
Network Working Group M. Thomson
Internet-Draft Mozilla
Intended status: Informational March 11, 2019
Expires: September 12, 2019

The Harmful Consequences of the Robustness Principle
draft-iab-protocol-maintenance-02

Abstract

 Jon Postel's famous statement of "Be liberal in what you accept, and
 conservative in what you send" is a principle that has long guided
 the design and implementation of Internet protocols. The posture
 this statement advocates promotes interoperability in the short term,
 but can negatively affect the protocol ecosystem. For a protocol
 that is actively maintained, the Postel's robustness principle can,
 and should, be avoided.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Thomson Expires September 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Protocol Maintenance March 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Fallibility of Specifications 3
3. Protocol Decay . 4
4. Ecosystem Effects . 5
5. Active Protocol Maintenance 6
6. Extensibility . 7
7. The Role of Feedback . 8
7.1. Feedback from Implementations 8
7.2. Virtuous Intolerance 8

8. Security Considerations 9
9. IANA Considerations . 9
10. Informative References 9
Appendix A. Acknowledgments 11

 Author's Address . 11

1. Introduction

 Of the great many contributions Jon Postel made to the Internet, his
 remarkable technical achievements are often shadowed by his
 contribution of a design and implementation philosophy known as the
 robustness principle:

 Be strict when sending and tolerant when receiving.
 Implementations must follow specifications precisely when sending
 to the network, and tolerate faulty input from the network. When
 in doubt, discard faulty input silently, without returning an
 error message unless this is required by the specification.

 This being the version of the text that appears in IAB RFC 1958
 [PRINCIPLES].

 Postel's robustness principle has been hugely influential in shaping
 the Internet and the systems that use Internet protocols. Many
 consider the application of the robustness principle to be
 instrumental in the success of the Internet as well as the design of
 interoperable protocols in general.

 Over time, considerable experience has been accumulated with
 protocols that were designed by the application of Postel's maxim.
 That experience shows that there are negative long-term consequences
 to interoperability if an implementation applies Postel's advice.

https://datatracker.ietf.org/doc/html/rfc1958

Thomson Expires September 12, 2019 [Page 2]

Internet-Draft Protocol Maintenance March 2019

 The flaw in Postel's logic originates from the presumption of an
 inability to affect change in a system the size of the Internet.
 That is, once a protocol specification is published, changes that
 might be different to the practice of existing implementations are
 not feasible.

 Many of the shortcomings that lead to applications of the robustness
 principle are avoided for protocols under active maintenance. Active
 protocol maintenance is where a community of protocol designers,
 implementers, and deployers continuously improve and evolve
 protocols. A community that takes an active role in the maintenance
 of protocols can greatly reduce and even eliminate opportunities to
 apply Postel's guidance.

 There is good evidence to suggest that many important protocols are
 routinely maintained beyond their inception. This document serves
 primarily as a record of the hazards inherent in applying the
 robustness principle and to offer an alternative strategy for
 handling interoperability problems in deployments.

 Ideally, protocol implementations never have to apply the robustness
 principle. Or, where it is unavoidable, any application can be
 quickly reverted.

2. Fallibility of Specifications

 The context from which the robustness principle was developed
 provides valuable insights into its intent and purpose. The earliest
 form of the principle in the RFC series (in RFC 760 [IP]) is preceded
 by a sentence that reveals the motivation for the principle:

 While the goal of this specification is to be explicit about the
 protocol there is the possibility of differing interpretations.
 In general, an implementation should be conservative in its
 sending behavior, and liberal in its receiving behavior.

 Here Postel recognizes the possibility that the specification could
 be imperfect. As a frank admission of fallibility it is a
 significant statement. However, the same statement is inexplicably
 absent from the later versions in [HOSTS] and [PRINCIPLES].

 An imperfect specification is natural, largely because it is more
 important to proceed to implementation and deployment than it is to
 perfect a specification. A protocol, like any complex system,
 benefits greatly from experience with its use. A deployed protocol
 is immeasurably more useful than a perfect protocol.

https://datatracker.ietf.org/doc/html/rfc760

Thomson Expires September 12, 2019 [Page 3]

Internet-Draft Protocol Maintenance March 2019

 As [SUCCESS] demonstrates, success or failure of a protocol depends
 far more on factors like usefulness than on on technical excellence.
 Postel's timely publication of protocol specifications, even with the
 potential for flaws, likely had a significant effect in the eventual
 success of the Internet.

 The problem is therefore not with the premise, but with its
 conclusion: the robustness principle itself.

3. Protocol Decay

 Divergent implementations of a specification emerge over time. When
 variations occur in the interpretation or expression of semantic
 components, implementations cease to be perfectly interoperable.

