
Network Working Group Steven M. Bellovin
Internet Draft AT&T Labs Research
 Jeffrey I. Schiller
 MIT

Expiration Date: December 2002 June 2002

Security Mechanisms for the Internet

draft-iab-secmech-01.txt

1. Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

2. Abstract

 Security must be built into Internet Protocols for those protocols to
 offer their services securely. Many security problems can be traced
 to improper implementations. However, even a proper implementation
 will have security problems if the fundamental protocol is itself
 exploitable. Exactly how security should be implemented in a
 protocol will vary, because of the structure of the protocol itself.
 However, there are many protocols for which standard Internet
 security mechanisms, already developed, may be applicable. The
 precise one that is appropriate in any given situation can vary. We
 review a number of different choices, explaining the properties of
 each.

Bellovin, Schiller [Page 1]

https://datatracker.ietf.org/doc/html/draft-iab-secmech-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

3. Introduction

 Internet Security compromises can be divided into several classes,
 ranging from Denial of Service to Buffer Overflows. Denial of Service
 attacks are beyond the scope of this document and Buffer Overflows
 are often programming flaws in individual implementations of a
 protocol.

 However there are security compromises that are facilitated by the
 very protocols that are in use on the Internet. If a security problem
 is inherent in a protocol, no manner of implementation will be able
 to prevent the problem.

 It is therefore vitally important that protocols developed for the
 Internet provide this fundamental security.

 Exactly how a protocol should be secured depends on the protocol
 itself as well as the security needs of the protocol. However we have
 developed a number of standard security mechanisms in the IETF. In
 many cases appropriate application of these mechanisms can provide
 the necessary security for a protocol.

 A number of possible mechanisms can be used to provide security on
 the Internet. Which one should be selected depends on many different
 factors. We attempt here to provide guidance, spelling out the
 factors and the currently-standardized (or about-to-be-standardized)
 solutions, as discussed at the IAB Security Architecture Workshop
 [RFC2316].

 Security, however, is an art, not a science. Attempting to follow a
 recipe blindly can lead to disaster. As always, good taste in
 protocol design should be exercised.

 Finally, security mechanisms are not magic pixie dust that can be
 sprinkled over completed protocols. It is rare that security can be
 bolted on later. Good designs--that is, secure, clean, and efficient
 designs--occur when the security mechanisms are crafted along with
 the protocol. No conceivable exercise in cryptography can secure a
 protocol with flawed semantic assumptions.

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt
https://datatracker.ietf.org/doc/html/rfc2316

Bellovin, Schiller [Page 2]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

4. Decision Factors

4.1. Threat Model

 The most important factor in choosing a security mechanism is the
 threat model. That is, who may be expected to attack what resource,
 using what sorts of mechanisms? A low-value target, such as a Web
 site that offers public information only, may not merit much
 protection. Conversely, a resource that if compromised could expose
 significant parts of the Internet infrastructure--say, a major
 backbone router or high-level Domain Name Server--should be protected
 by very strong mechanisms.

 All Internet connected systems require a minimum amount of
 protection. Starting in 2000 and continuing to the present, we have
 witnessed the advent of a new type of Internet security attack: an
 Internet "worm" program that seeks out and automatically attacks
 systems that are vulnerable to compromise via a number of attacks
 built into the worm program itself. These worm programs can
 compromise literally thousands of systems within a very short period
 of time.

 As of the writing of this document, all of these worms have taken
 advantage of programming errors in the implementation of otherwise
 reasonably secure protocols. However, it is not hard to envision an
 attack that targets a fundamental security flaw in a widely deployed
 protocol. It is therefore imperative that we strive to minimize such
 flaws in the protocols we design.

 [footnote: The first Internet Worm was the "Morris" worm of 1988.
 However it was not followed up with similar programs for over 12
 years!]

 The value of a target to an attacker may depend on where it is
 located. A network monitoring station that is physically on a
 backbone cable is a major target, since it could easily be turned
 into an eavesdropping station. The same machine, if located on a
 stub net and used for word processing, would be of much less use to a
 sophisticated attacker, and hence would be at significantly less
 risk.

