
 E. Rescorla
 RTFM, Inc.
INTERNET-DRAFT IAB
draft-iab-model-03.txt February 2005 (Expires September 2005)

 Writing Protocol Models

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than a "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (C) The Internet Society (1999-2004). All Rights Reserved.

Abstract

 The IETF process depends on peer review. However, IETF documents
 are generally written to be useful for implementors, not for
 reviewers. In particular, while great care is generally taken to
 provide a complete description of the state machines and bits on
 the wire, this level of detail tends to get in the way of initial
 understanding. This document describes an approach for providing
 protocol "models" that allow reviewers to quickly grasp the essence
 of a system.

Rescorla [Page 1]

https://datatracker.ietf.org/doc/html/draft-iab-model-03.txt
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Contents

1. Introduction

 The IETF process depends on peer review. However, in many cases,
 the documents submitted for publication are extremely difficult to
 review. Since reviewers have only limited amounts of time, this
 leads to extremely long review times, inadequate reviews, or both.
 In my view, a large part of the problem is that most documents fail
 to present an architectural model for how the protocol operates,
 opting instead to simply describe the protocol and let the reviewer
 figure it out.

 This is acceptable when documenting a protocol for implementors,
 because they need to understand the protocol in any case, but
 dramatically increases the strain on reviewers. Reviewers
 necessarily need to get the big picture of the system and then
 focus on particular points. They simply do not have time to give
 the entire document the attention an implementor would.

 One way to reduce this load is to present the reviewer with a
 MODEL--a short description of the system in overview form. This
 provides the reviewer with the context to identify the important or
 difficult pieces of the system and focus on them for review. As a
 side benefit, if the model is done first, it can be serve as an aid
 to the detailed protocol design and a focus for early review prior
 to protocol completion. The intention is that the model would
 either be the first section of the protocol document or be a
 separate document provided with the protocol.

2. The Purpose of a Protocol Model

 A protocol model needs to answer three basic questions:

 1. What problem is the protocol trying to achieve?
 2. What messages are being transmitted and what do they
 mean?
 3. What are the important but un-obvious features of the
 protocol?

 The basic idea is to provide enough information that the reader
 could design a protocol which was roughly isomorphic to the
 protocol being described. This doesn't, of course, mean that the
 protocol would be identical, but merely that it would share most
 important features. For instance, the decision to use a KDC-based
 authentication model is an essential feature of Kerberos

Rescorla [Page

2]Internet-Draft Writing Protocol Models 9/2004

 [KERBEROS]. By constrast, the use of ASN.1 is a simple
 implementation decision. S-expressions--or XML, had it existed at
 the time--would have served equally well.
 The purpose of a protocol model is explicitly not to provide a
 complete or alternate description of the protocol being discussed.
 Instead, it is to provide a big picture overview of the protocol so
 that readers can quickly understand the essential elements of how
 it works.

3. Basic Principles

 In this section we discuss basic principles that should guide your
 presentation.

3.1. Less is more

 Humans are only capable of keeping a very small number of pieces of
 information in their head at once. Since we're interested in
 ensuring that people get the big picture, we therefore have to
 dispense with a lot of detail. That's good, not bad. The simpler
 you can make things the better.

3.2. Abstraction is good

 A key technique for representing complex systems is to try to
 abstract away pieces. For instance, maps are better than
 photographs for finding out where you want to go because they
 provide an abstract, stylized, view of the information you're
 interested in. Don't be afraid to compress multiple protocol
 elements into a single abstract piece for pedagogical purposes.

3.3. A few well-chosen details sometimes helps

 The converse of the previous principle is that sometimes details
 help to bring a description into focus. Many people work better
 when given examples. Thus, it's often a good approach to talk about
 the material in the abstract and then provide a concrete
 description of one specific piece to bring it into focus. Authors
 should focus on the normal path. Error cases and corner cases
 should only be discussed where they help illustrate some important
 point.

4. Writing Protocol Models

 Our experience indicates that it's easiest to grasp protocol models
 when they're presented in visual form. We recommend a presentation
 format that is centered around a few key diagrams with explanatory
 text for each. These diagrams should be simple and typically

Rescorla [Page 3]

 consist of "boxes and arrows"--boxes representing the major
 components, arrows representing their relationships and labels
 indicating important features.

