DHCP Domain Search Option
 [RFC3397], and section 4 of "DNS Configuration options for DHCPv6"
 [RFC3646].

 As noted in [RFC1536] section 6, the community has had bad

https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc1536
https://datatracker.ietf.org/doc/html/rfc3397
https://datatracker.ietf.org/doc/html/rfc3646
https://datatracker.ietf.org/doc/html/rfc1536#section-6

Thaler, et al. Expires May 14, 2010 [Page 12]

Internet-Draft IDN Encodings November 2009

 experiences with "searching" for domain names by trying multiple
 variations or appending different suffixes. Such searching can yield
 inconsistent results depending on the order in which alternatives are
 tried. Nonetheless, the practice is widespread and must be
 considered.

 The practice of searching for names, whether by the use of a suffix
 search list or by searching in different namespaces can yield
 inconsistent results. For example, even when a suffix search list is
 only used when an application provides a name containing no dots, two
 clients with different configured suffix search lists can get
 different answers, and the same client could get different answers at
 different times if it changes its configuration (e.g., when moving to
 another network). A deeper discussion of this topic is outside the
 scope of this document.

3.1. Examples

 Some examples of cases that can happen in existing implementations
 today (where {non-ASCII} below represents some user-entered non-ASCII
 string) are:
 1. User types in {non-ASCII}.{non-ASCII}.com, and the application
 passes it, in the form of a UTF-8 string, to getaddrinfo or
 gethostbyname or equivalent.
 * The DNS resolver passes the (UTF-8) string unmodified to a DNS
 server.
 2. User types in {non-ASCII}.{non-ASCII}.com, and the application
 passes it to a name resolution API that accepts strings in some
 other encoding such as UTF-16, e.g., GetAddrInfoW on Windows.
 * The name resolution API decides to pass the string to DNS (and
 possibly other protocols).
 * The DNS resolver converts the name from UTF-16 to UTF-8 and
 passes the query to a DNS server.
 3. User types in {non-ASCII}.{non-ASCII}.com, but the application
 first converts it to Punycode such that the name that is passed
 to name resolution APIs is (say) xn--e1afmkfd.xn--
 80akhbyknj4f.com.
 * The name resolution API decides to pass the string to DNS (and
 possibly other protocols).
 * The DNS resolver passes the string unmodified to a DNS server.
 * If the name is not found in DNS, the name resolution API
 decides to try another protocol, say mDNS.
 * The query goes out in mDNS, but since mDNS specified that
 names are to be registered in UTF-8, the name isn't found
 since it was Punycode encoded in the query.
 4. User types in {non-ASCII}, and the application passes it, in the
 form of a UTF-8 string, to getaddrinfo or equivalent.

Thaler, et al. Expires May 14, 2010 [Page 13]

Internet-Draft IDN Encodings November 2009

 * The name resolution API decides to pass the string to DNS (and
 possibly other protocols).
 * The DNS resolver will append suffixes in the suffix search
 list, which may contain UTF-8 characters if the local network
 uses a private name space.
 * Each FQDN in turn will then be sent in a query to a DNS
 server, until one succeeds.
 5. User types in {non-ASCII}, but the application first converts it
 to Punycode, such that the name that is passed to getaddrinfo or
 equivalent is (say) xn--e1afmkfd.
 * The name resolution API decides to pass the string to DNS (and
 possibly other protocols).
 * The DNS stub resolver will append suffixes in the suffix
 search list, which may contain UTF-8 characters if the local
 network uses a private name space, resulting in (say) xn--
 e1afmkfd.{non-ASCII}.com
 * Each FQDN in turn will then be sent in a query to a DNS
 server, until one succeeds.
 * Since the private name space in this case uses UTF-8, the
 above queries fail, since the Punycode version of the name was
 not registered in that name space.
 6. User types in {non-ASCII1}.{non-ASCII2}.{non-ASCII3}.com, where
 {non-ASCII3}.com is a public name space using Punycode, but {non-
 ASCII2}.{non-ASCII3}.com is a private name space using UTF-8,
 which is accessible to the user. The application passes the
 name, in the form of a UTF-8 string, to getaddrinfo or
 equivalent.
 * The name resolution API decides to pass the string to DNS (and
 possibly other protocols).
 * The DNS resolver tries to locate the authoritative server, but
 fails the lookup because it cannot find a server for the UTF-8
 encoding of {non-ASCII3}.com, even though it would have access
 to the private name space. (To make this work, the private
 name space would need to include the UTF-8 encoding of {non-
 ASCII3}.com.)

