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1. Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet- Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

2. Abstract

   Security must be built into Internet Protocols for those protocols to
   offer their services securely. Many security problems can be traced
   to improper implementations. However, even a proper implementation
   will have security problems if the fundamental protocol is itself
   exploitable.  Exactly how security should be implemented in a
   protocol will vary, because of the structure of the protocol itself.
   However, there are many protocols for which standard Internet
   security mechanisms, already developed, may be applicable.  The
   precise one that is appropriate in any given situation can vary.  We
   review a number of different choices, explaining the properties of
   each.
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3. Introduction

   Internet Security compromises can be divided into several classes,
   ranging from Denial of Service to Buffer Overflows. Denial of Service
   attacks are beyond the scope of this document and Buffer Overflows
   are often programming flaws in individual implementations of a
   protocol.

   However there are security compromises that are facilitated by the
   very protocols that are in use on the Internet. If a security problem
   is inherent in a protocol, no manner of implementation will be able
   to prevent the problem.

   It is therefore vitally important that protocols developed for the
   Internet provide this fundamental security.

   Exactly how a protocol should be secured depends on the protocol
   itself as well as the security needs of the protocol. However we have
   developed a number of standard security mechanisms in the IETF. In
   many cases appropriate application of these mechanisms can provide
   the necessary security for a protocol.

   A number of possible mechanisms can be used to provide security on
   the Internet.  Which one should be selected depends on many different
   factors.  We attempt here to provide guidance, spelling out the
   factors and the currently-standardized (or about-to-be-standardized)
   solutions, as discussed at the IAB Security Architecture Workshop
   [RFC2316].

   Security, however, is an art, not a science.  Attempting to follow a
   recipe blindly can lead to disaster.  As always, good taste in
   protocol design should be exercised.

   Finally, security mechanisms are not magic pixie dust that can be
   sprinkled over completed protocols.  It is rare that security can be
   bolted on later.  Good designs--that is, secure, clean, and efficient
   designs--occur when the security mechanisms are crafted along with
   the protocol.  No conceivable exercise in cryptography can secure a
   protocol with flawed semantic assumptions.
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4. Decision Factors

4.1. Threat Model

   The most important factor in choosing a security mechanism is the
   threat model.  That is, who may be expected to attack what resource,
   using what sorts of mechanisms?  A low-value target, such as a Web
   site that offers public information only, may not merit much
   protection.  Conversely, a resource that if compromised could expose
   significant parts of the Internet infrastructure--say, a major
   backbone router or high-level Domain Name Server--should be protected
   by very strong mechanisms.

   All Internet connected systems require a minimum amount of
   protection. Starting in 2000 and continuing to the present, we have
   witnessed the advent of a new type of Internet security attack: an
   Internet "worm" program that seeks out and automatically attacks
   systems that are vulnerable to compromise via a number of attacks
   built into the worm program itself. These worm programs can
   compromise literally thousands of systems within a very short period
   of time.

   As of the writing of this document, all of these worms have taken
   advantage of programming errors in the implementation of otherwise
   reasonably secure protocols. However, it is not hard to envision an
   attack that targets a fundamental security flaw in a widely deployed
   protocol. It is therefore imperative that we strive to minimize such
   flaws in the protocols we design.

   [footnote: The first Internet Worm was the "Morris" worm of 1988.
   However it was not followed up with similar programs for over 12
   years!]

   The value of a target to an attacker may depend on where it is
   located.  A network monitoring station that is physically on a
   backbone cable is a major target, since it could easily be turned
   into an eavesdropping station.  The same machine, if located on a
   stub net and used for word processing, would be of much less use to a
   sophisticated attacker, and hence would be at significantly less
   risk.

   One must also consider what sorts of attacks may be expected.  At a
   minimum, eavesdropping must be seen as a serious threat; there have
   been very many such incidents since at least 1993.  Often, active
   attacks--that is, attacks that involve insertion or deletion of
   packets by the attacker--are a risk as well.  It is worth noting that
   such attacks can be launched with off-the-shelf tools, and have in
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   fact been observed "in the wild".