 We recommend a presentation structured in three parts to match the
 three questions mentioned in the previous sections. Each part
 should contain 1-3 diagrams intended to illustrate the relevant
 points.

4.1. Describe the problem you're trying to solve

 The absolutely most critical task that a protocol model must
 perform is to explain what the protocol is trying to achieve. This
 provides crucial context for understanding how the protocol works
 and whether it meets its goals. Given the desired goals, in most
 cases an experienced reviewer will have an idea of how they would
 approach the problem and be able to compare that to the approach
 taken by the protocol under review.

 The "Problem" section of the model should start out with a short
 statement of the environments in which the protocol is expected to
 be used. This section should describe the relevant entities and the
 likely scenarios under which they participate in the protocol. The
 Problem section should feature a diagram showing the major
 communicating parties and their inter-relationships. It is
 particularly important to lay out the trust relationships between
 the various parties as these are often un-obvious.

4.1.1. Example: STUN (RFC 3489)

 [STUN] is a UNilateral Self-Address Fixing (UNSAF) [UNSAF] protocol
 which allows a machine located behind a NAT to determine what its
 external apparent IP address is. Unfortunately, although STUN
 provides a complete and thorough description of the operation of
 the protocol, it does not provide a brief, up-front overview
 suitable for a quick understanding of its operation. The rest of
 this section shows what a suitable overview might look like.

 Network Address Translation (NAT) makes it difficult to run a
 number of classes of service from behind the NAT gateway. This is a
 particular problem when protocols need to advertise address/port
 pairs as part of the application layer protocol. Although the NAT
 can be configured to accept data destined for that port, address
 translation means that the address that the application knows about
 is not the same as the one that it is reachable on.

Rescorla [Page

https://datatracker.ietf.org/doc/html/rfc3489

4]Internet-Draft Writing Protocol Models 9/2004

 Consider the scenario represented in the figure below. A SIP client
 is initiating a session with a SIP server in which it wants the SIP
 server to send it some media. In its Session Description Protocol
 (SDP) [SDP] request it provides the IP address and port on which it
 is listening. However, unbeknownst to the client, a NAT is in the
 way. It translates the IP address in the header, but unless it is
 SIP aware, it doesn't change the address in the request. The result
 is that the media goes into a black hole.

 +-----------+
 | SIP |
 | Server |
 | |
 +-----------+
 ^
 | [FROM: 198.203.2.1:8954]
 | [MSG: SEND MEDIA TO 10.0.10.5:6791]
 |
 |
 +-----------+
 | |
 | NAT |
 --------------+ Gateway +----------------
 | |
 +-----------+
 ^
 | [FROM: 10.0.10.5:6791]
 | [MSG: SEND MEDIA TO 10.0.10.5:6791]
 |
 10.0.10.5
 +-----------+
 | SIP |
 | Client |
 | |
 +-----------+

The purpose of STUN [STUN] is to allow clients to detect this
situation and determine the address mapping. They can then place the
appropriate address in their application-level messages. This is done
by making use of an external STUN server. That server is able to
determine the translated address and tell the STUN client, as shown
below.

Rescorla [Page 5]

 +-----------+
 | STUN |
 | Server |
 | |
 +-----------+
 ^ |
[IP HDR FROM: 198.203.2.1:8954] | | [IP HDR TO: 198.203.2.1:8954]
[MSG: WHAT IS MY ADDRESS?] | | [MSG: YOU ARE 198.203.2.1:8954]
 | v
 +-----------+
 | |
 | NAT |
 --------------+ Gateway +----------------
 | |
 +-----------+
 ^ |
[IP HDR FROM: 10.0.10.5:6791] | | [IP HDR TO: 10.0.10.5:6791]
[MSG: WHAT IS MY ADDRESS?] | | [MSG: YOU ARE 198.203.2.1:8954]
 | v
 10.0.10.5
 +-----------+
 | SIP |
 | Client |
 | |
 +-----------+

4.2. Describe the protocol in broad overview

 Once you've described the problem, the next task is to describe the
 protocol in broad overview. This means showing, either in "ladder
 diagram" or "boxes and arrows" form, the protocol messages that
 flow between the various networking agents. This diagram should be
 accompanied with explanatory text that describes the purpose of
 each message and the MAJOR data elements.

