
Network Working Group H. Tschofenig
Internet-Draft J. Arkko
Intended status: Informational D. Thaler
Expires: September 21, 2013 D. McPherson
 March 20, 2013

Architectural Considerations in Smart Object Networking
draft-iab-smart-object-architecture-02.txt

Abstract

 Following the theme "Everything that can be connected will be
 connected", engineers and researchers designing smart object networks
 need to decide how to achieve this in practice. How can different
 forms of embedded and constrained devices be interconnected? How can
 they employ and interact with the currently deployed Internet? This
 memo discusses smart objects and some of the architectural choices
 involved in designing smart object networks and protocols that they
 use.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 21, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Tschofenig, et al. Expires September 21, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Smart Object Architectural Considerations March 2013

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Specific and General Purpose Solutions 5
3. Deployment Constraints in the Internet 7
4. The Need for Standards . 9
4.1. Managing Complexity 9
4.2. Interoperability Architecture 10

 4.3. Internet Protocols for Proprietary Protocol
 Developments . 13

4.4. Interoperability . 15
4.5. Design for Change . 17

5. Security Considerations 18
6. Privacy Considerations . 19
7. Summary . 21
8. IANA Considerations . 24
9. Acknowledgements . 25
10. Informative References . 26

 Authors' Addresses . 28

Tschofenig, et al. Expires September 21, 2013 [Page 2]

Internet-Draft Smart Object Architectural Considerations March 2013

1. Introduction

RFC 6574 [1] refers to smart objects as devices with constraints on
 energy, bandwidth, memory, size, cost, etc. This is a fuzzy
 definition, as there is clearly a continuum in device capabilities
 and there is no hard line to draw between devices that can be
 classified as smart objects and those that can't.

 Following the theme "Everything that can be connected will be
 connected", engineers and researchers designing smart object networks
 need to address a number of questions. How can different forms of
 embedded and constrained devices be interconnected? How can they
 employ and interact with the currently deployed Internet?

 These questions have been discussed at length. For instance, when
 the Internet Architecture Board (IAB) scheduled a workshop on Smart
 Objects, the community was asked to develop views on how Internet
 protocols can be utilized by smart objects. A report of the
 discussions and the position papers received for this workshop have
 been published [1].

 This memo discusses smart objects and some of the architectural
 choices involved in designing smart object networks and protocols
 that they use. The main issues that we focus on are interaction with
 the Internet, the use of Internet protocols for these applications,
 models of interoperability, and approach to standardization. Many of
 the issues discussed in this memo are common to any communications
 system design or protocol development. However, given the high
 interest for smart object networks, their somewhat specific
 requirements, and commonly occurring requests for very different
 communications tools prompted the IAB to discuss these issues in this
 specific context.

 In drawing conclusions from prior IETF work and from the IAB workshop
 it is useful to look back at the criteria for success of the
 Internet. Various publications provide insight into the history, and
 some of it is very much applicable to the discussion on smart
 objects. RFC 1958 [2] says:

 "The Internet and its architecture have grown in evolutionary
 fashion from modest beginnings, rather than from a Grand Plan",

 and adds

 "A good analogy for the development of the Internet is that of
 constantly renewing the individual streets and buildings of a
 city, rather than razing the city and rebuilding it."

https://datatracker.ietf.org/doc/html/rfc6574
https://datatracker.ietf.org/doc/html/rfc1958

Tschofenig, et al. Expires September 21, 2013 [Page 3]

Internet-Draft Smart Object Architectural Considerations March 2013

 Internet protocols are immediately relevant for any smart object
 development and deployment. However, building very small, often
 battery-operated devices is challenging. It is difficult to resist
 the temptation to build specific solutions tailored to a particular
 application, or to re-design everything from scratch. Yet, due to
 network effects, the case for using the Internet Protocol(s) and
 other generic technology is compelling.

 As technology keeps advancing, the constraints that the technology
 places on devices evolve as well. Microelectronics become more
 capable as time goes by, sometimes making it even possible for new
 devices to be both less expensive and more capable than their
 predecessors. This trend can, however, be in some cases offset by
 the desire to embed communications technology in even smaller and
 cheaper objects. But it is important to design communications
 technology not just for today's constraints, but also tomorrow's.

 The rest of the document is organized as follows. Section 2
 discusses the problems associated with vertically integrated
 industry-specific solutions, and motivates the use of generic
 technologies and a more flexible architecture as a way to reduce
 these problems. Section 3 discusses the problems associated with
 attempting to use options and communication patterns other than those
 in current widespread use in the Internet. Often middleboxes and
 assumptions built into existing devices makes such usage problematic.

Section 4 discusses different levels of interoperability, and the
 different level of effort required to achieve them. Finally,

Section 5 presents some of the relevant security issues, Section 6
 discusses privacy, and Section 7 summarizes the recommendations.

Tschofenig, et al. Expires September 21, 2013 [Page 4]

Internet-Draft Smart Object Architectural Considerations March 2013

2. Specific and General Purpose Solutions

 The Internet protocols are relevant for any smart object development
 and deployment. In the context of one use case of smart objects in
 particular, RFC 6272 "Internet Protocols for the Smart Grid" [3]
 identifies a range of IETF protocols that can be utilized.

 Of course, there are also many protocols that are unlikely to be
 needed or even suitable for the smart object environments. For
 instance, it would difficult to imagine inter-domain routing being a
 necessary feature in these objects; there are other devices in the
 network that would normally be responsible for this functionality.
 But the wide range of protocols listed in RFC 6272 illustrates the
 view of the IETF about how readily Internet technology can be used in
 these applications, and indeed Internet communications have been
 incorporated into various smart object deployments.

