
Workgroup: Network Working Group

Internet-Draft:

draft-iab-protocol-maintenance-05

Published: 12 July 2021

Intended Status: Informational

Expires: 13 January 2022

Authors: M. Thomson

Mozilla

The Harmful Consequences of the Robustness Principle

Abstract

The robustness principle, often phrased as "be conservative in what

you send, and liberal in what you accept", has long guided the

design and implementation of Internet protocols. The posture this

statement advocates promotes interoperability in the short term, but

can negatively affect the protocol ecosystem over time. For a

protocol that is actively maintained, the robustness principle can,

and should, be avoided.

Note to Readers

Discussion of this document takes place on the Architecture-Discuss

mailing list (architecture-discuss@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/architecture-discuss/.

Source for this draft and an issue tracker can be found at https://

github.com/intarchboard/protocol-maintenance.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 January 2022.

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/architecture-discuss/
https://github.com/intarchboard/protocol-maintenance
https://github.com/intarchboard/protocol-maintenance
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Fallibility of Specifications

3. Protocol Decay

4. Ecosystem Effects

5. Active Protocol Maintenance

6. Extensibility

7. Virtuous Intolerance

8. Exclusion

9. Security Considerations

10. IANA Considerations

11. Informative References

Appendix A. Acknowledgments

Author's Address

1. Introduction

The robustness principle has been hugely influential in shaping the

design of the Internet. As stated in IAB RFC 1958 [PRINCIPLES], the

robustness principle advises to:

Be strict when sending and tolerant when receiving.

Implementations must follow specifications precisely when sending

to the network, and tolerate faulty input from the network. When

in doubt, discard faulty input silently, without returning an

error message unless this is required by the specification.

This simple statement captures a significant concept in the design

of interoperable systems. Many consider the application of the

robustness principle to be instrumental in the success of the

Internet as well as the design of interoperable protocols in

general.

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

Time and experience shows that negative consequences to

interoperability accumulate over time if implementations apply the

robustness principle. This problem originates from an assumption

implicit in the principle that it is not possible to affect change

in a system the size of the Internet. That is, the idea that once a

protocol specification is published, changes that might require

existing implementations to change are not feasible.

Many problems that might lead to applications of the robustness

principle are avoided for protocols under active maintenance. Active

protocol maintenance is where a community of protocol designers,

implementers, and deployers work together to continuously improve

and evolve protocol specifications alongside implementations and

deployments of those protocols. A community that takes an active

role in the maintenance of protocols can greatly reduce and even

eliminate opportunities to apply the robustness principle.

There is good evidence to suggest that many important protocols are

routinely maintained beyond their inception. In particular, a

sizeable proportion of IETF activity is dedicated to the stewardship

of existing protocols. This document serves primarily as a record of

the hazards inherent in applying the robustness principle and to

offer an alternative strategy for handling interoperability problems

in deployments.

Ideally, protocol implementations never have to apply the robustness

principle. Or, where it is unavoidable, use of the robustness

principle is viewed as a short term workaround that needs to be

quickly reverted.

2. Fallibility of Specifications

The context from which the robustness principle was developed

provides valuable insights into its intent and purpose. The earliest

form of the principle in the RFC series (in RFC 760 [IP]) is

preceded by a sentence that reveals the motivation for the

principle:

While the goal of this specification is to be explicit about the

protocol there is the possibility of differing interpretations.

In general, an implementation should be conservative in its

sending behavior, and liberal in its receiving behavior.

This formulation of the principle expressly recognizes the

possibility that the specification could be imperfect. This

contextualizes the principle in an important way.

An imperfect specification is natural, largely because it is more

important to proceed to implementation and deployment than it is to

perfect a specification. A protocol, like any complex system,

¶

¶

¶

¶

¶

¶

¶

benefits greatly from experience with its use. A deployed protocol

is immeasurably more useful than a perfect protocol. The robustness

principle is a tool that is suited to early phases of system design.

As [SUCCESS] demonstrates, success or failure of a protocol depends

far more on factors like usefulness than on on technical excellence.

Timely publication of protocol specifications, even with the

potential for flaws, likely contributed significantly to the

eventual success of the Internet.