 This section SHOULD NOT contain detailed descriptions of the
 protocol messages or of each data element. In particular, bit
 diagrams, ASN.1 modules and XML schema SHOULD NOT be shown. The
 purpose of this section is explicitly not to provide a complete
 description of the protocol. Instead, it is to provide enough of a
 map so that a person reading the full protocol document can see
 where each specific piece fits.
 In certain cases, it may be helpful to provide a state machine
 description of the behavior of network elements. However, such
 state machines should be kept as minimal as possible. Remember that
 the purpose is to promote high-level comprehension, not complete

Rescorla [Page
6]Internet-Draft Writing Protocol Models 9/2004

 understanding.

4.2.1. Example: DCCP

 Datagram Congestion Control Protocol [DCCP] is a protocol for
 providing datagram transport with network friendly congestion
 avoidance behavior. The DCCP base protocol document is over 100
 pages long and the congestion control mechanisms themselves are
 separate. It is therefore very helpful to have a an architectural
 overview of DCCP that abstracts away the details. The remainder of
 this section is an attempt to do so.

 NOTE: The author of this document was on the [DCCP] review team and
 his experience with that document was one of the motivating factors
 for this document. In the time since, the DCCP authors have added
 some overview material, some of which derives from earlier versions
 of this document.

 Although DCCP [DCCP] is datagram oriented like UDP, it is stateful
 like TCP. Connections go through the following phases:
 1. Initiation
 2. Feature negotiation
 3. Data transfer
 4. Termination

4.2.1.1. Initiation

 As with TCP, the initiation phase of DCCP involves a three-way
 handshake, shown below.
 Client Server
 ------ ------
 DCCP-Request ->
 [Ports, Service,
 Features]
 <- DCCP-Response
 [Features,
 Cookie]
 DCCP-Ack ->
 [Features,
 Cookie]

 DCCP 3-way handshake

 In the DCCP-Request message, the client tells the server the name
 of the service it wants to talk to and the ports it wants to
 communicate on. Note that ports are not tightly bound to services
 the way they are in TCP or UDP common practice. It also starts
 feature negotiation. For pedagogical reasons, we will present

Rescorla [Page 7]

 feature negotiation separately in the next section. However,
 realize that the early phases of feature negotiation happen
 concurrently with initiation.

 In the DCCP-Response message, the server tells the client that it
 is willing to accept the connection and continues feature
 negotiation. In order to prevent SYN-flood style DOS attacks, DCCP
 incorporates an IKE-style cookie exchange. The server can provide
 the client with a cookie that contains all the negotiation state.
 This cookie must be echoed by the client in the DCCP-Ack, thus
 removing the need for the server to keep state.

 In the DCCP-Ack message, the client acknowledges the DCCP-Response
 and returns the cookie to permit the server to complete its side of
 the connection. As indicated above this message may also include
 feature negotiation messages.

4.2.1.2. Feature Negotiation

 In DCCP, feature negotiation is performed by attaching options to
 other DCCP packets. Thus feature negotiation can be piggybacked on
 any other DCCP message. This allows feature negotiation during
 connection initiation as well as feature renegotiation during data
 flow.

 Somewhat unusually, DCCP features are one-sided. Thus, it's
 possible to have a different congestion control regime for data
 sent from client to server than from server to client.

 Feature negotiation is done with the Change and Confirm options.
 There are four feature negotiation options in all: Change L,
 Confirm L, Change R, and Confirm R. The "L" options are sent by the
 feature location, where the feature is maintained, and the "R"
 options are sent by the feature remote.

 A Change R message says to the peer "change this option setting on
 your side". The peer can respond with a Confirm L, meaning "I've
 changed it". Some features allow Change R options to contain
 multiple values, sorted in preference order. For example:

Rescorla [Page

8]Internet-Draft Writing Protocol Models 9/2004

 Client Server
 ------ ------
 Change R(CCID, 2) -->
 <-- Confirm L(CCID, 2)
 * agreement that CCID/Server = 2 *

 Change R(CCID, 3 4) -->
 <-- Confirm L(CCID, 4, 4 2)
 * agreement that CCID/Server = 4 *
 <- Confirm(CC,2)

 In the second exchange, the client requests that the server use
 either CCID 3 or CCID 4, with 3 preferred. The server chooses 4 and
 supplies its preference list, "4 2".