 One must also consider what sorts of attacks may be expected. At a
 minimum, eavesdropping must be seen as a serious threat; there have
 been very many such incidents since at least 1993. Often, active
 attacks--that is, attacks that involve insertion or deletion of
 packets by the attacker--are a risk as well. It is worth noting that
 such attacks can be launched with off-the-shelf tools, and have in

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt

Bellovin, Schiller [Page 3]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

 fact been observed "in the wild".

 One of the most important tools available to us for securing
 protocols is cryptography. Cryptography permits us to apply various
 kind of protection to data as it traverses the network, without
 having to depend on any particular security properties of the network
 itself. This is important because the Internet, by its distributed
 management and control, cannot be considered a trustworthy media in
 and of itself. Its security derives from the mechanisms that we build
 into the protocols themselves, independent on the underlying media or
 network operators.

 Finally, of course, there is the cost to the defender of using
 cryptography. This cost is dropping rapidly; Moore's Law, plus the
 easy availability of cryptographic components and toolkits, makes it
 relatively easy to use strong protective techniques. Although there
 are exceptions--public key operations are still expensive, perhaps
 prohibitively so if the cost of each public-key operation is spread
 over too few transactions--careful engineering design can generally
 let us spread this cost over many transactions.

 In general, the default today should be to use the strongest
 cryptography available in any protocol. Strong cryptography often
 costs no more, and sometimes less, then weaker cryptography. The
 actual performance cost of an algorithm is often unrelated to the
 security it provides.

4.2. A word about Mandatory Mechanisms

 We have evolved in the IETF the notion of "mandatory to implement"
 mechanisms. This philosophy evolves from our primary desire to ensure
 interoperability between different implementations of a protocol. If
 a protocol offers many options for how to perform a particular task,
 but fails to provide for at last one that all must implement, it may
 be possible that multiple, non-interoperable implementations may
 result. This is the consequence of the selection of non-overlapping
 mechanisms being deployed in the different implementations.

 Although a given protocol may make use of only one or a few security
 mechanisms, these mechanisms themselves often can make use of several
 cryptographic systems. The various cryptographic systems vary in
 strength and performance. However, in many protocols we need to
 specify a "mandatory to implement" to ensure that any two
 implementations will eventually be able to negotiate a common
 cryptographic system between them.

 There are some protocols that were originally designed to be run in a

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt

Bellovin, Schiller [Page 4]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

 very limited domain. It is often argued that the domain of
 implementation for a particular protocol is sufficiently well defined
 and secure that the protocol itself need not provide any security
 mechanisms.

 History has shown this argument to be wrong. Virtually all protocol
 developed for limited use eventually wind up in use across the global
 Internet, where the initial security assumptions no longer hold.

 To solve this problem, the IETF requires that *ALL* protocols provide
 appropriate security mechanisms, even when their domain of
 application is at first believed to be very limited.

 It is important to understand that mandatory mechanisms are mandatory
 to *implement*. It is not necessarily mandatory that end-users
 actually use these mechanisms. If an end-user knows that they are
 deploying a protocol over a "secure" network, then they may choose to
 disable security mechanisms that they believe are adding insufficient
 value as compared to their performance cost. (We are generally
 skeptical of the wisdom of disabling strong security even then, but
 that is beyond the scope of this document.)

 By insisting that certain mechanisms are mandatory to implement means
 that those end-users who need the protocol provided by the security
 mechanism have it available when needed.

4.3. Granularity of Protection

 Some security mechanisms can protect an entire network. While this
 economizes on hardware, it can leave the interior of such networks
 open to attacks from the inside. Other mechanisms can provide
 protection down to the individual user of a timeshared machine,
 though perhaps at risk of user impersonation if the machine has been
 compromised.

 When assessing the desired granularity of protection, protocol
 designers should take into account likely usage patterns,
 implementation layers (see below), and deployability. If a protocol
 is likely to be used only from within a secure cluster of machines
 (say, a Network Operations Center), subnet granularity may be
 appropriate. By contrast, a security mechanism peculiar to a single
 application is best embedded in that application, rather than inside
 TCP; otherwise, deployment will be very difficult.