 Still, many commercial products employ proprietary or industry-
 specific protocol mechanisms that do not accommodate direct Internet
 connectivity and researchers have made several attempts to design new
 architectures for the entire Internet system. There are several
 architectural concerns that deserve to be highlighted:

 Vertically Specified Profiles

 The discussions at the IAB workshop (see Section 3.1.2 of [1])
 revealed the preference of many participants to develop domain
 specific profiles that select a minimum subset of protocols needed
 for a specific operating environment. Various standardization
 organizations and industry fora are currently engaged in
 activities of defining their preferred profile(s). Ultimately,
 however, the number of domains where smart objects can be used is
 essentially unbounded. There is also an ever-evolving set of
 protocols and protocol extensions. Profiles, particularly, full-
 stack profiles are common, for instance, in areas where existing
 legacy technology is being migrated to IP.

 However, merely changing the networking protocol to IP does not
 necessarily bring the kinds of benefits that industries are
 looking for in their evolving smart object deployments. In
 particular, a profile is rigid, and leaves little room for
 interoperability among slightly differing, or competing technology
 variations. As an example, layer 1 through 7 type profiles do not
 account for the possibility that some devices may use other
 physical media than others, and that in such situations a simple
 router could still provide an ability to communicate between the
 parties.

https://datatracker.ietf.org/doc/html/rfc6272
https://datatracker.ietf.org/doc/html/rfc6272

Tschofenig, et al. Expires September 21, 2013 [Page 5]

Internet-Draft Smart Object Architectural Considerations March 2013

 Industry-Specific Solutions

 The Internet Protocol suite is more extensive than merely the use
 of IP. Often significant benefits can be gained from using
 additional, widely available, generic technologies such as web
 services. Benefits from using these kinds of tools include access
 to a large available workforce, software, and education already
 geared towards employing the technology.

 Tight Coupling

 Many applications are built around a specific set of servers,
 devices, and users. However, often the same data and devices
 could be useful for many purposes, some of which may not be easily
 identifiable at the time that the devices are deployed.

 As a result, the following recommendations can be made. First, while
 there are some cases where specific solutions are needed, the
 benefits of general-purpose technology are often compelling, be it
 choosing IP over some more specific communication mechanism, a widely
 deployed link-layer (such as wireless LAN) over a more specific one,
 web technology over application specific protocols, and so on.

 However, when employing these technologies it is important to embrace
 them in their entirety, allowing for the architectural flexibility
 that is built onto them. As an example, it rarely makes sense to
 limit communications to on-link or to specific media. We should also
 design our applications so that the participating devices can easily
 interact with multiple other applications.

Tschofenig, et al. Expires September 21, 2013 [Page 6]

Internet-Draft Smart Object Architectural Considerations March 2013

3. Deployment Constraints in the Internet

 Despite the applicability of the Internet Protocols for smart
 objects, picking the specific protocols for a particular use case can
 be tricky. As the Internet has evolved over time, certain protocols
 and protocol extensions have become the norm and others have become
 difficult to use in all circumstances.

 Taking into account these constraints is particularly important for
 smart objects, as there is often a desire to employ specific features
 to support smart object communication. For instance, from a pure
 protocol specification perspective some transport protocols may be
 more desirable than others. These constraints apply both to the use
 of existing protocols as well as designing new ones on top of the
 Internet Protocol stack.

 The following list illustrates a few of those constraints, but every
 communication protocol comes with its own challenges.

 In 2005, Fonseca, et al. [4] studied the usage of IP options-enabled
 packets in the Internet and found that overall, approximately half of
 Internet paths drop packets with options, making extensions using IP
 options "less ideal" for extending IP.

 In 2010, Honda, et al. [5] tested 34 different home gateways
 regarding their packet dropping policy of UDP, TCP, DCCP, SCTP, ICMP,
 and various timeout behavior. For example, more than half of the
 tested devices do not conform to the IETF recommended timeouts for
 UDP, and for TCP the measured timeouts are highly variable, ranging
 from less than 4 minutes to longer than 25 hours. For NAT traversal
 of DCCP and SCTP, the situation is poor. None of the tested devices,
 for example, allowed establishing a DCCP connection.

 In 2011, [6] tested the behavior of networks with regard to various
 TCP extensions: "From our results we conclude the middleboxes
 implementing layer 4 functionality are very common -- at least 25% of
 paths interfered with TCP in some way beyond basic firewalling."

 Extending protocols to fulfill new uses and to add new functionality
 may range from very easy to difficult, as [7] investigates in great
 detail. A challenge many protocol designers are facing is to ensure
 incremental deployability and interoperability with incumbent
 elements in a number of areas. In various cases, the effort it takes
 to design incrementally deployable protocols has not been taken
 seriously enough at the outset. RFC 5218 on "What Makes For a
 Successful Protocol?" [8] defines wildly successful protocols as
 protocols that are deployed beyond their envisioned use cases.

https://datatracker.ietf.org/doc/html/rfc5218

Tschofenig, et al. Expires September 21, 2013 [Page 7]

Internet-Draft Smart Object Architectural Considerations March 2013

 As these examples illustrate, protocol architects have to take
 developments in the greater Internet into account, as not all
 features can be expected to be usable in all environments. For
 instance, middleboxes [9] complicate the use of extensions in the
 basic IP protocols and transport-layers.