 The Change L and Confirm R options are used for feature
 negotiations initiated by the feature location. In the following
 example, the server requests that CCID/Server be set to 3 or 2,
 with 3 preferred, and the client agrees.

 Client Server
 ------ ------
 <-- Change L(CCID, 3 2)
 Confirm R(CCID, 3, 3 2) -->
 * agreement that CCID/Server = 3 *

4.2.1.3. Data Transfer

 Rather than have a single congestion control regime as in TCP, DCCP
 offers a variety of negotiable congestion control regimes. The DCCP
 documents describe two congestion control regimes: additive
 increase, multiplicative decrease (CCID-2 [CCID2]) and TCP-friendly
 rate control (CCID-3 [CCID3]). CCID-2 is intended for applications
 which want maximum throughput. CCID-3 is intended for real-time
 applications which want smooth response to congestion.

4.2.1.3.1. CCID-2

 CCID-2's congestion control is extremely similar to that of TCP.
 The sender maintains a congestion window and sends packets until
 that window is full. Packets are Acked by the receiver. Dropped
 packets and ECN [ECN] are used to indicate congestion. The response
 to congestion is to halve the congestion window. One subtle
 diference between DCCP and TCP is that the Acks in DCCP must
 contain the sequence numbers of all received packets (within a
 given window) not just the highest sequence number as in TCP.

Rescorla [Page 9]

4.2.1.3.2. CCID-3

 CCID-3 is an equation-based form of rate control which is intended
 to provide smoother response to congestion than CCID-2. The sender
 maintains a "transmit rate". The receiver sends ACK packets which
 also contain information about the receiver's estimate of packet
 loss. The sender uses this information to update its transmit rate.
 Although CCID-3 behaves somewhat differently from TCP in its short-
 term congestion response, it is designed to operate fairly with TCP
 over the long term.

4.2.1.4. Termination

 Connection termination in DCCP is initiated by sending a Close
 message. Either side can send a Close message. The peer then
 responds with a Reset message, at which point the connection is
 closed. The side that sent the Close message must quietly preserve
 the socket in TIMEWAIT state for 2MSL.

 Client Server
 ------ ------
 Close ->
 <- Reset
 [Remains in TIMEWAIT]

 Note that the server may wish to close the connection but not
 remain in TIMEWAIT (e.g., due to a desire to minimize server-side
 state.) In order to accomplish this, the server can elicit a Close
 from the client by sending a CloseReq message and thus keeping the
 TIMEWAIT state on the client.

4.3. Describe any important protocol features

 The final section (if there is one) should contain an explanation
 of any important protocol features which are not obvious from the
 previous sections. In the best case, all the important features of
 the protocol would be obvious from the message flow. However, this
 isn't always the case. This section is an opportunity for the
 author to explain those features. Authors should think carefully
 before writing this section. If there are no important points to be
 made they should not populate this section.

 Examples of the kind of feature that belongs in this section
 include: high-level security considerations, congestion control
 information and overviews of the algorithms that the network
 elements are intended to follow. For instance, if you have a
 routing protocol you might use this section to sketch out the
 algorithm that the router uses to determine the appropriate routes

Rescorla [Page

10]Internet-Draft Writing Protocol Models 9/2004

 from protocol messages.

4.3.1. Example: WebDAV COPY and MOVE

 The WebDAV standard [WEBDAV] is in general fairly terse, preferring
 to define the required behaviors and let the reader work out the
 implications. In some situations, explanatory material detailing
 those implications can be helpful to give the reader a sense of the
 overall model. The rest of this section describes one such issue.

 WebDAV [WEBDAV] includes both a COPY method and a MOVE method.
 While a MOVE can be thought of as a COPY followed by DELETE,
 COPY+DELETE and MOVE aren't entirely equivalent.

 The use of COPY+DELETE as a MOVE substitute is problematic because
 of the creation of the intermediate file. Consider the case where
 the user is approaching some quota boundary. A COPY+DELETE should
 be forbidden because it would temporarily exceed the quota.
 However, a simple rename should work in this situation.

 The second issue is permissions. The WebDAV permissions model
 allows the server to grant users permission to rename files but not
 to create new ones--this is unusual in ordinary filesystems but
 nothing prevents it in WebDAV. This is clearly not possible if a
 client uses COPY+DELETE to do a MOVE.