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt

Bellovin, Schiller [Page 5]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

4.4. Implementation Layer

 Security mechanisms can be located at any layer. In general, putting
 a mechanism at a lower layer protects a wider variety of higher-layer
 protocols. The usual tradeoff is reach; lower-layer protocols
 terminate sooner. Thus, a link-layer encryptor can protect not just
 IP, but even ARP packets. However, its reach is just that one link.
 Conversely, a signed email message is protected even if sent across
 many store-and-forward mail gateways; however, only that one type of
 message is protected. Messages of similar formats, such as some
 Netnews postings, are not protected unless the mechanism is
 specifically adapted and then implemented in the news-handling
 programs.

5. Standard Security Mechanisms

5.1. One-Time Passwords

 One-time password schemes, such as that described in [RFC2289], are
 very much stronger than conventional passwords. The host need not
 store a copy of the user's password, nor is it ever transmitted over
 the network. However, there are some risks. Since the transmitted
 string is derived from a user-typed password, guessing attacks may
 still be feasible. (Indeed, a program to launch just this attack is
 readily available.) Furthermore, the user's login inherently expires
 after predetermined number of uses. While in many cases this is a
 feature, an implementation most likely needs to provide a way to
 reinitialize the authentication database, without requiring that the
 new password be sent in the clear across the network.

 There are commercial hardware authentication tokens. Apart from the
 session hijacking issue, support for such tokens (and especially for
 challenge/response tokens) may require extra protocol messages.

5.2. HMAC

 HMAC [RFC2104] is the preferred shared-secret authentication
 technique. If both sides know the same secret key, HMAC can be used
 to authenticate any arbitrary message. This specifically includes
 random challenges, which means that HMAC is suitable for logins.

 The disadvantage, of course, is that the secret must be known in the
 clear by both parties. In many situations, this is undesirable.

 When suitable, HMAC should be used in preference to older techniques,

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt
https://datatracker.ietf.org/doc/html/rfc2289
https://datatracker.ietf.org/doc/html/rfc2104

Bellovin, Schiller [Page 6]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

 notably keyed hash functions. Simple keyed hashes based on MD5
 [RFC1321], such as that used in the BGP session security mechanism
 [RFC2385], are especially to be avoided in new protocols, given the
 hints of weakness in MD5.

 HMAC can be implemented using any secure hash function, including MD5
 and SHA-1 [RFC3174]. However, the latter or stronger are preferred;
 while the techniques that are threatening MD5 are not applicable in
 the HMAC context, a conservative design is better, especially given
 the difficulty of displacing protocols once deployed.

 It is important to understand that an HMAC-based mechanism needs to
 be employed on every protocol data unit (aka packet). It is a mistake
 to use an HMAC based system to authenticate the beginning of a TCP
 session and then send all remaining data without any protection.

 Attack programs exist that permit a TCP session to be stolen. An
 attacker merely needs to use such a protocol to steal a session after
 the HMAC step is performed.

5.3. IPsec

 IPsec [RFC2401],[RFC2402],[RFC2406],[RFC2407],[RFC2411] is the
 generic IP-layer encryption and authentication protocol. As such, it
 protects all upper layers, including both TCP and UDP. Its normal
 granularity of protection is host-to-host, host-to-gateway, and
 gateway-to-gateway. The specification does permit user-granularity
 protection, but this is comparatively rare. As such, IPsec is
 currently inappropriate when host-granularity is too coarse.

 Because IPsec is installed at the IP layer, it is rather intrusive.
 Implementing it generally requires either new hardware or a new
 protocol stack. This makes it a poor choice for individual
 applications, at least until IPsec is more widely deployed. Most
 modern operating systems have IPsec available; most routers do not,
 at least for the control path.

 The key management for IPsec can use either certificates or shared
 secrets. For all the obvious reasons, certificates are preferred;
 however, they may present more of a headache for the system manager.

 There is strong potential for conflict between IPsec and NAT
 [Hain99]. NAT does not easily co-exist with any protocol containing
 embedded IP address; with IPsec, every packet, for every protocol,
 contains such addresses, if only in the headers. The conflict can
 sometimes be avoided by using tunnel mode, but that is not always an
 appropriate choice for other reasons.

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2407
https://datatracker.ietf.org/doc/html/rfc2411

Bellovin, Schiller [Page 7]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

 Most current IPsec usage is for virtual private nets. Assuming that
 the other constraints are met, IPsec is the security protocol of
 choice for VPN-like situations.