RFC 1958 [2] considers this aspect and says "... the community
 believes that the goal is connectivity, the tool is the Internet
 Protocol, and the intelligence is end to end rather than hidden in
 the network." This statement is challenged more than ever with the
 perceived need to develop clever intermediaries interacting with dumb
 end devices. However, RFC 3724 [10] has this to say about this
 crucial aspect: "One desirable consequence of the end-to-end
 principle is protection of innovation. Requiring modification in the
 network in order to deploy new services is still typically more
 difficult than modifying end nodes." Even this statement will become
 challenged, as large numbers of devices are deployed and it indeed
 might be the case that changing those devices is hard. But RFC 4924
 [11] adds that a network that does not filter or transform the data
 that it carries may be said to be "transparent" or "oblivious" to the
 content of packets. Networks that provide oblivious transport enable
 the deployment of new services without requiring changes to the core.
 It is this flexibility that is perhaps both the Internet's most
 essential characteristic as well as one of the most important
 contributors to its success.

https://datatracker.ietf.org/doc/html/rfc1958
https://datatracker.ietf.org/doc/html/rfc3724
https://datatracker.ietf.org/doc/html/rfc4924

Tschofenig, et al. Expires September 21, 2013 [Page 8]

Internet-Draft Smart Object Architectural Considerations March 2013

4. The Need for Standards

 New smart object applications are developed every day; in many cases
 they are created using standardized Internet technology. Even where
 a common underlying technology (such as IP) is used, current smart
 object networks often have challenges related to interoperability of
 the entire protocol stack, including application behavior. One
 symptom of such challenges is that various components cannot easily
 be replaced by third party components. It is of strategic importance
 to make a conscious decision about the desired level of
 interoperability and where the points of interconnection are.

4.1. Managing Complexity

 These decisions also relate to the required effort to complete the
 application, and overall complexity of the system. A system may
 appear complex for variety of reasons. First, there is legitimate
 heterogeneity in the used networking technology and applications.
 This variation is necessary and useful, as for instance different
 applications and environments benefit from varying networking
 technology. The range and other characteristics of cellular,
 wireless local area networking, and RFID are very different from each
 other, for instance. There are literally thousands of different
 applications, and it is natural that they have differing requirements
 on what parties need to communicate with each other, what kind of
 security solutions are appropriate, and other aspects.

 The answer to managing complexity in the face of this lies in layers
 of communication mechanisms and keeping the layers independent, e.g.,
 in the form of the hourglass model. If there is a common waist of
 the hourglass, then all applications can work over all physical
 networking technology, ensuring the widest possible coverage of
 networking applications - ("Everything over IP and IP over
 everything"). This model provides some guidance for thinking about
 the Internet of Things architecture. First of all, it shows how we
 need common internetworking infrastructure (IP) to allow
 heterogeneous link media to work seamlessly with each other, and with
 the rest of the system. Secondly, there are various transport and
 middleware communications mechanisms that will likely become useful
 in the different applications. For instance, today embedded web
 services (HTTP, COAP, XML, and JSON) appear to be popular, regardless
 of what specific link technology they are run over.

 But there can also be undesirable complexity and variation. Creation
 of alternative standards where one would have sufficed may be
 harmful. Creating systems and communications mechanisms with
 unnecessary dependencies between different layers and system
 components limits our ability to migrate systems to the most economic

Tschofenig, et al. Expires September 21, 2013 [Page 9]

Internet-Draft Smart Object Architectural Considerations March 2013

 and efficient platforms, and limits our ability to connect as many
 objects as possible.

 To summarize, complexity and alternative technologies can be very
 useful as a part of architecture, or can be problematic when it
 creates unnecessary competition and deployment barriers in the market
 place. In an optimal situation, complexity will be addressed by
 regular technological evolution in the industry through underlying
 layering and modular architecture.

4.2. Interoperability Architecture

 It is also valuable to look back at earlier IETF publications, for
 example, RFC 1263 [12] considers different protocol design strategies
 and makes an interesting observation about the decision to design new
 protocols from scratch or to design them in a non-backwards
 compatible way based on existing protocols:

 "We hope to be able to design and distribute protocols in less
 time than it takes a standards committee to agree on an acceptable
 meeting time. This is inevitable because the basic problem with
 networking is the standardization process. Over the last several
 years, there has been a push in the research community for
 lightweight protocols, when in fact what is needed are lightweight
 standards. Also note that we have not proposed to implement some
 entirely new set of 'superior' communications protocols, we have
 simply proposed a system for making necessary changes to the
 existing protocol suites fast enough to keep up with the
 underlying change in the network. In fact, the first standards
 organization that realizes that the primary impediment to
 standardization is poor logistical support will probably win."

 While [12] was written in 1991 when the standardization process in
 the Internet community was far more lightweight than today (among
 other reasons, because fewer stakeholders were interested in
 participating in the standards process) it is remarkable to read
 these thoughts since they are even more relevant today [13] [14].
 This is particularly true for the smart object environment.

 Regardless of how hard we work on optimizing the standard process,
 designing systems in an open and transparent consensus process where
 many parties participate takes longer than letting individual
 stakeholders develop their own proprietary solutions. Therefore, it
 is important to make architectural decisions that keep a good balance
 between proprietary developments vs. standardized components.