 Finally, a COPY+DELETE does not produce the same logical result as
 would be expected with a MOVE. Because COPY creates a new resource,
 it is permitted (but not required) to use the time of new file
 creation as the creation date property. By contrast, the
 expectation for move is that the renamed file will have the same
 properties as the original.

5. Formatting Issues

 The requirement that Internet-Drafts and RFCs be renderable in
 ASCII is a significant obstacle when writing the sort of graphics-
 heavy document being described here. Authors may find it more
 convenient to do a separate protocol model document in Postscript
 or PDF and simply make it available at review time--though an
 archival version would certainly be handy.

6. A Complete Example: Internet Key Exchange (IKE)

 Internet Key Exchange (IKE) [IKE] is one of the most complicated
 security protocols ever designed by the IETF. Although the basic
 IKE core is a fairly straightforward Diffie-Hellman-based
 handshake, this can often be difficult for new readers to

Rescorla [Page 11]

 understand abstractly apart from the protocol details. The
 remainder of this section provides overview of IKE suitable for
 those new readers.

6.1. Operating Environment

 Internet key Exchange (IKE) [IKE] is a key establishment and
 parameter negotiation protocol for Internet protocols. Its primary
 application is for establishing security associations (SAs) [IPSEC]
 for IPsec AH [AH] and ESP [ESP].

 +--------------------+ +--------------------+
+------------+		+------------+				
	Key		IKE		Key	
	Management	<-+-----------------------+->	Management			
	Process				Process	
+------------+		+------------+				
^		^				
v		v				
+------------+		+------------+				
	IPsec		AH/ESP		IPsec	
	Stack	<-+-----------------------+->	Stack			
+------------+		+------------+				
Initiator		Responder				
 +--------------------+ +--------------------+

 The general deployment model for IKE is shown in Figure 1. The
 IPsec engines and IKE engines typically are separate modules. When
 a packet needs to be processed (either sent or received) for which
 no security association exists, the IPsec engine contacts the IKE
 engine and asks it to establish an appropriate SA. The IKE engine
 contacts the appropriate peer and uses IKE to establish the SA.
 Once the IKE handshake is finished it registers the SA with the
 IPsec engine.

 In addition, IKE traffic between the peers can be used to refresh
 keying material or adjust operating parameters such as algorithms.

Rescorla [Page

12]Internet-Draft Writing Protocol Models 9/2004

6.1.1. Initiator and Responder

 Although IPsec is basically symmetrical, IKE is not. The party who
 sends the first message is called the INITIATOR. The other party is
 called the RESPONDER. In the case of TCP connections the INITIATOR
 will typically be the peer doing the active open (i.e. the client).

6.1.2. Perfect Forward Secrecy

 One of the major concerns in IKE design was that traffic be
 protected even if they keying material of the nodes was later
 compromised, provided that the session in question had terminated
 and so the session-specific keying material was gone. This property
 is often called PERFECT FORWARD SECRECY (PFS) or BACK TRAFFIC
 PROTECTION.

6.1.3. Denial of Service Resistance

 Since IKE allows arbitrary peers to initiate computationally
 expensive cryptographic operations, it potentially allows resource
 consumption denial of service attacks to be mounted against the IKE
 engine. IKE includes countermeasures designed to minimize this
 risk.

6.1.4. Keying Assumptions

 Because Security Associations are essentially symmetric, both sides
 must in general be authenticated. Because IKE needs to be able to
 establish SAs between a broad range of peers with various kinds of
 prior relationships, IKE supports a very flexible keying model.
 Peers can authenticate via shared keys, digital signatures
 (typically from keys vouched for by certificates), or encryption
 keys.

6.1.5. Identity Protection

 Although IKE requires the peers to authenticate to each other, it
 was considered desirable by the working group to provide some
 identity protection for the communicating peers. In particular, the
 peers should be able to hide their identity from passive observers
 and one peer should be able to require the author to authenticate
 before they self-identity. In this case, the designers chose to
 make the party who speaks first (the INITIATOR) identify first.

6.2. Protocol Overview

 At a very high level, there are two kinds of IKE handshake:
 (1) Those which establish an IKE security association.