The problem is therefore not with the premise, but with its

conclusion: the robustness principle itself.

3. Protocol Decay

The application of the robustness principle to the early Internet,

or any system that is in early phases of deployment, is expedient.

Applying the principle defers the effort of dealing with

interoperability problems, which prioritizes progress. However,

deferral can amplify the ultimate cost of handling interoperability

problems.

Divergent implementations of a specification emerge over time. When

variations occur in the interpretation or expression of semantic

components, implementations cease to be perfectly interoperable.

Implementation bugs are often identified as the cause of variation,

though it is often a combination of factors. Application of a

protocol to uses that were not anticipated in the original design,

or ambiguities and errors in the specification are often confounding

factors. Disagreements on the interpretation of specifications

should be expected over the lifetime of a protocol.

Even with the best intentions, the pressure to interoperate can be

significant. No implementation can hope to avoid having to trade

correctness for interoperability indefinitely.

An implementation that reacts to variations in the manner

recommended in the robustness principle sets up a feedback cycle.

Over time:

Implementations progressively add logic to constrain how data is

transmitted, or to permit variations in what is received.

Errors in implementations or confusion about semantics are

permitted or ignored.

These errors can become entrenched, forcing other implementations

to be tolerant of those errors.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

A flaw can become entrenched as a de facto standard. Any

implementation of the protocol is required to replicate the aberrant

behavior, or it is not interoperable. This is both a consequence of

applying the robustness principle, and a product of a natural

reluctance to avoid fatal error conditions. Ensuring

interoperability in this environment is often referred to as aiming

to be "bug for bug compatible".

For example, in TLS [TLS] extensions use a tag-length-value format,

and they can be added to messages in any order. However, some server

implementations terminate connections if they encounter a TLS

ClientHello message that ends with an empty extension. To maintain

interoperability, client implementations are required to be aware of

this bug and ensure that a ClientHello message ends in a non-empty

extension.

The original JSON specification [JSON] demonstrates the effect of

specification shortcomings. RFC 4627 omitted critical details on a

range of key details including Unicode handling, ordering and

duplication of object members, and number encoding. Consequently, a

range of interpretations were used by implementations. An updated

specification [JSON-BIS] did not correct these errors, concentrating

instead on identifying the interoperable subset of JSON. I-JSON [I-

JSON] takes that subset and defines a new format that prohibits the

problematic parts of JSON. Of course, that means that I-JSON is not

fully interoperable with JSON. Consequently, I-JSON is not widely

implemented in parsers. Many JSON parsers now implement the more

precise algorithm specified in [ECMA262].

The robustness principle therefore encourages a reaction that can

create interoperability problems. In particular, the application of

the robustness principle is particularly deleterious for early

implementations of new protocols as quirks in early implementations

can affect all subsequent deployments.

4. Ecosystem Effects

Once deviations become entrenched, it can be extremely difficult -

if not impossible - to rectify the situation.

Interoperability requirements for protocol implementations are set

by other deployments. Specifications and - where they exist -

conformance test suites might guide the initial development of

implementations, but implementations ultimately need to interoperate

with deployed implementations.

For widely used protocols, the massive scale of the Internet makes

large-scale interoperability testing infeasible for all but a

privileged few. The cost of building a new implementation using

¶

¶

¶

¶

¶

¶

reverse engineering increases as the number of implementations and

bugs increases. Worse, the set of tweaks necessary for wide

interoperability can be difficult to discover.

Consequently, new implementations might be forced into niche uses,

where the problems arising from interoperability issues can be more

closely managed. However, restricting new implementations into

limited deployments risks causing forks in the protocol. If

implementations do not interoperate, little prevents those

implementations from diverging more over time.

This has a negative impact on the ecosystem of a protocol. New

implementations are important in ensuring the continued viability of

a protocol. New protocol implementations are also more likely to be

developed for new and diverse use cases and often are the origin of

features and capabilities that can be of benefit to existing users.

The need to work around interoperability problems also reduces the

ability of established implementations to change. An accumulation of

mitigations for interoperability issues makes implementations more

difficult to maintain and can constrain extensibility (see also

[USE-IT]).