 While RFC 1263 [12] certainly provides good food for thought, it also
 gives recommendations that may not always be appropriate for the

https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/rfc1263

Tschofenig, et al. Expires September 21, 2013 [Page 10]

Internet-Draft Smart Object Architectural Considerations March 2013

 smart object space, such as the preference for a so-called
 evolutionary protocol design where new versions of the protocols are
 allowed to be non-backwards compatible and all run independently on
 the same device. RFC 1263 adds:

 "... the only real disadvantage of protocol evolution is the
 amount of memory required to run several versions of the same
 protocol. Fortunately, memory is not the scarcest resource in
 modern workstations (it may, however, be at a premium in the BSD
 kernel and its derivatives). Since old versions may rarely if
 ever be executed, the old versions can be swapped out to disk with
 little performance loss. Finally, since this cost is explicit,
 there is a huge incentive to eliminate old protocol versions from
 the network."

 Even though it is common practice today to run many different
 software applications that have similar functionality (for example,
 multiple Instant Messaging clients) in parallel it may indeed not be
 the most preferred approach for smart objects, which may have severe
 limitations regarding RAM, flash memory, and also power constraints.
 For example, a smart object that supports only one IP protocol (IPv4
 or IPv6) may be preferred over one that supports both, at least from
 a complexity and cost point of view.

 To deal with exactly this problem, profiles have been suggested in
 many cases. Saying "no" to a new protocol stack that only differs in
 minor ways may be appropriate but could be interpreted as blocking
 innovation and, as RFC 1263 [12] describes it nicely, "In the long
 term, we envision protocols being designed on an application by
 application basis, without the need for central approval." "Central
 approval" here refers to the approval process that happens in a
 respective standards developing organization.

 So, how can we embrace rapid innovation with distributed developments
 and at the same time accomplish a high level of interoperability?

 Clearly, standardization of every domain-specific profile will not be
 the solution. Many domain-specific profiles are optimizations that
 will be already obsoleted by technological developments (e.g., new
 protocol developments), new security threats, new stakeholders
 entering the system or changing needs of existing stakeholders, new
 business models, changed usage patterns, etc. RFC 1263 [12] states
 the problem succinctly: "The most important conclusion of this RFC is
 that protocol change happens and is currently happening at a very
 respectable clip. We simply propose to explicitly deal with the
 changes rather keep trying to hold back the flood."

 Even worse, different stakeholders that are part of the Internet

https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/rfc1263

Tschofenig, et al. Expires September 21, 2013 [Page 11]

Internet-Draft Smart Object Architectural Considerations March 2013

 milieu have interests that may be adverse to each other, and these
 parties each vie to favor their particular interests. In [15],
 Clark, et al. call this process 'the tussle' and ask the important
 question: "How can we, as designers, build systems with desired
 characteristics and improve the chances that they come out the way we
 want?" In an attempt to answer that question, the authors of [15]
 development a high-level principle, which is not tailored to smart
 object designs but to Internet protocol develop in general:

 "Design for variation in outcome, so that the outcome can be
 different in different places, and the tussle takes place within
 the design, not by distorting or violating it. Do not design so
 as to dictate the outcome. Rigid designs will be broken; designs
 that permit variation will flex under pressure and survive."

 In order to accomplish this, Clark, et al. suggest to

 1. Break complex systems into modular parts.

 2. Design for choice.

 These are valid guidelines, and many protocols standardized in the
 IETF have taken exactly this approach, namely to identify building
 blocks that can be used in a wide variety of deployments. Others
 then put the building blocks together in a way that suits their
 needs. There are, however, limits to this approach. Certain
 building blocks are only useful in a limited set of architectural
 variants and producing generic building blocks requires a good
 understanding of the different architectural variants and often
 limits the ability to optimize. Sometimes the value of an individual
 building block is hard for others to understand without providing the
 larger context, which requires at least to illustrate one deployment
 variant that comes with a specific architectural setup. That said,
 it is also critical to consider systemic interdependencies between
 the set of elements that constitute a system, or else they impose
 constraints that weren't envisioned at the outset.

 Since many Internet protocols are used as building blocks by other
 organizations or in deployments that may have never been envisioned
 by the original designs, one can argue that this approach has been
 fairly successful. It may, however, not lead to the level of
 interoperability many desire: they want interoperability of the
 entire system rather than interoperability at a specific protocol
 level. Consequently, an important architectural question arises,
 namely "What level of interoperability should Internet protocol
 engineers aim for?"

 In the diagrams below, we illustrate a few interoperability scenarios

Tschofenig, et al. Expires September 21, 2013 [Page 12]

Internet-Draft Smart Object Architectural Considerations March 2013

 with different interoperability needs. Note that these are highly
 simplified versions of what protocol architects are facing, since
 there are often more parties involved in a sequence of required
 protocol exchanges, and the entire protocol stack has to be
 considered - not just a single protocol layer. As such, the required
 coordination and agreement between the different stakeholders is
 likely to be far more challenging than illustrated. We do, however,
 believe that these figures illustrate that the desired level of
 interoperability needs to be carefully chosen.

4.3. Internet Protocols for Proprietary Protocol Developments

 Figure 1 shows a typical deployment of many Internet applications.
 Here an application service provider (example.com in our
 illustration) wants to make an HTTP-based protocol interface
 available to its customers. Example.com allows their customers to
 upload sensor measurements using a RESTful HTTP design. Customers
 need to write code for their embedded systems to make use of the
 HTTP-based protocol interface (and keying material for authentication
 and authorization of the uploaded data). These applications work
 with the servers operated by example.com and with nobody else. There
 is no interoperability with third parties (at the application-layer
 at least). For instance, Alice, a customer of example.com, cannot
 use their embedded system which was programmed to use the protocol
 interface for Example.com with another service provider without re-
 writing at least parts of her embedded software. Nevertheless,
 example.com use standardized protocol components to allow for
 communication across the Internet and for speeding-up the process of
 software development. This is certainly useful from a time-to-market
 and cost efficiency point of view. For example, example.com could
 rely on HTTP, offer JSON to encode sensor data, and use IP to allow
 various nodes to communicate with each other.