Rescorla [Page 13]

 (2) Those which establish an AH or ESP security association.

 When two peers which have never communicated before need to
 establish an AH/ESH SA, they must first establish an IKE SA. This
 allows them to exchange an arbitrary amount of protected IKE
 traffic. They can then use that SA to do a second handshake to
 establish SAs for AH and ESP. This process is shown in schematic
 form below. The notation E(SA,XXXX) is used to indicate that
 traffic is encrypted under a given SA.
 Initiator Responder
 --------- ---------

 Handshake MSG -> \ Stage 1:
 <- Handshake MSG \ Establish IKE
 / SA (IKEsa)
 [...] /

 Stage 2:
 E(IKEsa, Handshake MSG) -> \ Establish AH/ESP
 <- E(IKEsa, Handshake MSG) / SA

 The two kinds of IKE handshake

 IKE terminology is somewhat confusing, referring under different
 circumstances to "phases" and "modes". For maximal clarity we will
 refer to the Establishment of the IKE SA as "Stage 1" and the
 Establishment of AH/ESP SAs as "Stage 2". Note that it's quite
 possible for there to be more than one Stage 2 handshake, once
 Stage 1 has been finished. This might be useful if you wanted to
 establish multiple AH/ESP SAs with different cryptographic
 properties.

 The Stage 1 and Stage 2 handshakes are actually rather different,
 because the Stage 2 handshake can of course assume that its traffic
 is being protected with an IKE SA. Accordingly, we will first
 discuss Stage 1 and then Stage 2.

6.2.1. Stage 1

 There are a large number of variants of the IKE Stage 1 handshake,
 necessitated by use of different authentication mechanisms.
 However, broadly speaking they fall into one of two basic
 categories: MAIN MODE, which provides identity protection and DoS
 resistance, and AGGRESSIVE MODE, which does not. We will cover MAIN
 MODE first.

Rescorla [Page

14]Internet-Draft Writing Protocol Models 9/2004

6.2.1.1. Main Mode

 Main Mode is a six message (3 round trip) handshake which offers
 identity protection and DoS resistance. An overview of the
 handshake is below.

 Initiator Responder
 --------- ---------
 CookieI, Algorithms -> \ Parameter
 <- CookieR, Algorithms / Establishment

 CookieR,
 Nonce, Key Exchange ->
 <- Nonce, Key Exchange\ Establish
 / Shared key

 E(IKEsa, Auth Data) ->
 <- E(IKEsa, Auth data)\ Authenticate
 / Peers

 IKE Main Mode handshake (stage 1)

 In the first round trip, the Initiator offers a set of algorithms
 and parameters. The Responder picks out the single set that it
 likes and responds with that set. It also provides CookieR, which
 will be used to prevent DoS attacks. At this point, there is no
 secure association but the peers have tentatively agreed upon
 parameters. These parameters include a Diffie-Hellman group, which
 will be used in the second round trip.

 In the second round trip, the Initiator sends the key exchange
 information. This generally consists of the Initiator's Diffie-
 Hellman public share (Yi). He also supplies CookieR, which was
 provided by the responder. The Responder replies with his own DH
 share (Yr). At this point, both Initiator and Responder can compute
 the shared DH key (ZZ). However, there has been no authentication
 and so they don't know with any certainty that the connection
 hasn't been attacked. Note that as long as the peers generate fresh
 DH shares for each handshake than PFS will be provided.

 Before we move on, let's take a look at the cookie exchange. The
 basic anti-DoS measure used by IKE is to force the peer to
 demonstrate that they can receive traffic from you. This foils
 blind attacks like SYN floods [SYNFLOOD] and also makes it somewhat
 easier to track down attackers. The cookie exchange serves this
 role in IKE. The Responder can verify that the Initiator supplied a
 valid CookieR before doing the expensive DH key agreement. This

Rescorla [Page 15]

 does not totally eliminate DoS attacks, since an attacker who was
 willing to reveal his location could still consume server
 resources, but it does protect against a certain class of blind
 attack.