   One of the most important tools available to us for securing
   protocols is cryptography. Cryptography permits us to apply various
   kind of protection to data as it traverses the network, without
   having to depend on any particular security properties of the network
   itself. This is important because the Internet, by its distributed
   management and control, cannot be considered a trustworthy media in
   and of itself. Its security derives from the mechanisms that we build
   into the protocols themselves, independent on the underlying media or
   network operators.

   Finally, of course, there is the cost to the defender of using
   cryptography.  This cost is dropping rapidly; Moore's Law, plus the
   easy availability of cryptographic components and toolkits, makes it
   relatively easy to use strong protective techniques.  Although there
   are exceptions--public key operations are still expensive, perhaps
   prohibitively so if the cost of each public-key operation is spread
   over too few transactions--careful engineering design can generally
   let us spread this cost over many transactions.

   In general, the default today should be to use the strongest
   cryptography available in any protocol. Strong cryptography often
   costs no more, and sometimes less, then weaker cryptography. The
   actual performance cost of an algorithm is often unrelated to the
   security it provides.

4.2. A word about Mandatory Mechanisms

   We have evolved in the IETF the notion of "mandatory to implement"
   mechanisms. This philosophy evolves from our primary desire to ensure
   interoperability between different implementations of a protocol. If
   a protocol offers many options for how to perform a particular task,
   but fails to provide for at last one that all must implement, it may
   be possible that multiple, non-interoperable implementations may
   result. This is the consequence of the selection of non-overlapping
   mechanisms being deployed in the different implementations.

   Although a given protocol may make use of only one or a few security
   mechanisms, these mechanisms themselves often can make use of several
   cryptographic systems. The various cryptographic systems vary in
   strength and performance. However, in many protocols we need to
   specify a "mandatory to implement" to ensure that any two
   implementations will eventually be able to negotiate a common
   cryptographic system between them.

   There are some protocols that were originally designed to be run in a
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   very limited domain. It is often argued that the domain of
   implementation for a particular protocol is sufficiently well defined
   and secure that the protocol itself need not provide any security
   mechanisms.

   History has shown this argument to be wrong.  Virtually all protocol
   developed for limited use eventually wind up in use across the global
   Internet, where the initial security assumptions no longer hold.

   To solve this problem, the IETF requires that *ALL* protocols provide
   appropriate security mechanisms, even when their domain of
   application is at first believed to be very limited.

   It is important to understand that mandatory mechanisms are mandatory
   to *implement*. It is not necessarily mandatory that end-users
   actually use these mechanisms. If an end-user knows that they are
   deploying a protocol over a "secure" network, then they may choose to
   disable security mechanisms that they believe are adding insufficient
   value as compared to their performance cost.  (We are generally
   skeptical of the wisdom of disabling strong security even then, but
   that is beyond the scope of this document.)

   By insisting that certain mechanisms are mandatory to implement means
   that those end-users who need the protocol provided by the security
   mechanism have it available when needed.

4.3. Granularity of Protection

   Some security mechanisms can protect an entire network.  While this
   economizes on hardware, it can leave the interior of such networks
   open to attacks from the inside.  Other mechanisms can provide
   protection down to the individual user of a timeshared machine,
   though perhaps at risk of user impersonation if the machine has been
   compromised.

   When assessing the desired granularity of protection, protocol
   designers should take into account likely usage patterns,
   implementation layers (see below), and deployability.  If a protocol
   is likely to be used only from within a secure cluster of machines
   (say, a Network Operations Center), subnet granularity may be
   appropriate.  By contrast, a security mechanism peculiar to a single
   application is best embedded in that application, rather than inside
   TCP; otherwise, deployment will be very difficult.
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4.4. Implementation Layer

   Security mechanisms can be located at any layer.  In general, putting
   a mechanism at a lower layer protects a wider variety of higher-layer
   protocols.  The usual tradeoff is reach; lower-layer protocols
   terminate sooner.  Thus, a link-layer encryptor can protect not just
   IP, but even ARP packets.  However, its reach is just that one link.
   Conversely, a signed email message is protected even if sent across
   many store-and-forward mail gateways; however, only that one type of
   message is protected.  Messages of similar formats, such as some
   Netnews postings, are not protected unless the mechanism is
   specifically adapted and then implemented in the news-handling
   programs.