Tschofenig, et al. Expires September 21, 2013 [Page 13]

Internet-Draft Smart Object Architectural Considerations March 2013

 | Application |
 | Service |
 | Provider |
 | example.com |
 |_______________|
 _, .
 ,' `. Proprietary
 _,' `. Protocol offered
 ,' `._ by example.com
 -' -
 ,'''''''''''''| ,''''''''| Sensors
 | Temperature | | Light | operated by
 | Sensor | | Sensor | customers of
 |.............' |........' example.com

 Figure 1: Proprietary Deployment

 Clearly, the above scenario does not provide a lot of
 interoperability even though standardized Internet protocols are
 used.

 Figure 2 shows another scenario. Here example.com is focused on
 storage of sensor data and not on the actual processing. It offers
 an HTTP-based protocol interface to others to get access to the
 uploaded sensor data. In our example, b-example.com and
 c-example.com are two of such companies that make use of this
 functionality in order to provide data visualization and data mining
 computations. Example.com again uses standardized protocols (such as
 RESTful HTTP design combined with OAuth) for offering access but
 overall the entire protocol stack is not standardized.

Tschofenig, et al. Expires September 21, 2013 [Page 14]

Internet-Draft Smart Object Architectural Considerations March 2013

 | Application |
 .| Service |
 ,-` | Provider |
 .` | b-example.com |
 ,-` |_______________|
 .`
 ,-`
 | Application |-` Proprietary
 | Service | Protocol
 | Provider |
 | example.com |-,
 |_______________| '.
 _, `',
 Proprietary ,' '. ...
 Protocol _,' `',
 ,' '. | Application |
 -' `'| Service |
 ,''''''''| | Provider |
 | Light | | c-example.com |
 | Sensor | |_______________|
 |........'

 Figure 2: Backend Interworking

4.4. Interoperability

 In contrast to the scenario described in Section 4.3, Figure 3
 illustrates a sensor where two devices developed by independent
 manufacturers are desired to interwork. To pick an example from [1],
 consider a light bulb switch that talks to a light bulb with the
 requirement that each may be manufactured by a different company,
 represented as manufacturer A and B.

 _,,,, ,,,,
 / -'`` \
 | |
 \ |
 / \
 ,''''''''| / Standardized . ,''''''''|
 | Light | ------|---Protocol-------\------| Light |
 | Bulb | . | | Switch |
 |........' `'- / |........'
 \ _-...-`
 Manufacturer `. ,.' Manufacturer
 A ` B

Tschofenig, et al. Expires September 21, 2013 [Page 15]

Internet-Draft Smart Object Architectural Considerations March 2013

 Figure 3: Interoperability between two independent devices

 In order for this scenario to work manufacturer A, B, and probably
 many other manufacturers' lightbulbs and light switches need to get
 together and agree on the protocol stack they would like to use. Let
 us assume that they do not want any manual configuration by the user
 to happen and that these devices should work in a typical home
 network. This consortium needs to make a decision about the
 following protocol design aspects:

 o Which physical layer should be supported?

 o Which IP version should be used?

 o Which IP address configuration mechanism(s) are integrated into
 the device?

 o Which communication architecture shall be supported? (In [16]
 Arkko, et al. explain how the complexity of an application heavily
 depends on the chosen communication architecture and discusses an
 application with limited communication capabilities, which also
 translates into low energy consumption.)

 o Is there a need for a service discovery mechanism to allow users
 to discover light bulbs they have in their home or office?

 o Which transport-layer protocol is used for conveying the sensor
 readings/sensor commands? (e.g., UDP)

 o Which application-layer protocol is used? (for example, CoAP)

 o How are requests encoded? (e.g., as URIs) How is the return data
 encoded? (e.g., JSON)

 o What data model is used for expressing the different light levels?
 (e.g., [17])

 o Finally, some thoughts will have to be spent about the security
 architecture. This includes questions like: what are the
 ssecurity threats? What security services need to be provided to
 deal with the identified threats? Where do the security
 credentials come from? At what layer(s) in the protocol stack
 should the security mechanism reside?

 This list is not meant to be exhaustive but aims to illustrate that
 for every usage scenario many design decisions will have to be made
 in order to accommodate the constrained nature of a specific device
 in a certain usage scenario. Standardizing such a complete solution

Tschofenig, et al. Expires September 21, 2013 [Page 16]

Internet-Draft Smart Object Architectural Considerations March 2013

 to accomplish a full level of interoperability between two devices
 manufactured by different vendors will take time.

4.5. Design for Change

 With the description in Section 4.3 and in Section 4.4 we present two
 extreme cases of interoperability. To "design for varation in
 outcome", as postulated by [15], the design of the system does not
 need to be cast in stone during the standardization process but may
 be changed during run-time using software updates.

 For many reasons, not only for adding new functionality, it can be
 said that many smart objects will need a solid software update
 mechanism. Note that adding new functionality to smart objects may
 not be possible for certain classes of constrained devices, namely
 those with severe memory limitations. As such, a certain level of
 sophistication from the embedded device is assumed in this section.