 Implementation bugs are often identified as the cause of variation,
 though it is often a combination of factors. Application of a
 protocol to new and unanticipated uses, and ambiguities or errors in
 the specification are often confounding factors. Situations where
 two peers disagree on interpretation should be expected over the
 lifetime of a protocol.

 Even with the best intentions, the pressure to interoperate can be
 significant. No implementation can hope to avoid having to trade
 correctness for interoperability indefinitely.

 An implementation that reacts to variations in the manner advised by
 Postel sets up a feedback cycle:

 o Over time, implementations progressively add new code to constrain
 how data is transmitted, or to permit variations in what is
 received.

 o Errors in implementations, or confusion about semantics can
 thereby be masked.

 o These errors can become entrenched, forcing other implementations
 to be tolerant of those errors.

 A flaw can become entrenched as a de facto standard. Any
 implementation of the protocol is required to replicate the aberrant
 behavior, or it is not interoperable. This is both a consequence of
 applying Postel's advice, and a product of a natural reluctance to
 avoid fatal error conditions. Ensuring interoperability in this
 environment is often colloquially referred to as aiming to be "bug
 for bug compatible".

Thomson Expires September 12, 2019 [Page 4]

Internet-Draft Protocol Maintenance March 2019

 For example, in TLS [TLS] extensions use a tag-length-value format,
 and they can be added to messages in any order. However, some server
 implementations terminate connections if they encounter a TLS
 ClientHello message that ends with an empty extension. To maintain
 interoperability, client implementations are required to be aware of
 this bug and ensure that a ClientHello message ends in a non-empty
 extension.

 The original JSON specification [JSON] demonstrates the effect of
 specification shortcomings. RFC 4627 omitted critical details on a
 range of key details including Unicode handling, ordering and
 duplication of object members, and number encoding. Consequently, a
 range of interpretations were used by implementations. An updated
 specification [JSON-BIS] did not correct these errors, concentrating
 instead on identifying the interoperable subset of JSON. I-JSON
 [I-JSON] takes that subset and defines a new format that prohibits
 the problematic parts of JSON. Of course, that means that I-JSON is
 not fully interoperable with JSON. Consequently, I-JSON is not
 widely implemented in parsers. Many JSON parsers now implement the
 more precise algorithm specified in [ECMA262].

 The robustness principle therefore encourages a reaction that
 compounds and entrenches interoperability problems.

4. Ecosystem Effects

 Once deviations become entrenched, it can be extremely difficult - if
 not impossible - to rectify the situation.

 For widely used protocols, the massive scale of the Internet makes
 large-scale interoperability testing infeasible for all but a
 privileged few. The cost of building a new implementation increases
 as the number of implementations and bugs increases. Worse, the set
 of tweaks necessary for wide interoperability can be difficult to
 discover.

 Consequently, new implementations can be restricted to niche uses,
 where the problems arising from interoperability issues can be more
 closely managed. Restricting new implementations to narrow contexts
 also risks causing forks in the protocol. If implementations do not
 interoperate, little prevents those implementations from diverging
 more over time.

 This has a negative impact on the ecosystem of a protocol. New
 implementations are important in ensuring the continued viability of
 a protocol. New protocol implementations are also more likely to be
 developed for new and diverse use cases and often are the origin of
 features and capabilities that can be of benefit to existing users.

https://datatracker.ietf.org/doc/html/rfc4627

Thomson Expires September 12, 2019 [Page 5]

Internet-Draft Protocol Maintenance March 2019

 The need to work around interoperability problems also reduces the
 ability of established implementations to change. For instance, an
 accumulation of mitigations for interoperability issues makes
 implementations more difficult to maintain.

 Sometimes what appear to be interoperability problems are symptomatic
 of issues in protocol design. A community that is willing to make
 changes to the protocol, by revising or extending it, makes the
 protocol better in the process. Applying the robustness principle
 might conceal the problem. That can make it harder, or even
 impossible, to fix later.

 A similar class of problems is described in RFC 5704 [UNCOORDINATED],
 which addresses conflict or competition in the maintenance of
 protocols. This document concerns itself primarily with the absence
 of maintenance, though the problems are similar.

5. Active Protocol Maintenance

 The robustness principle can be highly effective in safeguarding
 against flaws in the implementation of a protocol by peers.
 Especially when a specification remains unchanged for an extended
 period of time, the inclination to be tolerant accumulates over time.
 Indeed, when faced with divergent interpretations of an immutable
 specification, the best way for an implementation to remain
 interoperable is to be tolerant of differences in interpretation and
 an occasional outright implementation error.