5.4. TLS

 TLS [RFC2246] provides an encrypted, authenticated channel that runs
 on top of TCP. While TLS was primarily intended for use by Web
 browsers, it is by no means restricted to such. In general, though,
 each application that wishes to use TLS will need to be converted
 individually.

 Generally, the server side is always authenticated by a certificate.
 Clients may possess certificates, too, providing bilateral
 authentication. The reality, though, is that for most practical Web
 use, there is no authentication, since users do not check
 certificates [Bell98]. Designers should thus be wary of demanding
 plaintext passwords, even over TLS-protected connections. (This
 requirement can be relaxed if it is likely that implementations will
 be able to verify the authenticity and authorization of the server's
 certificate.)

 Although application modification is required to make use of TLS,
 there exist toolkits, both free and commercial, that provide
 implementations. These need only be incorporated into the
 application's code.

5.5. SASL

 SASL [RFC2222] is a framework for negotiating an authentication and
 encryption mechanism to be used over a TCP stream. As such, its
 security properties are those of the negotiated mechanism.
 Specifically, unless an underlying protection protocol such as TLS is
 used, TCP connections are vulnerable to session stealing.

 If you need to use TLS (or IPSec) under SASL, why bother with SASL in
 the first place? Why not simply use the authentication facilities of
 TLS and be done with it?

 The answer here is subtle. TLS makes extensive use of certificates
 for authentication. As currently deployed, on servers have
 certificates, whereas clients go unauthenticated (at least at the
 protocol layer).

 SASL permits the use of of more traditional client authentication
 technologies, such as passwords (one-time or otherwise). A powerful

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2222

Bellovin, Schiller [Page 8]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

 combination is TLS for underlying protection and authentication of
 the server, and a SASL-based system for authenticating clients.

5.6. GSS-API GSS-API [RFC2744] provides a framework for applications to
 use when they require authentication, integrity, and/or
 confidentiality. Unlike SASL, GSS-API can be used easily with UDP-
 based applications. It provides for the creation of opaque
 authentication tokens (aka chunks of memory) which may be embedded in
 a protocols data units. Note that the security of GSS-API-protected
 protocols depends on the underlying security mechanism; this must be
 evaluated independently. Similar considerations apply to
 interoperability, of course.

5.7. DNSSEC

 DNSSEC [RFC2535] digitally signs DNS records. It is an essential
 tool for protecting against cache contamination attacks [Bell95];
 these in turn can be used to defeat name-based authentication and to
 redirect traffic to or past an attacker. The latter makes DNSSEC an
 essential component of some other security mechanisms, notably IPsec.

 Although not widely deployed on the Internet at the time of the
 writing of this document, it offers the potential to provide a secure
 mechanism for mapping domain names to IP protocol addresses. It may
 also be used to securely associate other information with a DNS name.
 This information may be as simple as a service that is supported on a
 given node, or a key to be used with IPsec for negotiating a secure
 session. (Note that the concept of storing application keys in the
 DNS is still controversial.)

 DNSSEC, as currently defined, is difficult to deploy operationally.
 Forthcoming protocol changes will resolve this issue.

5.8. Security/Multipart

 Security/Multiparts [RFC1847] are the preferred mechanism for
 protecting email. More precisely, it is the MIME framework within
 which encryption and/or digital signatures are embedded. Conforming
 mail readers can easily recognize and process the cryptographic
 portions of the mail.

 Security/Multiparts represents one form of "object security", where
 the object of interest to the end user is protected, independent of
 transport mechanism, intermediate storage, etc. Currently, there is
 no general form of object protection available in the Internet.

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc1847

Bellovin, Schiller [Page 9]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

5.9. Digital Signatures

 One of the strongest forms of challenge/response authentication is
 based on digital signatures. It is preferable to schemes based on
 ordinary ciphers because the server end does not need a copy of the
 client's secret. Rather, the client has a private key; the server
 has the corresponding public key.

 Using digital signatures properly is tricky. A client should never
 sign the exact challenge sent to it, since there are several subtle
 number-theoretic attacks that can be launched in such situations.

 The Digital Signature Standard [DSS] is a good choice; however,
 signing requires the use of good random numbers [RFC1750]. If the
 enemy can recover the random number used for any given signature, or
 if you use the same random number for two different documents, your
 private key can be recovered.