 When users use multiple applications, some of which do Punycode
 conversion prior to passing a name to name resolution APIs, and some
 of which do not, odd behavior can result which at best violates the
 principle of least surprise, and at worst can result in security
 vulnerabilities.

 First consider two competing applications, such as web browsers, that
 are designed to achieve the same task. If the user types the same
 name into each browser, one may successfully resolve the name (and
 hence access the desired content) because the encoding scheme was
 correct, while the other may fail name resolution because the
 encoding scheme was incorrect. Hence the issue can incent users to

Thaler, et al. Expires May 14, 2010 [Page 14]

Internet-Draft IDN Encodings November 2009

 switch to another application (which in some cases means switching to
 an IDNA application, and in other cases means switching away from an
 IDNA application).

 Next consider two separate applications where one is designed to be
 launched from the other, for example a web browser launching a media
 player application when the link to a media file is clicked. If both
 types of content (web pages and media files in this example) are
 hosted at the same IDN in a private name space, but one application
 converts to Punycode before calling name resolution APIs and the
 other does not, the user may be able to access a web page, click on
 the media file causing the media player to launch and attempt to
 retrieve the media file, which will then fail because the IDN
 encoding scheme was incorrect. Or even worse, if an attacker was
 able to register the same name in the other encoding scheme, may get
 the content from the attacker's machine. This is similar to a normal
 phishing attack, except that the two names represent exactly the same
 Unicode characters.

4. Recommendations

 Taking into account the issues above, it would seem inappropriate for
 an application to convert a name to Punycode when it does not know
 whether DNS will be used by the name resolution library, or whether
 the name exists in a private name space that uses UTF-8, or in the
 global DNS that uses Punycode.

 Instead, conversion to Punycode, UTF-8, or whatever other encoding,
 should be done only by an entity that knows which protocol will be
 used (e.g., the DNS resolver, or getaddrinfo upon deciding to pass
 the name to DNS), rather than by general applications that call
 protocol-independent name resolution APIs. (Of course, it is still
 necessary for applications to convert to whatever form those APIs
 expect.) Similarly, even when DNS is used, the conversion to
 Punycode should be done only by an entity that knows which name space
 will be used.

 That is, a more intelligent DNS resolver would be more liberal in
 what it would accept from an application and be able to query for
 both a Punycode name (e.g., over the Internet) and a UTF-8 name
 (e.g., over a corporate network with a private name space) in case
 the server only recognized one. However, we might also take into
 account that the various resolution behaviors discussed earlier could
 also occur with record updates (e.g., with Dynamic Update [RFC2136]),
 resulting in some names being registered in a local network's private
 name space by applications doing Punycode conversion, and other names
 being registered using UTF-8. Hence a name might have to be queried

https://datatracker.ietf.org/doc/html/rfc2136

Thaler, et al. Expires May 14, 2010 [Page 15]

Internet-Draft IDN Encodings November 2009

 with both encodings to be sure to succeed without changes to DNS
 servers.

 Similarly, a more intelligent stub resolver would also be more
 liberal in what it would accept from a response as the value of a
 record (e.g., PTR) in that it would accept either UTF-8 or Punycode
 and convert them to whatever encoding is used by the application APIs
 to return strings to applications.

 Indeed the choice of conversion within the resolver libraries is
 consistent with the quote from section 6.2 of the IDNA specification
 [RFC3490] stating that Punycode conversion "might be performed inside
 these new versions of the resolver libraries".