 In the final round trip, the peers establish their identities.
 Since they share an (unauthenticated) key, they can send their
 identities encrypted, thus providing identity protection from
 eavesdroppers. The exact method of proving identity depends on what
 form of credential is being used (signing key, encryption key,
 shared secret, etc.), but in general you can think of it as a
 signature over some subset of the handshake messages. So, each side
 would supply its certificate and then sign using the key associated
 with that certificate. If shared keys are used, the authentication
 data would be a key id and a MAC. Authentication using public key
 encryption follows similar principles but is more complicated.
 Refer to the IKE document for more details.

 At the end of the Main Mode handshake, the peers share:
 (1) A set of algorithms for encryption of further IKE traffic.
 (2) Traffic encryption and authentication keys.
 (3) Mutual knowledge of the peer's identity.

6.2.1.2. Aggressive Mode

 Although IKE Main Mode provides the required services, there was
 concern that the large number of round trips required added
 excessive latency. Accordingly, an Aggressive Mode was defined.
 Aggressive mode packs more data into fewer messages and thus
 reduces latency. However, it does not provide protection against
 DoS or identity protection.
 Initiator Responder
 --------- ---------
 Algorithms, Nonce,
 Key Exchange, ->
 <- Algorithms, Nonce,
 Key Exchange, Auth Data
 Auth Data ->

 IKE Aggressive Mode handshake (stage 1)

 After the first round trip, the peers have all the required
 properties except that the Initiator has not authenticated to the
 Responder. The third message closes the loop by authenticating the
 Initiator. Note that since the authentication data is sent in the
 clear, no identity protection is provided and since the Responder
 does the DH key agreement without a round trip to the Initiator,

Rescorla [Page

16]Internet-Draft Writing Protocol Models 9/2004

 there is no DoS protection

6.2.2. Stage 2

 Stage 1 on its own isn't very useful. The purpose of IKE, after
 all, is to establish associations to be used to protect other
 traffic, not just to establish IKE SAs. Stage 2 (what IKE calls
 "Quick Mode") is used for this purpose. The basic Stage 2 handshake
 is shown below.

 Initiator Responder
 --------- ---------
 AH/ESP parameters,
 Algorithms, Nonce,
 Handshake Hash ->

 <- AH/ESP parameters,
 Algorithms, Nonce,
 Handshake Hash
 Handshake Hash ->

 The basic IKE Quick Mode (stage 2)

 As with quick mode, the first two messages establish the algorithms
 and parameters while the final message is a check over the previous
 messages. In this case, the parameters also include the transforms
 to be applied to the traffic (AH or ESP) and the kinds of traffic
 which are to be protected. Note that there is no key exchange
 information shown in these messages.

 In this version of Quick Mode, the peers use the pre-existing Stage
 1 keying material to derive fresh keying material for traffic
 protection (with the nonces to ensure freshness). Quick mode also
 allows for a new Diffie-Hellman handshake for per-traffic key PFS.
 In that case, the first two messages shown above would also include
 Key Exchange payloads, as shown below.

Rescorla [Page 17]

 Initiator Responder
 --------- ---------
 AH/ESP parameters,
 Algorithms, Nonce,
 Key Exchange, ->
 Handshake Hash

 <- AH/ESP parameters,
 Algorithms, Nonce,
 Key Exchange,
 Handshake Hash
 Handshake Hash ->

 A variant of Quick Mode with PFS (stage 2)

6.3. Other Considerations

 There are a number of features of IKE that deserve special
 consideration. These are discussed here.

6.3.1. Cookie Generation

 As mentioned previously, IKE uses cookies as a partial defense
 against DoS attacks. When the responder receives Main Mode message
 3 containing the Key Exchange data and the cookie, it verifies that
 the cookie is correct. However, this verification must not involve
 having a list of valid cookies. Otherwise, an attacker could
 potentially consume arbitrary amounts of memory by repeatedly
 requesting cookies from a responder. The recommended way to
 generate a cookie, suggested by Phil Karn, is by having a single
 master key and compute a hash of the secret and the initiator's
 address information. This cookie can be verified by recomputing the
 cookie value based on information in the third message and seeing
 if it matches.

6.3.2. Endpoint Identities

 So far we have been rather vague about what sorts of endpoint
 identities are used. In principle, there are three ways a peer
 might be identified: by a shared key, a pre-configured public key,
 and a certificate.

6.3.2.1. Shared Key

 In a shared key scheme, the peers share some symmetric key. This
 key is associated with a key identifier which is known to both
 parties. It is assumed that the party verifying that identity also
 has some sort of table that indicates what sorts of traffic (e.g.