5. Standard Security Mechanisms

5.1. One-Time Passwords

   One-time password schemes, such as that described in [RFC2289], are
   very much stronger than conventional passwords.  The host need not
   store a copy of the user's password, nor is it ever transmitted over
   the network.  However, there are some risks.  Since the transmitted
   string is derived from a user-typed password, guessing attacks may
   still be feasible.  (Indeed, a program to launch just this attack is
   readily available.)  Furthermore, the user's login inherently expires
   after predetermined number of uses.  While in many cases this is a
   feature, an implementation most likely needs to provide a way to
   reinitialize the authentication database, without requiring that the
   new password be sent in the clear across the network.

   There are commercial hardware authentication tokens.  Apart from the
   session hijacking issue, support for such tokens (and especially for
   challenge/response tokens) may require extra protocol messages.

5.2. HMAC

   HMAC [RFC2104] is the preferred shared-secret authentication
   technique.  If both sides know the same secret key, HMAC can be used
   to authenticate any arbitrary message.  This specifically includes
   random challenges, which means that HMAC is suitable for logins.

   The disadvantage, of course, is that the secret must be known in the
   clear by both parties.  In many situations, this is undesirable.

   When suitable, HMAC should be used in preference to older techniques,
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   notably keyed hash functions.  Simple keyed hashes based on MD5
   [RFC1321], such as that used in the BGP session security mechanism
   [RFC2385], are especially to be avoided in new protocols, given the
   hints of weakness in MD5.

   HMAC can be implemented using any secure hash function, including MD5
   and SHA-1 [RFC3174].  However, the latter or stronger are preferred;
   while the techniques that are threatening MD5 are not applicable in
   the HMAC context, a conservative design is better, especially given
   the difficulty of displacing protocols once deployed.

   It is important to understand that an HMAC-based mechanism needs to
   be employed on every protocol data unit (aka packet). It is a mistake
   to use an HMAC based system to authenticate the beginning of a TCP
   session and then send all remaining data without any protection.

   Attack programs exist that permit a TCP session to be stolen. An
   attacker merely needs to use such a protocol to steal a session after
   the HMAC step is performed.

5.3. IPsec

   IPsec [RFC2401],[RFC2402],[RFC2406],[RFC2407],[RFC2411] is the
   generic IP-layer encryption and authentication protocol.  As such, it
   protects all upper layers, including both TCP and UDP.  Its normal
   granularity of protection is host-to-host, host-to-gateway, and
   gateway-to-gateway.  The specification does permit user-granularity
   protection, but this is comparatively rare.  As such, IPsec is
   currently inappropriate when host-granularity is too coarse.

   Because IPsec is installed at the IP layer, it is rather intrusive.
   Implementing it generally requires either new hardware or a new
   protocol stack.  This makes it a poor choice for individual
   applications, at least until IPsec is more widely deployed.  Most
   modern operating systems have IPsec available; most routers do not,
   at least for the control path.

   The key management for IPsec can use either certificates or shared
   secrets.  For all the obvious reasons, certificates are preferred;
   however, they may present more of a headache for the system manager.

   There is strong potential for conflict between IPsec and NAT
   [Hain99].  NAT does not easily co-exist with any protocol containing
   embedded IP address; with IPsec, every packet, for every protocol,
   contains such addresses, if only in the headers.  The conflict can
   sometimes be avoided by using tunnel mode, but that is not always an
   appropriate choice for other reasons.

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2407
https://datatracker.ietf.org/doc/html/rfc2411


Bellovin, Schiller                                              [Page 7]



Internet Draft          draft-ietf-iab-secmech-02.txt          June 2002

   Most current IPsec usage is for virtual private nets.  Assuming that
   the other constraints are met, IPsec is the security protocol of
   choice for VPN-like situations.

5.4. TLS

   TLS [RFC2246] provides an encrypted, authenticated channel that runs
   on top of TCP.  While TLS was primarily intended for use by Web
   browsers, it is by no means restricted to such.  In general, though,
   each application that wishes to use TLS will need to be converted
   individually.