 An advantage of DSA is that any 160-bit number is a valid private
 key; by contrast, RSA key generation is quite expensive. Also, RSA
 is slower for signing, but faster to verify.

5.10. OpenPGP and S/MIME

 Digital signatures can be used to build "object security"
 applications which may be used to protect store and forward protocols
 such as electronic mail.

 At this writing, two different secure mail protocols, OpenPGP and
 S/MIME, have been proposed to replace PEM. It is not clear which, if
 either, will succeed. Both use certificates to identify users; both
 can provide secrecy and authentication of mail messages; however, the
 certificate formats are very different. Historically, the difference
 between PGP-based mail and S/MIME-based mail has been the style of
 certificate chaining. In S/MIME, users possess X.509 certificates;
 the certification graph is a tree with a very small number of roots.
 By contrast, PGP uses the so-called "web of trust", where any user
 can sign anyone else's certificate. This certification graph is
 really an arbitrary graph or set of graphs.

 With any certificate scheme, trust depends on two primary
 characteristics. First, it must start from a known-reliable
 source--either an X.509 root, or someone highly trusted by the
 verifier, often him or herself. Second, the chain of signatures must
 be reliable. That is, each node in the certification graph is
 crucial; if it is dishonest or has been compromised, any certificates
 it has vouched for cannot be trusted. All other factors being equal

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt
https://datatracker.ietf.org/doc/html/rfc1750

Bellovin, Schiller [Page 10]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

 (and they rarely are), shorter chains are preferable.

 There is a tension between two philosophical positions represented by
 these technologies.

 S/MIME is designed to be "fool proof." That is, very little end-user
 configuration is required. Specifically, end-users do not need to be
 aware of trust relationships, etc. The idea is that if an S/MIME
 client says, "This signature is valid", the user should be able to
 "trust" that statement at face value without needing to understand
 the underlying implications.

 To achieve this, S/MIME is based on a limited number of "root"
 Certifying Authorities. The goal is to build a global trusted
 certificate infrastructure.

 The down side to this approach is that it requires infrastructure to
 work. Two end-users may not simply obtain S/MIME capable software and
 begin to communicate securely. One or both of them need to obtain a
 certificate from a mutually trusted CA; furthermore, that CA must
 already be trusted by their mail handling software. This process may
 involve cost and legal obligations. This ultimately results in the
 technology being harder to deploy, particularly in an environment
 where end-users do not necessarily appreciate the value received for
 the hassle incurred.

 The PGP "web of trust" approach has the advantage that two end-users
 can just obtain PGP software and immediately begin to communicate
 securely. No infrastructure is required and no fees and legal
 agreements need to be signed to proceed. As such PGP appeals to
 people who need to establish ad-hoc security associations.

 The down side to PGP is that it requires end-users to have an
 understanding of the underlying security technology in order to make
 effective use of it. Specifically it is fairly easy to fool a naive
 users to accept a "signed" message that is in fact a forgery.

 To date PGP has found great acceptance between security-aware
 individuals who have a need for secure e-mail in an environment
 devoid of the necessary global infrastructure.

 By contrast, S/MIME works well in a corporate setting where a secure
 internal CA system can be deployed. Furthermore, it does not require
 a lot of end-user security knowledge. S/MIME can be used between
 institutions by carefully setting up cross certification, but this is
 harder to do than it seems.

 As of this writing a global certificate infrastructure continues to

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt

Bellovin, Schiller [Page 11]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

 elude us. Questions about a suitable business model, as well as
 privacy considerations, may prevent one from ever emerging.

5.11. Firewalls and Topology

 Firewalls are a topological defense mechanism. That is, they rely on
 a well-defined boundary between the good "inside" and the bad
 "outside" of some domain, with the firewall mediating the passage of
 information. While firewalls can be very valuable if employed
 properly, there are limits to their ability to protect a network.