 That said, some application-layer protocols may be defined to use
 Punycode rather than UTF-8 as recommended by the IETF character sets
 and languages policy [RFC2277]. In this case, an application may
 receive a Punycode name and want to pass it to name resolution APIs.
 Again the recommendation that a resolver library be more liberal in
 what it would accept from an application would mean that such a name
 would be accepted and re-encoded as needed, rather than requiring the
 application to do so.

 Finally, the question remains about what, if anything, a DNS server
 should do to handle cases where some existing applications or hosts
 do Punycode queries within the local network using a private name
 space, and other existing applications or hosts send UTF-8 queries.
 It is undesirable to store different records for different encodings
 of the same name, since this introduces the possibility for
 inconsistency between them. Instead, a new DNS server serving a
 private name space using UTF-8 could potentially treat encoding-
 conversion in the same way as case-insensitive comparison which a DNS
 server is already required to do, as long the DNS server has some way
 to know what the encoding is. Two encodings are, in this sense, two
 representations of the same name, just as two case-different strings
 are. However, whereas case comparison of non-ASCII characters is
 complicated by ambiguities (as explained in the IAB's Review and
 Recommendations for Internationalized Domain Names [RFC4690]),
 encoding conversion between Punycode and UTF-8 is unambiguous.

 [EDITOR'S NOTE: There are also normalization/mapping issues.
 Currently we only explore encoding issues.]

5. Security Considerations

 Having applications convert names to Punycode before calling name
 resolution can result in security vulnerabilities. If the name is

https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc4690

Thaler, et al. Expires May 14, 2010 [Page 16]

Internet-Draft IDN Encodings November 2009

 resolved by protocols or in zones for which records are registered
 using other encoding schemes, an attacker can claim the Punycode
 version of the same name and hence trick the victim into accessing a
 different destination. This can be done for any non-ASCII name, even
 when there is no possible confusion due to case, language, or other
 issues. Other types of confusion beyond those resulting simply from
 the choice of encoding scheme are discussed in "Review and
 Recommendations for IDNs" [RFC4690].

 Designers and users of encodings that represent Unicode strings in
 terms of ASCII should also consider whether trademark protection is
 an issue, e.g., if one name would be encoded in a way that would be
 naturally associated with another organization, such as xn--rfc-
 editor.

6. IANA Considerations

 [RFC Editor: please remove this section prior to publication.]

 This document has no IANA Actions.

7. IAB Members at the time of this writing

 Marcelo Bagnulo
 Gonzalo Camarillo
 Stuart Cheshire
 Vijay Gill
 Russ Housley
 John Klensin
 Olaf Kolkman
 Gregory Lebovitz
 Andrew Malis
 Danny McPherson
 David Oran
 Jon Peterson
 Dave Thaler

8. References

8.1. Normative References

 [Unicode] The Unicode Consortium, "The Unicode Standard, Version
 5.1.0", 2008.

 defined by: The Unicode Standard, Version 5.0, Boston, MA,

https://datatracker.ietf.org/doc/html/rfc4690

Thaler, et al. Expires May 14, 2010 [Page 17]

Internet-Draft IDN Encodings November 2009

 Addison-Wesley, 2007, ISBN 0-321-48091-0, as amended by
 Unicode 5.1.0
 (http://www.unicode.org/versions/Unicode5.1.0/).

8.2. Informative References

 [I-D.cheshire-dnsext-multicastdns]
 Cheshire, S. and M. Krochmal, "Multicast DNS",

draft-cheshire-dnsext-multicastdns-08 (work in progress),
 September 2009.

 [I-D.ietf-idn-punycode-00]
 Costello, A., "Punycode version 0.3.3",

draft-ietf-idn-punycode-00 (work in progress), July 2002.

 [I-D.skwan-utf8-dns-00]
 Kwan, S. and J. Gilroy, "Using the UTF-8 Character Set in
 the Domain Name System", draft-skwan-utf8-dns-00 (work in
 progress), November 1997.

 [IDNA2008-Defs]
 Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",
 August 2009, <https://datatracker.ietf.org/drafts/

draft-ietf-idnabis-defs/>.