 From this perspective, application of Postel's advice to the
 implementation of a protocol specification that does not change is
 logical, even necessary. But that suggests that the problem is with
 the assumption that the situation - existing specifications and
 implementations - are unable to change.

 As already established, this is not sustainable. For a protocol to
 be viable, it is necessary for both specifications and
 implementations to be responsive to changes, in addition to handling
 new and old problems that might arise over time.

 Active maintenance of a protocol is critical in ensuring that
 specifications correctly reflect the requirements for
 interoperability. Maintenance enables both new implementations and
 the continued improvement of the protocol. New use cases are an
 indicator that the protocol could be successful [SUCCESS].

 Protocol designers are strongly encouraged to continue to maintain
 and evolve protocols beyond their initial inception and definition.
 Involvement of protocol implementers is a critical part of this

https://datatracker.ietf.org/doc/html/rfc5704

Thomson Expires September 12, 2019 [Page 6]

Internet-Draft Protocol Maintenance March 2019

 process, as they provide input on their experience with
 implementation and deployment of the protocol.

 Most interoperability problems do not require revision of protocols
 or protocol specifications. For instance, the most effective means
 of dealing with a defective implementation in a peer could be to
 email the developer of the stack. It is far more efficient in the
 long term to fix one isolated bug than it is to deal with the
 consequences of workarounds.

 Neglect can quickly produce the negative consequences this document
 describes. Restoring the protocol to a state where it can be
 maintained involves first discovering the properties of the protocol
 as it is deployed, rather than the protocol as it was originally
 documented. This can be difficult and time-consuming, particularly
 if the protocol has a diverse set of implementations. Such a process
 was undertaken for HTTP [HTTP] after a period of minimal maintenance.
 Restoring HTTP specifications to currency took significant effort.

6. Extensibility

 Good extensibility [EXT] can make it easier to respond to new use
 cases or changes in the environment in which the protocol is
 deployed.

 Extensibility is sometimes mistaken for an application of the
 robustness principle. After all, if one party wants to start using a
 new feature before another party is prepared to receive it, it might
 be assumed that the receiving party is being tolerant of unexpected
 inputs.

 A well-designed extensibility mechanism establishes clear rules for
 the handling of things like new messages or parameters. If an
 extension mechanism is designed and implemented correctly, the user
 of a new protocol feature can confidently predict the effect that
 feature will have on existing implementations.

 Relying on implementations consistently applying the robustness
 principle is not a good strategy for extensibility. Using
 undocumented or accidental features of a protocol as the basis of an
 extensibility mechanism can be extremely difficult, as is
 demonstrated by the case study in Appendix A.3 of [EXT].

 A protocol could be designed to permit a narrow set of valid inputs,
 or it could allow a wide range of inputs as a core feature (see for
 example [HTML]). Specifying and implementing a more flexible
 protocol is more difficult; allowing less variation is preferable in
 the absence of strong reasons to be flexible.

Thomson Expires September 12, 2019 [Page 7]

Internet-Draft Protocol Maintenance March 2019

7. The Role of Feedback

 Protocol maintenance is only possible if there is sufficient
 information about the deployment of the protocol. Feedback from
 deployment is critical to effective protocol maintenance.

 For a protocol specification, the primary and most effective form of
 feedback comes from people who implement and deploy the protocol.
 This comes in the form of new requirements, or in experience with the
 protocol as it is deployed.

 Managing and deploying changes to implementations can be expensive.
 However, it is widely recognized that regular updates are a vital
 part of the deployment of computer systems for security reasons (see
 for example [IOTSU]).

7.1. Feedback from Implementations

 Automated error reporting mechanisms in protocol implementations
 allows for better feedback from deployments. Exposing faults through
 operations and management systems is highly valuable, but it might be
 necessary to ensure that the information is propagated further.

 Building telemetry and error logging systems that report faults to
 the developers of the implementation is superior in many respects.
 However, this is only possible in deployments that are conducive to
 the collection of this type of information. Giving due consideration
 to protection of the privacy of protocol participants is critical
 prior to deploying any such system.

7.2. Virtuous Intolerance

 A well-specified protocol includes rules for consistent handling of
 aberrant conditions. This increases the changes that implementations
 have interoperable handling of unusual conditions.

 Intolerance of any deviation from specification, where
 implementations generate fatal errors in response to observing
 undefined or unusal behaviour, can be harnessed to reduce occurrences
 of aberrant implementations. Choosing to generate fatal errors for
 unspecified conditions instead of attempting error recovery can
 ensure that faults receive attention.

 This improves feedback for new implementations in particular. When a
 new implementation encounters a virtuously intolerant implementation,
 it receives strong feedback that allows problems to be discovered
 quickly.