 The first limitation, of course, is that firewalls cannot protect
 against inside attacks. While the actual incidence rate of such
 attacks is not known (and is probably unknowable), there is no doubt
 that it is substantial, and arguably constitutes a majority of
 security problems. More generally, given that firewalls require a
 well-delimited boundary, to the extent that such a boundary does not
 exist, firewalls do not help. Any external connections, whether they
 are protocols that are deliberately passed through the firewall,
 links that are tunneled through, unprotected wireless LANs, or direct
 external connections from nominally-inside hosts, weaken the
 protection. It should be noted that this phenomenon can vitiate one
 oft-touted advantage of firewalls, that they hide the existence of
 internal hosts from outside eyes. Given the amount of leakage, the
 likelihood of successfully hiding machines is rather low.

 In a more subtle vein, firewalls hurt the end-to-end model of the
 Internet and its protocols. Indeed, not all protocols can be passed
 safely or easily through firewalls [Freed97]. Sites that rely on
 firewalls for security may find themselves cut off from new and
 useful aspects of the Internet.

 Firewalls work best when they are used as one element of a total
 security structure. For example, a strict firewall may be used to
 separate an exposed Web server from a back-end database, with the
 only opening the communication channel between the two. Similarly, a
 firewall that permitted only encrypted tunnel traffic could be used
 to secure a piece of a VPN. On the other hand, in that case the
 other end of the VPN would need to be equally secured.

5.12. Kerberos

 Kerberos [RFC1510] provides a mechanism for two entities to
 authenticate each other and exchange keying material. On the client
 side, an application obtains a Kerberos "ticket" and "authenticator."
 These items, which should be considered opaque data, are then

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt
https://datatracker.ietf.org/doc/html/rfc1510

Bellovin, Schiller [Page 12]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

 communicated from client to server. The server can then verify their
 authenticity. Both sides may then ask the Kerberos software to
 provide them with a session key which can be used to protect or
 encrypt data.

 Kerberos may be used by itself in a protocol. However, it is also
 available as a mechanism under SASL and GSSAPI.

5.13. SSH

 SSH provides a secure connection between client and server. It
 operates very much like TLS; however, it is optimized as a protocol
 for remote connections on terminal-like devices. One of its more
 innovative features is its support for "tunneling" other protocols
 over the SSH-protected TCP connection. This feature has permitted
 knowledgeable security people to perform such actions as reading and
 sending e-mail or news via insecure servers over an insecure network.
 It is not a substitute for a true VPN, but it can often be used in
 place of one.

6. Insecurity Mechanisms

 Some common security mechanisms are part of the problem rather than
 part of the solution.

6.1. Plaintext Passwords

 Plaintext passwords are the most common security mechanism in use
 today. Unfortunately, they are also the weakest. When not protected
 by an encryption layer, they are completely unacceptable. Even when
 used with encryption, plaintext passwords are quite weak, since they
 must be transmitted to the remote system. If that system has been
 compromised or if the encryption layer does not include effective
 authentication of the server to the client, an enemy can collect the
 passwords and possibly use them against other targets.

 Another weakness arises because of common implementation techniques.
 It is considered good form [MT79] for the host to store a one-way
 hash of the users' passwords, rather than their plaintext form.
 However, that may preclude migrating to stronger authentication
 mechanisms, such as HMAC-based challenge/response.

 The strongest attack against passwords, other than eavesdropping, is
 password-guessing. With a suitable program and dictionary (and these
 are widely available), 20-30% of passwords can be guessed in most

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt

Bellovin, Schiller [Page 13]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

 environments.

6.2. Address-Based Authentication

 Another common security mechanism is address-based authentication.
 At best, it can work in highly constrained environments. If your
 environment consists of a small number of machines, all tightly
 administered, secure systems run by trusted users, and if the network
 is guarded by a router that blocks source-routing and prevents
 spoofing of your source addresses, and you know there are no wireless
 bridges, and if you restrict address-based authentication to machines
 on that network, you are probably safe. But these conditions are
 rarely met.

 Among the threats are ARP-spoofing, abuse of local proxies,
 renumbering, routing table corruption or attacks, DHCP, IP address
 spoofing (a particular risk for UDP-based protocols), sequence number
 guessing, and source-routed packets. All of these can be quite
 potent.

6.3. Name-Based Authentication

 Name-based authentication has all of the problems of address-based
 authentication and adds new ones: attacks on the DNS [Bell95]. At a
 minimum, a process that retrieves a host name from the DNS should
 retrieve the corresponding address records and cross-check.
 Techniques such as cache contamination can often negate such checks.