 Software updates are common in operating systems and application
 programs today. Arguably, the Web today employs a very successful
 software update mechanism with code being provided by many different
 parties (i.e., by websites loaded into the browser or by the Web
 application). While JavaScript (or the proposed successor, Dart) may
 not be the right choice of software distribution for smart objects,
 and other languages such as embedded eLua [18] may be more
 appropriate, the basic idea of offering software distribution
 mechanisms may present a middleground between the two extreme
 interoperability scenarios presented in this section.

Tschofenig, et al. Expires September 21, 2013 [Page 17]

Internet-Draft Smart Object Architectural Considerations March 2013

5. Security Considerations

 Section 3.3 of [1] reminds us about the IETF workstyle regarding
 security:

 In the development of smart object applications, as with any other
 protocol application solution, security must be considered early
 in the design process. As such, the recommendations currently
 provided to IETF protocol architects, such as RFC 3552 [19], and

RFC 4101 [20], apply also to the smart object space.

 In the IETF, security functionality is incorporated into each
 protocol as appropriate, to deal with threats that are specific to
 them. It is extremely unlikely that there is a one-size-fits-all
 security solution given the large number of choices for the 'right'
 protocol architecture (particularly at the application-layer). For
 this purpose, [3] offers a survey of IETF security mechanisms instead
 of suggesting a preferred one.

 A more detailed security discussion can be found in the report from
 the 'Smart Object Security' workshop [21] that was held prior to the
 IETF meeting in Paris, March 2012.

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc4101

Tschofenig, et al. Expires September 21, 2013 [Page 18]

Internet-Draft Smart Object Architectural Considerations March 2013

6. Privacy Considerations

 In 1980, the Organization for Economic Co-operation and Development
 (OECD) published eight Guidelines on the Protection of Privacy and
 Trans-Border Flows of Personal Data [22], which are often referred to
 as Fair Information Practices (FIPs). The FIPs, like other privacy
 principles, are abstract in their nature and have to be applied to a
 specific context.

 From a technical point of view, many smart object designs are not
 radically different from other application design. Often, however,
 the lack of a classical user interface, such as is used on a PC or a
 phone, that allows users to interact with the devices in a convenient
 and familiar way creates problems to provide users with information
 about the data collection, and to offer them the ability to express
 consent. Furthermore, in some verticals (e.g., smart meter
 deployments) users are not presented with the choice of voluntarily
 signing up for the service but deployments are instead mandated
 through regulation. Therefore, these users have no right to consent;
 a right that is core to many privacy principles including the FIPs.
 In other cases, the design is more focused on dealing with privacy at
 the level of a privacy notice rather than by building privacy into
 the design of the system, which [23] asks engineers to do.

 Similarly, in many applications, smart objects technology is deployed
 by someone other than the potentially impacted parties. For
 instance, manufacturers and shops deploy RFID tags in products or
 governments deploy roadside sensors. In these applications the
 impacted parties, such as a shopper or car-owner, may not even be
 aware that such technology is used, and information about the
 impacted party may be collected.

 The interoperability models described in this document highlight that
 standardized interfaces are not needed in all cases. Depending on
 the choice of certain underlying technologies, various privacy
 problems may be inherited by the upper-layer protocols and are
 therefore difficult to resolve as an afterthought. Many smart
 objects leave users little ability for enabling privacy-improving
 configuration changes. Technologies exist that can be applied also
 to smart objects to involve users in authorization decisions before
 data sharing takes place.

 As a summary, for an Internet protocol architect, the guidelines
 described in [23] are applicable. For those looking at privacy from
 a deployment point of view, the following additional guidelines are
 suggested:

Tschofenig, et al. Expires September 21, 2013 [Page 19]

Internet-Draft Smart Object Architectural Considerations March 2013

 Transparency: The data processing should be completely transparent
 to the smart object owner, users, and possibly impacted parties.
 Users and impacted parties must, except in rare exceptional cases,
 be put in a position to understand what items of personal
 information concerning them are collected and stored, as well for
 what purposes they are sought.

 Data Quality: Smart objects should only store personal data which
 are adequate, relevant and not excessive in relation to the
 purpose(s) for which they are processed. The use of anonymized
 data should be preferred wherever possible.

 Data Access: Before deployment starts, it is necessary to consider
 who can access the personal data recorded in smart objects and
 under which conditions, particularly with regard to data subjects,
 to whom (in principle) full and free access to his/her own data
 should be recognized. Appropriate and clear procedures should be
 established in order to allow data subjects to properly exercise
 their rights. A privacy and data protection impact assessment is
 considered a useful tool for this analysis.

 Data Security: Standardized data security measures to prevent
 unlawful access, alteration or loss of smart object data need to
 be defined and universally adopted. Robust cryptographic
 techniques and proper authentication frameworks should be used to
 limit the risk of unintended data transfers or harmful attacks.
 The end-user and impacted parties should be able to verify, in a
 straight-forward manner, that smart objects are in full compliance
 with these standards.

Tschofenig, et al. Expires September 21, 2013 [Page 20]

Internet-Draft Smart Object Architectural Considerations March 2013

7. Summary

 Interconnecting smart objects with the Internet creates exciting new
 use cases and engineers are eager to play with small and constrained
 devices. With various standardization efforts ongoing and the
 impression that smart objects require a new Internet Protocol and
 many new extensions, we would like to provide a cautious warning. We
 believe that protocol architects are best served by the following
 high level guidance:

 Use Internet protocols

 Most, if not all, smart object deployments should employ the
 Internet protocol suite. The Internet protocols can be applied to
 almost any environment, and the rest of the suite can be tailored
 for the specific needs.