   Generally, the server side is always authenticated by a certificate.
   Clients may possess certificates, too, providing bilateral
   authentication.  The reality, though, is that for most practical Web
   use, there is no authentication, since users do not check
   certificates [Bell98].  Designers should thus be wary of demanding
   plaintext passwords, even over TLS-protected connections.  (This
   requirement can be relaxed if it is likely that implementations will
   be able to verify the authenticity and authorization of the server's
   certificate.)

   Although application modification is required to make use of TLS,
   there exist toolkits, both free and commercial, that provide
   implementations. These need only be incorporated into the
   application's code.

5.5. SASL

   SASL [RFC2222] is a framework for negotiating an authentication and
   encryption mechanism to be used over a TCP stream.  As such, its
   security properties are those of the negotiated mechanism.
   Specifically, unless an underlying protection protocol such as TLS is
   used, TCP connections are vulnerable to session stealing.

   If you need to use TLS (or IPSec) under SASL, why bother with SASL in
   the first place? Why not simply use the authentication facilities of
   TLS and be done with it?

   The answer here is subtle. TLS makes extensive use of certificates
   for authentication. As currently deployed, on servers have
   certificates, whereas clients go unauthenticated (at least at the
   protocol layer).

   SASL permits the use of of more traditional client authentication
   technologies, such as passwords (one-time or otherwise). A powerful
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   combination is TLS for underlying protection and authentication of
   the server, and a SASL-based system for authenticating clients.

5.6. GSS-API GSS-API [RFC2744] provides a framework for applications to
   use when they require authentication, integrity, and/or
   confidentiality.  Unlike SASL, GSS-API can be used easily with UDP-
   based applications. It provides for the creation of opaque
   authentication tokens (aka chunks of memory) which may be embedded in
   a protocols data units.  Note that the security of GSS-API-protected
   protocols depends on the underlying security mechanism; this must be
   evaluated independently.  Similar considerations apply to
   interoperability, of course.

5.7. DNSSEC

   DNSSEC [RFC2535] digitally signs DNS records.  It is an essential
   tool for protecting against cache contamination attacks [Bell95];
   these in turn can be used to defeat name-based authentication and to
   redirect traffic to or past an attacker.  The latter makes DNSSEC an
   essential component of some other security mechanisms, notably IPsec.

   Although not widely deployed on the Internet at the time of the
   writing of this document, it offers the potential to provide a secure
   mechanism for mapping domain names to IP protocol addresses. It may
   also be used to securely associate other information with a DNS name.
   This information may be as simple as a service that is supported on a
   given node, or a key to be used with IPsec for negotiating a secure
   session.  (Note that the concept of storing application keys in the
   DNS is still controversial.)

   DNSSEC, as currently defined, is difficult to deploy operationally.
   Forthcoming protocol changes will resolve this issue.

5.8. Security/Multipart

   Security/Multiparts [RFC1847] are the preferred mechanism for
   protecting email.  More precisely, it is the MIME framework within
   which encryption and/or digital signatures are embedded.  Conforming
   mail readers can easily recognize and process the cryptographic
   portions of the mail.

   Security/Multiparts represents one form of "object security", where
   the object of interest to the end user is protected, independent of
   transport mechanism, intermediate storage, etc.  Currently, there is
   no general form of object protection available in the Internet.
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5.9. Digital Signatures

   One of the strongest forms of challenge/response authentication is
   based on digital signatures.  It is preferable to schemes based on
   ordinary ciphers because the server end does not need a copy of the
   client's secret.  Rather, the client has a private key; the server
   has the corresponding public key.

   Using digital signatures properly is tricky.  A client should never
   sign the exact challenge sent to it, since there are several subtle
   number-theoretic attacks that can be launched in such situations.

   The Digital Signature Standard [DSS] is a good choice; however,
   signing requires the use of good random numbers [RFC1750].  If the
   enemy can recover the random number used for any given signature, or
   if you use the same random number for two different documents, your
   private key can be recovered.

   An advantage of DSA is that any 160-bit number is a valid private
   key; by contrast, RSA key generation is quite expensive.  Also, RSA
   is slower for signing, but faster to verify.

5.10. OpenPGP and S/MIME

   Digital signatures can be used to build "object security"
   applications which may be used to protect store and forward protocols
   such as electronic mail.