 DNSSEC provides protection against this sort of attack. However, it
 does nothing to enhance the reliability of the underlying address.

7. Security Considerations

 No security mechanisms are perfect. If nothing else, any network-
 based security mechanism can be thwarted by compromise of the
 endpoints. That said, each of the mechanisms described here have
 their own limitations. Any decision to adopt a given mechanism
 should weigh all of the possible failure modes. These in turn should
 be weighed against the risks to the endpoint of a security failure.

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt

Bellovin, Schiller [Page 14]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

8. Acknowledgements

 Brian Carpenter, Tony Hain, and Marcus Leech made a number of useful
 suggestions. Much of the substance comes from the participants in
 the IAB Security Architecture Workshop.

9. References

 [RFC2316] "Report of the IAB Security Architecture Workshop". S.
 Bellovin. April 1998.

 [RFC2289] "A One-Time Password System". N. Haller, C. Metz, P.
 Nesser, M. Straw. February 1998.

 [RFC2104] "HMAC: Keyed-Hashing for Message Authentication". H.
 Krawczyk, M. Bellare, R. Canetti. February 1997.

 [RFC1321] "The MD5 Message-Digest Algorithm". R. Rivest. April 1992.

 [RFC2246] "The TLS Protocol Version 1.0. T. Dierks, C. Allen. January
 1999."

 [RFC2385] "Protection of BGP Sessions via the TCP MD5 Signature
 Option". A. Hefferman. August 1998.

 [RFC2401] "Security Architecture for the Internet Protocol". S. Kent,
 R. Atkinson. November 1998.

 [RFC2402] "IP Authentication Header. S. Kent, R. Atkinson. November
 1998."

 [RFC2406] "IP Encapsulating Security Payload (ESP). S. Kent, R.
 Atkinson. November 1998."

 [RFC2407] "The Internet IP Security Domain of Interpretation for
 ISAKMP. D. Piper. November 1998."

 [RFC2411] "IP Security Document Roadmap". R. Thayer, N. Doraswamy, R.
 Glenn. November 1998.

 [RFC2744] "Generic Security Service API Version 2 : C-bindings. J.
 Wray. January 2000."

 [RFC3174] "US Secure Hash Algorithm 1 (SHA1)". D. Eastlake, 3rd, and
 P. Jones. September 2001.

 [Hain99] "Architectural Implications of NAT". T. Hain. April 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt

Bellovin, Schiller [Page 15]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

 Work in progress.

 [Bell95] "Using the Domain Name System for System Break-Ins". Proc.
 Fifth Usenix Security Conference, 1995.

 [Bell98] "Cryptography and the Internet", S.M. Bellovin, in
 Proceedings of CRYPTO '98, August 1998.

 [RFC2222] "Simple Authentication and Security Layer (SASL)". J.
 Myers. October 1997.

 [RFC2535] "Domain Name System Security Extensions". D. Eastlake.
 March 1999.

 [RFC1847] "Security Multiparts for MIME: Multipart/Signed and
 Multipart/Encrypted". J. Galvin, S. Murphy, S. Crocker & N. Freed.
 October 1995.

 [DSS] "Digital Signature Standard". NIST. May 1994. FIPS 186.

 [RFC1750] "Randomness Recommendations for Security". D. Eastlake,
 3rd, S. Crocker & J. Schiller. December 1994.

 [Freed97] "An Internet Firewall Transparency Requirement". N. Freed
 and K. Carosso. December 1997. Work in progress.

 [MT79] "UNIX Password Security", R.H. Morris and K. Thompson,
 Communications of the ACM, November 1979.

10. Author Information

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt

Bellovin, Schiller [Page 16]

Internet Draft draft-ietf-iab-secmech-02.txt June 2002

Steven M. Bellovin
AT&T Labs Research
Shannon Laboratory
180 Park Avenue
Florham Park, NJ 07974
USA
Phone: +1 973-360-8656
email: smb@research.att.com

Jeffrey I. Schiller
Massachusetts Institute of Technology
Room W92-190
77 Massachusetts Avenue
Cambridge, MA 02139-4307
USA
Phone: +1 617-253-8400
email: jis@mit.edu

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt

Bellovin, Schiller [Page 17]