Sometimes what appear to be interoperability problems are

symptomatic of issues in protocol design. A community that is

willing to make changes to the protocol, by revising or extending

it, makes the protocol better in the process. Applying the

robustness principle instead conceals problems, making it harder, or

even impossible, to fix them later.

5. Active Protocol Maintenance

The robustness principle can be highly effective in safeguarding

against flaws in the implementation of a protocol by peers.

Especially when a specification remains unchanged for an extended

period of time, incentive to be tolerant of errors accumulates over

time. Indeed, when faced with divergent interpretations of an

immutable specification, the only way for an implementation to

remain interoperable is to be tolerant of differences in

interpretation and implementation errors.

From this perspective, application of the robustness principle to

the implementation of a protocol specification that does not change

is logical, even necessary. But that conclusion relies on an

assumption that existing specifications and implementations are

unable to change. Applying the robustness principle in this way

disproportionately values short-term gains over the negative effects

on future implementations and the protocol as a whole.

¶

¶

¶

¶

¶

¶

¶

For a protocol to have sustained viability, it is necessary for both

specifications and implementations to be responsive to changes, in

addition to handling new and old problems that might arise over

time.

Maintaining specifications so that they closely match deployments

ensures that implementations are consistently interoperable and

removes needless barriers for new implementations. Maintenance also

enables continued improvement of the protocol. New use cases are an

indicator that the protocol could be successful [SUCCESS].

Protocol designers are strongly encouraged to continue to maintain

and evolve protocol specificationss beyond their initial inception

and definition. This might require the development of revised

specifications, extensions, or other supporting material that

documents the current state of the protocol. Involvement of those

who implement and deploy the protocol is a critical part of this

process, as they provide input on their experience with how the

protocol is used.

Most interoperability problems do not require revision of protocols

or protocol specifications. For instance, the most effective means

of dealing with a defective implementation in a peer could be to

email the developer responsible. It is far more efficient in the

long term to fix one isolated bug than it is to deal with the

consequences of workarounds.

Early implementations of protocols have a stronger obligation to

closely follow specifications as their behavior will affect all

subsequent implementations. In addition to specifications, later

implementations will be guided by what existing deployments accept.

Tolerance of errors in early deployments is most likely to result in

problems. Protocol specifications might need more frequent revision

during early deployments to capture feedback from early rounds of

deployment.

Neglect can quickly produce the negative consequences this document

describes. Restoring the protocol to a state where it can be

maintained involves first discovering the properties of the protocol

as it is deployed, rather than the protocol as it was originally

documented. This can be difficult and time-consuming, particularly

if the protocol has a diverse set of implementations. Such a process

was undertaken for HTTP [HTTP] after a period of minimal

maintenance. Restoring HTTP specifications to relevance took

significant effort.

Maintenance is most effective if it is responsive, which is greatly

affected by how rapidly protocol changes can be deployed. For

protocol deployments that operate on longer time scales, temporary

¶

¶

¶

¶

¶

¶

workarounds following the spirit of the robustness principle might

be necessary. If specifications can be updated more readily than

deployments, details of the workaround can be documented, including

the desired form of the protocols once the need for workarounds no

longer exists and plans for removing the workaround.

6. Extensibility

Good extensibility [EXT] can make it easier to respond to new use

cases or changes in the environment in which the protocol is

deployed.

The ability to extend a protocol is sometimes mistaken for an

application of the robustness principle. After all, if one party

wants to start using a new feature before another party is prepared

to receive it, it might be assumed that the receiving party is being

tolerant of unexpected inputs.

A well-designed extensibility mechanism establishes clear rules for

the handling of things like new messages or parameters. This depends

on having clear rules for the handling of malformed or illegal

inputs so that implementations behave consistently in all cases that

might affect interoperation. If extension mechanisms and error

handling are designed and implemented correctly, new protocol

features can be deployed with confidence in the understanding of the

effect they have on existing implementations.

In contrast, relying on implementations to consistently apply the

robustness principle is not a good strategy for extensibility. Using

undocumented or accidental features of a protocol as the basis of an

extensibility mechanism can be extremely difficult, as is

demonstrated by the case study in Appendix A.3 of [EXT].