   At this writing, two different secure mail protocols, OpenPGP and
   S/MIME, have been proposed to replace PEM.  It is not clear which, if
   either, will succeed.  Both use certificates to identify users; both
   can provide secrecy and authentication of mail messages; however, the
   certificate formats are very different.  Historically, the difference
   between PGP-based mail and S/MIME-based mail has been the style of
   certificate chaining.  In S/MIME, users possess X.509 certificates;
   the certification graph is a tree with a very small number of roots.
   By contrast, PGP uses the so-called "web of trust", where any user
   can sign anyone else's certificate.  This certification graph is
   really an arbitrary graph or set of graphs.

   With any certificate scheme, trust depends on two primary
   characteristics.  First, it must start from a known-reliable
   source--either an X.509 root, or someone highly trusted by the
   verifier, often him or herself.  Second, the chain of signatures must
   be reliable.  That is, each node in the certification graph is
   crucial; if it is dishonest or has been compromised, any certificates
   it has vouched for cannot be trusted.  All other factors being equal
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   (and they rarely are), shorter chains are preferable.

   There is a tension between two philosophical positions represented by
   these technologies.

   S/MIME is designed to be "fool proof." That is, very little end-user
   configuration is required. Specifically, end-users do not need to be
   aware of trust relationships, etc. The idea is that if an S/MIME
   client says, "This signature is valid", the user should be able to
   "trust" that statement at face value without needing to understand
   the underlying implications.

   To achieve this, S/MIME is based on a limited number of "root"
   Certifying Authorities. The goal is to build a global trusted
   certificate infrastructure.

   The down side to this approach is that it requires infrastructure to
   work. Two end-users may not simply obtain S/MIME capable software and
   begin to communicate securely. One or both of them need to obtain a
   certificate from a mutually trusted CA; furthermore, that CA must
   already be trusted by their mail handling software. This process may
   involve cost and legal obligations. This ultimately results in the
   technology being harder to deploy, particularly in an environment
   where end-users do not necessarily appreciate the value received for
   the hassle incurred.

   The PGP "web of trust" approach has the advantage that two end-users
   can just obtain PGP software and immediately begin to communicate
   securely. No infrastructure is required and no fees and legal
   agreements need to be signed to proceed. As such PGP appeals to
   people who need to establish ad-hoc security associations.

   The down side to PGP is that it requires end-users to have an
   understanding of the underlying security technology in order to make
   effective use of it. Specifically it is fairly easy to fool a naive
   users to accept a "signed" message that is in fact a forgery.

   To date PGP has found great acceptance between security-aware
   individuals who have a need for secure e-mail in an environment
   devoid of the necessary global infrastructure.

   By contrast, S/MIME works well in a corporate setting where a secure
   internal CA system can be deployed.  Furthermore, it does not require
   a lot of end-user security knowledge. S/MIME can be used between
   institutions by carefully setting up cross certification, but this is
   harder to do than it seems.

   As of this writing a global certificate infrastructure continues to
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   elude us.  Questions about a suitable business model, as well as
   privacy considerations, may prevent one from ever emerging.

5.11. Firewalls and Topology

   Firewalls are a topological defense mechanism.  That is, they rely on
   a well-defined boundary between the good "inside" and the bad
   "outside" of some domain, with the firewall mediating the passage of
   information.  While firewalls can be very valuable if employed
   properly, there are limits to their ability to protect a network.

   The first limitation, of course, is that firewalls cannot protect
   against inside attacks.  While the actual incidence rate of such
   attacks is not known (and is probably unknowable), there is no doubt
   that it is substantial, and arguably constitutes a majority of
   security problems.  More generally, given that firewalls require a
   well-delimited boundary, to the extent that such a boundary does not
   exist, firewalls do not help.  Any external connections, whether they
   are protocols that are deliberately passed through the firewall,
   links that are tunneled through, unprotected wireless LANs, or direct
   external connections from nominally-inside hosts, weaken the
   protection.  It should be noted that this phenomenon can vitiate one
   oft-touted advantage of firewalls, that they hide the existence of
   internal hosts from outside eyes.  Given the amount of leakage, the
   likelihood of successfully hiding machines is rather low.