 The deployed Internet matters

 When connecting smart objects to the Internet, take existing
 deployment into consideration to avoid unpleasant surprises.
 Assuming an ideal, clean-slate deployments is, in many cases, far
 too opimistic since already available deployed infrastructure is
 sticky.

 Decide about the level of interoperability

 Offering interoperability between every entity in an architecture
 may be an ideal situation for a standards person but comes with a
 certain cost. As such, starting with a less ambigious
 standardization goal may be appropriate, particularly for early
 deployments.

 Don't optimize too early

 The constrained nature of smart objects invites engineers to
 invent each and every technique to optimize protocols for special
 use cases. While some of these optimizations may be necessary,
 many of them make the overal design complex and the outcome less
 usable for the generic use case. Examples of current, useful
 optimizations include tailoring web services transport mechanisms
 for smart objects while keeping the overall web services model
 intact ([24]) or education about good ways to implement IP-based
 protocol stacks ([25]).

 This memo provides also some additional, more detailed suggestions
 for different audiences. The following recommendations are for the
 designers of smart object systems:

Tschofenig, et al. Expires September 21, 2013 [Page 21]

Internet-Draft Smart Object Architectural Considerations March 2013

 o Aim for a generic design instead of optimizing too early. Note
 that some optimizations will only be possible in an architectural
 context, rather than at the level of an individual protocol.

 o We encourage engineers to take existing deployment constraints
 into consideration to allow for a smooth transition path. This
 requires a clear understanding of the deployment status and also
 an analysis of the incentives of the different stakeholders.

 o Over time, a wide range of middleboxes have been introduced to the
 Internet protocol suite. Introducing middleboxes in smart object
 deployments has been proposed many times but their usage is
 usually harmful. We recommend carefully investigaing whether new
 features introduced can be supported without any change to
 middleboxes. This investigation will likely have to go beyond
 pure specification work, and may require extensive
 interoperability testing and a clearly articulated extensiblity
 story. The guidance in [7] is relevant to this discussion. The
 added architectural complexity, including security and privacy
 challenges, has to be a subject of design considerations.
 Middleboxes are often operated by parties other than the
 communication endpoints. As such, they introduce additional
 stakeholders into the architecture that often want to be involved
 when new features are introduced and as such may slow down the
 ability to innovate at a high speed.

 o The application space has historically seen faster innovation
 cycles, and separating network-layer from application-layer
 functionality is therefore recommended. In general, we suggest
 avoiding standardizing complete protocol stacks. The likelihood
 that those will be outdated by the time standardization is
 finished is far too high, particularly with application-layer
 standards.

 o Consider what type of interoperability model is appropriate for
 the task at hand. An architecture that requires fewer
 interoperability components often has a faster time to market.
 Selecting what interfaces are open for interworking between
 components from different operators and vendors is very important.

 These recommendations are for the designers of new protocols or
 protocol extensions in IETF or elsewhere:

 o The Internet Protocol stack has a number of building blocks that
 have proven useful for many applications. We encourage continuing
 the development of building blocks that are usable in a number of
 deployment scenarios.

Tschofenig, et al. Expires September 21, 2013 [Page 22]

Internet-Draft Smart Object Architectural Considerations March 2013

 For the development of new components, the recommendations in [1]
 provide a good starting point. We do, however, encourage protocol
 engineers to document the interworking of various protocols in at
 least one complete system to ensure that the individual parts
 indeed fit together without creating gaps or conflicts.

 For researchers we offer the following suggestions:

 o Explore the ability to use mobile code distribution also on smart
 objects.

 o Explore the ability to use mobile code distribution also on smart
 objects.

 o We also propose to conduct ongoing research of the deployment
 status of various Internet protocols. These investigations
 provide a snapshot for further interactions with the operator
 community to ensure that IETF protocols can indeed be deployed in
 today's Internet and may stimulate discussions on how to deal with
 unpleasant deployment artifacts.

Tschofenig, et al. Expires September 21, 2013 [Page 23]

Internet-Draft Smart Object Architectural Considerations March 2013

8. IANA Considerations

 This document does not require actions by IANA.

Tschofenig, et al. Expires September 21, 2013 [Page 24]

Internet-Draft Smart Object Architectural Considerations March 2013

9. Acknowledgements

 We would like to thank the participants of the IAB Smart Object
 workshop for their input to the overall discussion about smart
 objects.

 Furthermore, we would like to thank Jan Holler, Patrick Wetterwald,
 Atte Lansisalmi, Hannu Flinck, Joel Halpern, and Markku Tuohino for
 their review comments.

Tschofenig, et al. Expires September 21, 2013 [Page 25]

Internet-Draft Smart Object Architectural Considerations March 2013

10. Informative References

 [1] Tschofenig, H. and J. Arkko, "Report from the Smart Object
 Workshop", RFC 6574, April 2012.

 [2] Carpenter, B., "Architectural Principles of the Internet",
RFC 1958, June 1996.

 [3] Baker, F. and D. Meyer, "Internet Protocols for the Smart
 Grid", RFC 6272, June 2011.

 [4] Fonseca, R., Porter, G., Katz, R., Shenker, S., and I. Stoica,
 "IP options are not an option, Technical Report UCB/EECS",
 2005.