A protocol could be designed to permit a narrow set of valid inputs,

or it could allow a wide range of inputs as a core feature (see for

example [HTML]). Specifying and implementing a more flexible

protocol is more difficult; allowing less variability is preferable

in the absence of strong reasons to be flexible.

7. Virtuous Intolerance

A well-specified protocol includes rules for consistent handling of

aberrant conditions. This increases the chances that implementations

will have consistent and interoperable handling of unusual

conditions.

Intolerance of any deviation from specification, where

implementations generate fatal errors in response to observing

undefined or unusual behaviour, can be harnessed to reduce

occurrences of aberrant implementations. Choosing to generate fatal

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6709#appendix-A.3

errors for unspecified conditions instead of attempting error

recovery can ensure that faults receive attention.

This improves feedback for new implementations in particular. When a

new implementation encounters a peer that is intolerant of an error,

it receives strong feedback that allows the problem to be discovered

quickly.

To be effective, intolerant implementations need to be sufficiently

widely deployed that they are encountered by new implementations

with high probability. This could depend on multiple implementations

deploying strict checks.

This does not mean that intolerance of errors in early deployments

of protocols have the effect of preventing interoperability. On the

contrary, when existing implementations follow clearly specified

error handling, new implementations or features can be introduced

more readily as the effect on existing implementations can be easily

predicted; see also Section 6.

Any intolerance also needs to be strongly supported by

specifications, otherwise they encourage fracturing of the protocol

community or proliferation of workarounds; see Section 8.

Intolerance can be used to motivate compliance with any protocol

requirement. For instance, the INADEQUATE_SECURITY error code and

associated requirements in HTTP/2 [HTTP2] resulted in improvements

in the security of the deployed base.

8. Exclusion

Any protocol participant that is affected by changes arising from

maintenance might be excluded if they are unwilling or unable to

implement or deploy changes that are made to the protocol.

Deliberate exclusion of problematic implementations is an important

tool that can ensure that the interoperability of a protocol remains

viable. While compatible changes are always preferable to

incompatible ones, it is not always possible to produce a design

that protects the ability of all current and future protocol

participants to interoperate. Developing and deploying changes that

risk exclusion of previously interoperating implementations requires

some care, but changes to a protocol should not be blocked on the

grounds of the risk of exclusion alone.

Exclusion is a direct goal when choosing to be intolerant of errors

(see Section 7). Exclusionary actions are employed with the

deliberate intent of protecting future interoperability.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[ECMA262]

[EXT]

[HTML]

[HTTP]

[HTTP2]

Excluding implementations or deployments can lead to a fracturing of

the protocol system that could be more harmful than any divergence

resulting from following the robustness principle. RFC 5704

[UNCOORDINATED] describes how conflict or competition in the

maintenance of protocols can lead to similar problems.

9. Security Considerations

Sloppy implementations, lax interpretations of specifications, and

uncoordinated extrapolation of requirements to cover gaps in

specification can result in security problems. Hiding the

consequences of protocol variations encourages the hiding of issues,

which can conceal bugs and make them difficult to discover.

The consequences of the problems described in this document are

especially acute for any protocol where security depends on

agreement about semantics of protocol elements. For instance, use of

unsafe security mechanisms, such as weak primitives [MD5] or

obsolete mechanisms [SSL3], are good examples of where forcing

exclusion (Section 8) can be desirable.

10. IANA Considerations

This document has no IANA actions.

11. Informative References

"ECMAScript(R) 2018 Language Specification", ECMA-262 9th

Edition, June 2018, <https://www.ecma-international.org/

publications/standards/Ecma-262.htm>.

Carpenter, B., Aboba, B., Ed., and S. Cheshire, "Design

Considerations for Protocol Extensions", RFC 6709, DOI

10.17487/RFC6709, September 2012, <https://www.rfc-

editor.org/rfc/rfc6709>.

"HTML", WHATWG Living Standard, 8 March 2019, <https://

html.spec.whatwg.org/>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/rfc/rfc7230>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

¶

¶

¶

¶

https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.rfc-editor.org/rfc/rfc6709
https://www.rfc-editor.org/rfc/rfc6709
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://www.rfc-editor.org/rfc/rfc7230

[I-JSON]

[IP]

[JSON]

[JSON-BIS]

[MD5]

[PRINCIPLES]

[SSL3]

[SUCCESS]

[TLS]

[UNCOORDINATED]

[USE-IT]

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

rfc/rfc7540>.