   In a more subtle vein, firewalls hurt the end-to-end model of the
   Internet and its protocols.  Indeed, not all protocols can be passed
   safely or easily through firewalls [Freed97].  Sites that rely on
   firewalls for security may find themselves cut off from new and
   useful aspects of the Internet.

   Firewalls work best when they are used as one element of a total
   security structure.  For example, a strict firewall may be used to
   separate an exposed Web server from a back-end database, with the
   only opening the communication channel between the two.  Similarly, a
   firewall that permitted only encrypted tunnel traffic could be used
   to secure a piece of a VPN.  On the other hand, in that case the
   other end of the VPN would need to be equally secured.

5.12. Kerberos

   Kerberos [RFC1510] provides a mechanism for two entities to
   authenticate each other and exchange keying material. On the client
   side, an application obtains a Kerberos "ticket" and "authenticator."
   These items, which should be considered opaque data, are then
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   communicated from client to server. The server can then verify their
   authenticity. Both sides may then ask the Kerberos software to
   provide them with a session key which can be used to protect or
   encrypt data.

   Kerberos may be used by itself in a protocol. However, it is also
   available as a mechanism under SASL and GSSAPI.

5.13. SSH

   SSH provides a secure connection between client and server. It
   operates very much like TLS; however, it is optimized as a protocol
   for remote connections on terminal-like devices. One of its more
   innovative features is its support for "tunneling" other protocols
   over the SSH-protected TCP connection. This feature has permitted
   knowledgeable security people to perform such actions as reading and
   sending e-mail or news via insecure servers over an insecure network.
   It is not a substitute for a true VPN, but it can often be used in
   place of one.

6. Insecurity Mechanisms

   Some common security mechanisms are part of the problem rather than
   part of the solution.

6.1. Plaintext Passwords

   Plaintext passwords are the most common security mechanism in use
   today.  Unfortunately, they are also the weakest.  When not protected
   by an encryption layer, they are completely unacceptable.  Even when
   used with encryption, plaintext passwords are quite weak, since they
   must be transmitted to the remote system.  If that system has been
   compromised or if the encryption layer does not include effective
   authentication of the server to the client, an enemy can collect the
   passwords and possibly use them against other targets.

   Another weakness arises because of common implementation techniques.
   It is considered good form [MT79] for the host to store a one-way
   hash of the users' passwords, rather than their plaintext form.
   However, that may preclude migrating to stronger authentication
   mechanisms, such as HMAC-based challenge/response.

   The strongest attack against passwords, other than eavesdropping, is
   password-guessing.  With a suitable program and dictionary (and these
   are widely available), 20-30% of passwords can be guessed in most

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt


Bellovin, Schiller                                             [Page 13]



Internet Draft          draft-ietf-iab-secmech-02.txt          June 2002

   environments.

6.2. Address-Based Authentication

   Another common security mechanism is address-based authentication.
   At best, it can work in highly constrained environments.  If your
   environment consists of a small number of machines, all tightly
   administered, secure systems run by trusted users, and if the network
   is guarded by a router that blocks source-routing and prevents
   spoofing of your source addresses, and you know there are no wireless
   bridges, and if you restrict address-based authentication to machines
   on that network, you are probably safe.  But these conditions are
   rarely met.

   Among the threats are ARP-spoofing, abuse of local proxies,
   renumbering, routing table corruption or attacks, DHCP, IP address
   spoofing (a particular risk for UDP-based protocols), sequence number
   guessing, and source-routed packets.  All of these can be quite
   potent.

6.3. Name-Based Authentication

   Name-based authentication has all of the problems of address-based
   authentication and adds new ones: attacks on the DNS [Bell95].  At a
   minimum, a process that retrieves a host name from the DNS should
   retrieve the corresponding address records and cross-check.
   Techniques such as cache contamination can often negate such checks.

   DNSSEC provides protection against this sort of attack.  However, it
   does nothing to enhance the reliability of the underlying address.

7. Security Considerations

   No security mechanisms are perfect.  If nothing else, any network-
   based security mechanism can be thwarted by compromise of the
   endpoints.  That said, each of the mechanisms described here have
   their own limitations.  Any decision to adopt a given mechanism
   should weigh all of the possible failure modes.  These in turn should
   be weighed against the risks to the endpoint of a security failure.