Rescorla [Page

18]Internet-Draft Writing Protocol Models 9/2004

 what addresses) that identity is allowed to negotiate SAs for.

6.3.2.2. Pre-configured public key

 A pre-configured public key scheme is the same as a shared key
 scheme except that the verifying party has the authenticating
 party's public key instead of a shared key.

6.3.2.3. Certificate

 In a certificate scheme, authenticating party presents a
 certificate containing their public key. It's straightforward to
 establish that that certificate matches the authentication data
 provided by the peer. What's less straightforward is to determine
 whether a given peer is entitled to negotiate for a given class of
 traffic. In theory, one might be able to determine this from the
 name in the certificate (e.g. the subject name contains an IP
 address that matches the ostensible IP address). In practice, this
 is not clearly specified in IKE and therefore not really
 interoperable. The more likely case at the moment is that there is
 a configuration table mapping certificates to policies, as with the
 other two authentication schemes.

Normative References

 There are no normative references for this document.

Informative References
 [AH] Kent, S., and Atkinson, R., "IP Authentication Header",

RFC 2402, November 1998.

 [CCID2] Floyd, S., Kohler, E., "Profile for DCCP Congestion Control ID 2:
 TCP-like Congestion Control", draft-ietf-dccp-ccid2-04.txt,
 October 2003.

 [CCID3] Floyd, S., Kohler, E., Padhye, J. "Profile for DCCP Congestion
 Control ID 3: TFRC Congestion Control",

draft-ietf-dccp-ccid3-05.txt, February 2004.

 [DCCP] Kohler, E., Handley, M., Floyd, S., "Datagram Congestion
 Control Protocol (DCCP)", draft-ietf-dccp-spec-09.txt,
 November, 2004.

 [ECN] Ramakrishnan, K. Floyd, S., Black D., "The Addition of
 Explicit Congestion Notification (ECN) to IP",

RFC 3168, September 2001.

 [ESP] Kent, S., and Atkinson, R., "IP Encapsulating Security

https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid2-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-ccid3-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-dccp-spec-09.txt
https://datatracker.ietf.org/doc/html/rfc3168

Rescorla [Page 19]

 Payload (ESP)", RFC 2406, November 1998.

 [IKE] Harkins, D., Carrel, D., "The Internet Key Exchange (IKE)",
RFC 2409, November 1998.

 [IPSEC] Kent, S., Atkinson, R., "Security Architecture for the Internet
 Protocol", RFC 2401, November 1998.

 [KERBEROS] Kohl, J., Neuman, C., "The Kerberos Network Authentication
 Service (V5)", RFC 1510, September 1993.

 [SDP] Handley, M., Jacobson, V., "SDP: Session Description Protocol"
RFC 2327, April 1998.

 [STUN] Rosenberg, J., Weinberger, J., Huitema, C., Mahy, R.,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)",

RFC 3489, March 2003.

 [UNSAF] Daigle, L., Editor, "IAB Considerations for UNilateral Self-
 Address Fixing (UNSAF) Across Network Address Translation", RFC

3424, November 2002.

 [WEBDAV] Goland, Y., Whitehead, E., Faizi, A., Carter, S., Jensen, D.
 "HTTP Extensions for Distributed Authoring -- WEBDAV",

RFC 2518, February 1999.

Security Considerations

 This document does not define any protocols and therefore has no
 security considerations.

Full Copyright Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

Rescorla [Page

https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc2518
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

20]Internet-Draft Writing Protocol Models 9/2004

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Copyright Notice
 Copyright (C) The Internet Society (2003). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Author's Address
Eric Rescorla <ekr@rtfm.com>
RTFM, Inc.
2064 Edgewood Drive
Palo Alto, CA 94303
Phone: (650)-320-8549

Internet Architecture Board <iab@iab.org>
IAB

Appendix A. IAB Members at the time of this writing

Bernard Aboba
Harald Alvestrand
Rob Austein
Leslie Daigle
Patrik Falstrom
Sally Floyd
Jun-ichiro Itojun Hagino
Mark Handley
Bob Hinden
Geoff Huston
Eric Rescorla
Pete Resnick
Jonathan Rosenberg

http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rescorla [Page 21]

Rescorla [Page 22]