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI

10.17487/RFC7493, March 2015, <https://www.rfc-

editor.org/rfc/rfc7493>.

Postel, J., "DoD standard Internet Protocol", RFC 760,

DOI 10.17487/RFC0760, January 1980, <https://www.rfc-

editor.org/rfc/rfc760>.

Crockford, D., "The application/json Media Type for

JavaScript Object Notation (JSON)", RFC 4627, DOI

10.17487/RFC4627, July 2006, <https://www.rfc-editor.org/

rfc/rfc4627>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", RFC 7159, DOI 10.17487/RFC7159,

March 2014, <https://www.rfc-editor.org/rfc/rfc7159>.

Turner, S. and L. Chen, "Updated Security Considerations

for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011, <https://

www.rfc-editor.org/rfc/rfc6151>.

Carpenter, B., Ed., "Architectural Principles of the

Internet", RFC 1958, DOI 10.17487/RFC1958, June 1996,

<https://www.rfc-editor.org/rfc/rfc1958>.

Barnes, R., Thomson, M., Pironti, A., and A. Langley,

"Deprecating Secure Sockets Layer Version 3.0", RFC 7568,

DOI 10.17487/RFC7568, June 2015, <https://www.rfc-

editor.org/rfc/rfc7568>.

Thaler, D. and B. Aboba, "What Makes for a Successful

Protocol?", RFC 5218, DOI 10.17487/RFC5218, July 2008,

<https://www.rfc-editor.org/rfc/rfc5218>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Bryant, S., Ed., Morrow, M., Ed., and IAB,

"Uncoordinated Protocol Development Considered Harmful",

RFC 5704, DOI 10.17487/RFC5704, November 2009, <https://

www.rfc-editor.org/rfc/rfc5704>.

Thomson, M., "Long-term Viability of Protocol Extension

Mechanisms", Work in Progress, Internet-Draft, draft-iab-

use-it-or-lose-it-00, 7 August 2019, <https://

https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7493
https://www.rfc-editor.org/rfc/rfc7493
https://www.rfc-editor.org/rfc/rfc760
https://www.rfc-editor.org/rfc/rfc760
https://www.rfc-editor.org/rfc/rfc4627
https://www.rfc-editor.org/rfc/rfc4627
https://www.rfc-editor.org/rfc/rfc7159
https://www.rfc-editor.org/rfc/rfc6151
https://www.rfc-editor.org/rfc/rfc6151
https://www.rfc-editor.org/rfc/rfc1958
https://www.rfc-editor.org/rfc/rfc7568
https://www.rfc-editor.org/rfc/rfc7568
https://www.rfc-editor.org/rfc/rfc5218
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc5704
https://www.rfc-editor.org/rfc/rfc5704
https://datatracker.ietf.org/doc/html/draft-iab-use-it-or-lose-it-00

datatracker.ietf.org/doc/html/draft-iab-use-it-or-lose-

it-00>.

Appendix A. Acknowledgments

Constructive feedback on this document has been provided by a

surprising number of people including Bernard Aboba, Brian

Carpenter, Stuart Cheshire, Mark Nottingham, Russ Housley, Henning

Schulzrinne, Robert Sparks, Brian Trammell, and Anne Van Kesteren.

Please excuse any omission.

Author's Address

Martin Thomson

Mozilla

Email: mt@lowentropy.net

¶

https://datatracker.ietf.org/doc/html/draft-iab-use-it-or-lose-it-00
https://datatracker.ietf.org/doc/html/draft-iab-use-it-or-lose-it-00
mailto:mt@lowentropy.net

	The Harmful Consequences of the Robustness Principle
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Fallibility of Specifications
	3. Protocol Decay
	4. Ecosystem Effects
	5. Active Protocol Maintenance
	6. Extensibility
	7. Virtuous Intolerance
	8. Exclusion
	9. Security Considerations
	10. IANA Considerations
	11. Informative References
	Appendix A. Acknowledgments
	Author's Address