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt


Bellovin, Schiller                                             [Page 14]



Internet Draft          draft-ietf-iab-secmech-02.txt          June 2002

8. Acknowledgements

   Brian Carpenter, Tony Hain, and Marcus Leech made a number of useful
   suggestions.  Much of the substance comes from the participants in
   the IAB Security Architecture Workshop.

9. References

   [RFC2316] "Report of the IAB Security Architecture Workshop". S.
   Bellovin.  April 1998.

   [RFC2289] "A One-Time Password System". N. Haller, C. Metz, P.
   Nesser, M. Straw. February 1998.

   [RFC2104] "HMAC: Keyed-Hashing for Message Authentication". H.
   Krawczyk, M. Bellare, R. Canetti. February 1997.

   [RFC1321] "The MD5 Message-Digest Algorithm". R. Rivest. April 1992.

   [RFC2246] "The TLS Protocol Version 1.0. T. Dierks, C. Allen. January
   1999."

   [RFC2385] "Protection of BGP Sessions via the TCP MD5 Signature
   Option".  A. Hefferman.  August 1998.

   [RFC2401] "Security Architecture for the Internet Protocol". S. Kent,
   R. Atkinson. November 1998.

   [RFC2402] "IP Authentication Header. S. Kent, R. Atkinson. November
   1998."

   [RFC2406] "IP Encapsulating Security Payload (ESP). S. Kent, R.
   Atkinson. November 1998."

   [RFC2407] "The Internet IP Security Domain of Interpretation for
   ISAKMP. D. Piper. November 1998."

   [RFC2411] "IP Security Document Roadmap". R. Thayer, N. Doraswamy, R.
   Glenn.  November 1998.

   [RFC2744] "Generic Security Service API Version 2 : C-bindings. J.
   Wray. January 2000."

   [RFC3174] "US Secure Hash Algorithm 1 (SHA1)".  D. Eastlake, 3rd, and
   P. Jones.  September 2001.

   [Hain99]  "Architectural Implications of NAT". T. Hain.  April 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt


Bellovin, Schiller                                             [Page 15]



Internet Draft          draft-ietf-iab-secmech-02.txt          June 2002

   Work in progress.

   [Bell95]  "Using the Domain Name System for System Break-Ins".  Proc.
   Fifth Usenix Security Conference, 1995.

   [Bell98]  "Cryptography and the Internet", S.M. Bellovin, in
   Proceedings of CRYPTO '98, August 1998.

   [RFC2222] "Simple Authentication and Security Layer (SASL)". J.
   Myers.  October 1997.

   [RFC2535] "Domain Name System Security Extensions". D. Eastlake.
   March 1999.

   [RFC1847] "Security Multiparts for MIME: Multipart/Signed and
   Multipart/Encrypted". J. Galvin, S. Murphy, S. Crocker & N. Freed.
   October 1995.

   [DSS]     "Digital Signature Standard".  NIST.  May 1994.  FIPS 186.

   [RFC1750] "Randomness Recommendations for Security". D. Eastlake,
   3rd, S.  Crocker & J. Schiller. December 1994.

   [Freed97] "An Internet Firewall Transparency Requirement".  N. Freed
   and K. Carosso.  December 1997.  Work in progress.

   [MT79]    "UNIX Password Security", R.H. Morris and K. Thompson,
   Communications of the ACM, November 1979.

10. Author Information

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt


Bellovin, Schiller                                             [Page 16]



Internet Draft          draft-ietf-iab-secmech-02.txt          June 2002

Steven M. Bellovin
AT&T Labs Research
Shannon Laboratory
180 Park Avenue
Florham Park, NJ 07974
USA
Phone: +1 973-360-8656
email: smb@research.att.com

Jeffrey I. Schiller
Massachusetts Institute of Technology
Room W92-190
77 Massachusetts Avenue
Cambridge, MA 02139-4307
USA
Phone: +1 617-253-8400
email: jis@mit.edu

https://datatracker.ietf.org/doc/html/draft-ietf-iab-secmech-02.txt


Bellovin, Schiller                                             [Page 17]