Thomson Expires September 12, 2019 [Page 8]

Internet-Draft Protocol Maintenance March 2019

 To be effective, virtuously intolerant implementations need to be
 sufficiently widely deployed that they are encountered by new
 implementations with high probability. This could depend on multiple
 implementations of strict checks. Any intolerance also needs to be
 strongly supported by specifications, otherwise they encourage
 fracturing of the protocol community or proliferation of workarounds.

 Virtuous intolerance can be used to motivate compliance with any
 protocol requirement. For instance, the INADEQUATE_SECURITY error
 code and associated requirements in HTTP/2 [HTTP2] resulted in
 improvements in the security of the deployed base.

8. Security Considerations

 Sloppy implementations, lax interpretations of specifications, and
 uncoordinated extrapolation of requirements to cover gaps in
 specification can result in security problems. Hiding the
 consequences of protocol variations encourages the hiding of issues,
 which can conceal bugs and make them difficult to discover.

 The consequences of the problems described in this document are
 especially acute for any protocol where security depends on agreement
 about semantics of protocol elements.

9. IANA Considerations

 This document has no IANA actions.

10. Informative References

 [ECMA262] "ECMAScript(R) 2018 Language Specification", ECMA-262 9th
 Edition, June 2018, <https://www.ecma-

international.org/publications/standards/Ecma-262.htm>.

 [EXT] Carpenter, B., Aboba, B., Ed., and S. Cheshire, "Design
 Considerations for Protocol Extensions", RFC 6709,
 DOI 10.17487/RFC6709, September 2012,
 <https://www.rfc-editor.org/info/rfc6709>.

 [HOSTS] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [HTML] "HTML", WHATWG Living Standard, March 2019,
 <https://html.spec.whatwg.org/>.

https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://datatracker.ietf.org/doc/html/rfc6709
https://www.rfc-editor.org/info/rfc6709
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://html.spec.whatwg.org/

Thomson Expires September 12, 2019 [Page 9]

Internet-Draft Protocol Maintenance March 2019

 [HTTP] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [I-JSON] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [IOTSU] Tschofenig, H. and S. Farrell, "Report from the Internet
 of Things Software Update (IoTSU) Workshop 2016",

RFC 8240, DOI 10.17487/RFC8240, September 2017,
 <https://www.rfc-editor.org/info/rfc8240>.

 [IP] Postel, J., "DoD standard Internet Protocol", RFC 760,
 DOI 10.17487/RFC0760, January 1980,
 <https://www.rfc-editor.org/info/rfc760>.

 [JSON] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627,
 DOI 10.17487/RFC4627, July 2006,
 <https://www.rfc-editor.org/info/rfc4627>.

 [JSON-BIS]
 Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [PRINCIPLES]
 Carpenter, B., Ed., "Architectural Principles of the
 Internet", RFC 1958, DOI 10.17487/RFC1958, June 1996,
 <https://www.rfc-editor.org/info/rfc1958>.

 [SUCCESS] Thaler, D. and B. Aboba, "What Makes for a Successful
 Protocol?", RFC 5218, DOI 10.17487/RFC5218, July 2008,
 <https://www.rfc-editor.org/info/rfc5218>.

 [TLS] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://datatracker.ietf.org/doc/html/rfc8240
https://www.rfc-editor.org/info/rfc8240
https://datatracker.ietf.org/doc/html/rfc760
https://www.rfc-editor.org/info/rfc760
https://datatracker.ietf.org/doc/html/rfc4627
https://www.rfc-editor.org/info/rfc4627
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc1958
https://www.rfc-editor.org/info/rfc1958
https://datatracker.ietf.org/doc/html/rfc5218
https://www.rfc-editor.org/info/rfc5218
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246

Thomson Expires September 12, 2019 [Page 10]

Internet-Draft Protocol Maintenance March 2019

 [UNCOORDINATED]
 Bryant, S., Ed., Morrow, M., Ed., and IAB, "Uncoordinated
 Protocol Development Considered Harmful", RFC 5704,
 DOI 10.17487/RFC5704, November 2009,
 <https://www.rfc-editor.org/info/rfc5704>.

Appendix A. Acknowledgments

 Constructive feedback on this document has been provided by a
 surprising number of people including Bernard Aboba, Brian Carpenter,
 Mark Nottingham, Russ Housley, Henning Schulzrinne, Robert Sparks,
 Brian Trammell, and Anne Van Kesteren. Please excuse any omission.

Author's Address

 Martin Thomson
 Mozilla

 Email: mt@lowentropy.net

https://datatracker.ietf.org/doc/html/rfc5704
https://www.rfc-editor.org/info/rfc5704

Thomson Expires September 12, 2019 [Page 11]