 [5] Eggert, L., "An experimental study of home gateway
 characteristics, In Proceedings of the '10th annual conference
 on Internet measurement'", 2010.

 [6] Honda, M., Nishida, Y., Greenhalgh, A., Handley, M., and H.
 Tokuda, "Is it Still Possible to Extend TCP? In Proc. ACM
 Internet Measurement Conference (IMC), Berlin, Germany",
 Nov 2011.

 [7] Carpenter, B., Aboba, B., and S. Cheshire, "Design
 Considerations for Protocol Extensions", RFC 6709,
 September 2012.

 [8] Thaler, D. and B. Aboba, "What Makes For a Successful
 Protocol?", RFC 5218, July 2008.

 [9] Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and Issues",
RFC 3234, February 2002.

 [10] Kempf, J., Austein, R., and IAB, "The Rise of the Middle and
 the Future of End-to-End: Reflections on the Evolution of the
 Internet Architecture", RFC 3724, March 2004.

 [11] Aboba, B. and E. Davies, "Reflections on Internet
 Transparency", RFC 4924, July 2007.

 [12] O'Malley, S. and L. Peterson, "TCP Extensions Considered
 Harmful", RFC 1263, October 1991.

 [13] Tschofenig, H., Aboba, B., Peterson, J., and D. McPherson,
 "Trends in Web Applications and the Implications on
 Standardization", draft-tschofenig-post-standardization-02
 (work in progress), May 2012.

https://datatracker.ietf.org/doc/html/rfc6574
https://datatracker.ietf.org/doc/html/rfc1958
https://datatracker.ietf.org/doc/html/rfc6272
https://datatracker.ietf.org/doc/html/rfc6709
https://datatracker.ietf.org/doc/html/rfc5218
https://datatracker.ietf.org/doc/html/rfc3234
https://datatracker.ietf.org/doc/html/rfc3724
https://datatracker.ietf.org/doc/html/rfc4924
https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/draft-tschofenig-post-standardization-02

Tschofenig, et al. Expires September 21, 2013 [Page 26]

Internet-Draft Smart Object Architectural Considerations March 2013

 [14] Rosenberg, J., "UDP and TCP as the New Waist of the Internet
 Hourglass", draft-rosenberg-internet-waist-hourglass-00 (work
 in progress), February 2008.

 [15] Clark, D., Wroslawski, J., Sollins, K., and R. Braden, "Tussle
 in Cyberspace: Defining Tomorrow's Internet, In Proc. ACM
 SIGCOMM", 2002.

 [16] Arkko, J., Rissanen, H., Loreto, S., Turanyi, Z., and O. Novo,
 "Implementing Tiny COAP Sensors",

draft-arkko-core-sleepy-sensors-01 (work in progress),
 July 2011.

 [17] Jennings, C., Shelby, Z., and J. Arkko, "Media Types for Sensor
 Markup Language (SENML)", draft-jennings-senml-10 (work in
 progress), October 2012.

 [18] "Embedded Lua Project", 2012.

 [19] Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on
 Security Considerations", BCP 72, RFC 3552, July 2003.

 [20] Rescorla, E. and IAB, "Writing Protocol Models", RFC 4101,
 June 2005.

 [21] Gilger, J. and H. Tschofenig, "Report from the 'Smart Object
 Security Workshop', March 23, 2012, Paris, France",

draft-gilger-smart-object-security-workshop-01 (work in
 progress), February 2013.

 [22] Organization for Economic Co-operation and Development, "OECD
 Guidelines on the Protection of Privacy and Transborder Flows
 of Personal Data", available at (September 2010) , http://

www.oecd.org/EN/document/
 0,,EN-document-0-nodirectorate-no-24-10255-0,00.html, 1980.

 [23] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J., Morris,
 J., Hansen, M., and R. Smith, "Privacy Considerations for
 Internet Protocols", draft-iab-privacy-considerations-03 (work
 in progress), July 2012.

 [24] Shelby, Z., Hartke, K., and C. Bormann, "Constrained
 Application Protocol (CoAP)", draft-ietf-core-coap-14 (work in
 progress), March 2013.

 [25] Bormann, C., "Guidance for Light-Weight Implementations of the
 Internet Protocol Suite", draft-bormann-lwig-guidance-01 (work
 in progress), January 2012.

https://datatracker.ietf.org/doc/html/draft-rosenberg-internet-waist-hourglass-00
https://datatracker.ietf.org/doc/html/draft-arkko-core-sleepy-sensors-01
https://datatracker.ietf.org/doc/html/draft-jennings-senml-10
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc4101
https://datatracker.ietf.org/doc/html/draft-gilger-smart-object-security-workshop-01
http://www.oecd.org/EN/document/
http://www.oecd.org/EN/document/
https://datatracker.ietf.org/doc/html/draft-iab-privacy-considerations-03
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-14
https://datatracker.ietf.org/doc/html/draft-bormann-lwig-guidance-01

Tschofenig, et al. Expires September 21, 2013 [Page 27]

Internet-Draft Smart Object Architectural Considerations March 2013

Authors' Addresses

 Hannes Tschofenig
 Linnoitustie 6
 Espoo 02600
 Finland

 Phone: +358 (50) 4871445
 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Jari Arkko
 Jorvas 02420
 Finland

 Email: jari.arkko@piuha.net

 Dave Thaler
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: dthaler@microsoft.com

 Danny McPherson
 US

 Email: danny@tcb.net

http://www.tschofenig.priv.at

Tschofenig, et al. Expires September 21, 2013 [Page 28]