 [MJD] Duerst, M., "The Properties and Promizes of UTF-8", 11th
 International Unicode Conference, San Jose ,
 September 1997, <http://www.ifi.unizh.ch/mml/mduerst/

papers/PDF/IUC11-UTF-8.pdf>.

 [NIS] Sun Microsystems, "System and Network Administration",
 March 1990.

 [RFC0821] Postel, J., "Simple Mail Transfer Protocol", STD 10,
RFC 821, August 1982.

 [RFC0952] Harrenstien, K., Stahl, M., and E. Feinler, "DoD Internet
 host table specification", RFC 952, October 1985.

 [RFC1001] NetBIOS Working Group, "Protocol standard for a NetBIOS
 service on a TCP/UDP transport: Concepts and methods",
 STD 19, RFC 1001, March 1987.

 [RFC1002] NetBIOS Working Group, "Protocol standard for a NetBIOS
 service on a TCP/UDP transport: Detailed specifications",
 STD 19, RFC 1002, March 1987.

http://www.unicode.org/versions/Unicode5.1.0/
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-multicastdns-08
https://datatracker.ietf.org/doc/html/draft-ietf-idn-punycode-00
https://datatracker.ietf.org/doc/html/draft-skwan-utf8-dns-00
https://datatracker.ietf.org/drafts/draft-ietf-idnabis-defs/
https://datatracker.ietf.org/drafts/draft-ietf-idnabis-defs/
http://www.ifi.unizh.ch/mml/mduerst/papers/PDF/IUC11-UTF-8.pdf
http://www.ifi.unizh.ch/mml/mduerst/papers/PDF/IUC11-UTF-8.pdf
https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1001
https://datatracker.ietf.org/doc/html/rfc1002

Thaler, et al. Expires May 14, 2010 [Page 18]

Internet-Draft IDN Encodings November 2009

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

 [RFC1123] Braden, R., "Requirements for Internet Hosts - Application
 and Support", STD 3, RFC 1123, October 1989.

 [RFC1468] Murai, J., Crispin, M., and E. van der Poel, "Japanese
 Character Encoding for Internet Messages", RFC 1468,
 June 1993.

 [RFC1536] Kumar, A., Postel, J., Neuman, C., Danzig, P., and S.
 Miller, "Common DNS Implementation Errors and Suggested
 Fixes", RFC 1536, October 1993.

 [RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",

RFC 2136, April 1997.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, July 1997.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

 [RFC3397] Aboba, B. and S. Cheshire, "Dynamic Host Configuration
 Protocol (DHCP) Domain Search Option", RFC 3397,
 November 2002.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",

RFC 3490, March 2003.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, March 2003.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",

RFC 3493, February 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3646] Droms, R., "DNS Configuration options for Dynamic Host
 Configuration Protocol for IPv6 (DHCPv6)", RFC 3646,
 December 2003.

 [RFC4690] Klensin, J., Faltstrom, P., Karp, C., and IAB, "Review and

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1468
https://datatracker.ietf.org/doc/html/rfc1536
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc3397
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3646

Thaler, et al. Expires May 14, 2010 [Page 19]

Internet-Draft IDN Encodings November 2009

 Recommendations for Internationalized Domain Names
 (IDNs)", RFC 4690, September 2006.

 [RFC4795] Aboba, B., Thaler, D., and L. Esibov, "Link-local
 Multicast Name Resolution (LLMNR)", RFC 4795,
 January 2007.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

Authors' Addresses

 Dave Thaler
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052
 USA

 Phone: +1 425 703 8835
 Email: dthaler@microsoft.com

 John C Klensin
 1770 Massachusetts Ave, Ste 322
 Cambridge, MA 02140

 Phone: +1 617 245 1457
 Email: john+ietf@jck.com

 Stuart Cheshire
 Apple Inc.
 1 Infinite Loop
 Cupertino, CA 95014

 Phone: +1 408 974 3207
 Email: cheshire@apple.com

https://datatracker.ietf.org/doc/html/rfc4690
https://datatracker.ietf.org/doc/html/rfc4795
https://datatracker.ietf.org/doc/html/rfc5321

Thaler, et al. Expires May 14, 2010 [Page 20]

