
Network Working Group H. Tschofenig
Internet-Draft
Intended status: Informational J. Arkko
Expires: January 5, 2015
 D. Thaler

 D. McPherson

 July 4, 2014

Architectural Considerations in Smart Object Networking
draft-iab-smart-object-architecture-04.txt

Abstract

 Following the theme "Everything that can be connected will be
 connected", engineers and researchers designing smart object networks
 need to decide how to achieve this in practice.

 This document offers guidance to engineers designing Internet
 connected smart objects.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Tschofenig, et al. Expires January 5, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Smart Object Architectural Considerations July 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Utilize Design Patterns 3
2.1. Device-to-Device Communication Pattern 4
2.2. Device-to-Cloud Communication Pattern 5
2.3. Device-to-Gateway Communication Pattern 6
2.4. Back-end Data Sharing Pattern 7

3. Re-Use Internet Protocols 8
4. The Deployed Internet Matters 11
5. Design for Change . 12
6. Security Considerations 14
7. Privacy Considerations 14
8. IANA Considerations . 15
9. Acknowledgements . 15
10. Informative References 15

 Authors' Addresses . 17

1. Introduction

RFC 6574 [1] refers to smart objects (also called "Things", as in
 Internet of Things in other publications) as devices with constraints
 on energy, bandwidth, memory, size, cost, etc. This is a fuzzy
 definition, as there is clearly a continuum in device capabilities
 and there is no hard line to draw between devices that can run
 Internet Protocols and those that can't.

 Interconnecting smart objects with the Internet creates exciting new
 innovative use cases and products. An increasing number of products
 put the Internet Protocol suite on smaller and smaller devices and
 offer the ability to process, visualize, and gain new insight from
 the collected sensor data. The network effect can be increased if
 the data collected from many different devices can be combined.

 Developing embedded systems is a complex task and designing Internet
 connected smart objects is even harder since it "requires expertise
 with Internet protocols in addition to software programming and
 hardware skills. To simply the development task, and thereby to
 lower the cost of developing new products and prototypes, we believe
 that re-use of prior work is essential. Therefore, we provide high-

https://datatracker.ietf.org/doc/html/rfc6574

Tschofenig, et al. Expires January 5, 2015 [Page 2]

Internet-Draft Smart Object Architectural Considerations July 2014

 level guidance on the use of Internet technology for the development
 of smart objects.

 Utilize Existing Design Patterns

 Design patterns are generally reusable solutions to a commonly
 occurring design problem. Existing smart object deployments show
 patterns that can be re-used by engineers with the benefit of
 lowering the design effort. Individual patterns also have an
 implication on the required interoperability between the different
 entities. Depending on the desired functionality, already
 existing patterns can be re-used and adjusted. Section 2 talks
 about various design patterns.

 Re-Use Internet Protocols

 Most, if not all, smart object deployments can make use of the
 already standardized Internet protocol suite. The Internet
 protocols can be applied to almost any environment due to their
 generic design, and typically offer plenty of potential for re-
 configuration, which allows the them to be tailored for the
 specific needs. Section 3 discusses this topic.

 The Deployed Internet matters

 When connecting smart objects to the Internet, take existing
 deployment into consideration to avoid unpleasant surprises.
 Assuming an ideal, clean-slate deployments is, in many cases, far
 too optimistic since the already deployed infrastructure is
 convenient to use. In Section 4 we highlight the importance of
 this topic.

 Design for Change

 The Internet infrastructure, the applications and preferred
 building blocks evolve over time. Especially long-lived smart
 object deployments need to take this change into account and

Section 5 is dedicated to that topic.

2. Utilize Design Patterns

 This section illustrates a number of design pattern utilized in the
 smart object environment. Note that some patterns can be applied at
 the same time in a product. Developers re-using those patterns will
 benefit from the experience of others as well as from documentation,
 source code, and available products.

Tschofenig, et al. Expires January 5, 2015 [Page 3]

Internet-Draft Smart Object Architectural Considerations July 2014

2.1. Device-to-Device Communication Pattern

 Figure 1 illustrates a design pattern where two devices developed by
 different manufacturers are desired to interoperate. To pick an
 example from [1], consider a light bulb switch that talks to a light
 bulb with the requirement that each may be manufactured by a
 different company, represented as manufacturer A and B. Other cases
 can be found with fitness equipment, such as heart-rate monitors and
 cadence sensors.

 _,,,, ,,,,
 / -'`` \
 | Wireless |
 \ Network |
 / \
 ,''''''''| / . ,''''''''|
 | Light | ------|------------------\------| Light |
 | Bulb | . | | Switch |
 |........' `'- / |........'
 \ _-...-`
 Manufacturer `. ,.' Manufacturer
 A ` B

 Figure 1: Device-to-Device Communication Pattern

 In order to fulfill the promise that devices from different
 manufacturers are able to communicate out-of-the-box, these vendors
 need to get together and agree on the protocol stack. Such a
 consortium needs to make a decision about the following protocol
 design aspects:

 o Which physical layer(s) should be supported?

 o Which IP version(s) should be used?

 o Which IP address configuration mechanism(s) are integrated into
 the device?

 o Which communication architecture shall be supported? Which
 devices are constrained and what are those constraints? Is there
 a classical client-server model or rather a peer-to-peer model?

 o Is there a need for a service discovery mechanism to allow users
 to discover light bulbs they have in their home or office?

 o Which transport-layer protocol is used for conveying the sensor
 readings/sensor commands? (e.g., UDP)

Tschofenig, et al. Expires January 5, 2015 [Page 4]

Internet-Draft Smart Object Architectural Considerations July 2014

 o Which application-layer protocol is used? (for example, CoAP)

 o How are requests and responses encoded? (e.g., JSON)

 o What information model is used for expressing the different light
 levels? What is the encoding of the information (in a data
 model)?

 o Finally, some thoughts will have to be spent about the security
 architecture. This includes questions like: what are the security
 threats? What security services need to be provided to deal with
 the identified threats? Where do the security credentials come
 from? At what layer(s) in the protocol stack should the security
 mechanism reside?

 This list is not meant to be exhaustive but aims to illustrate that
 for every usage scenario many design decisions will have to be made
 in order to accommodate the constrained nature of a specific device
 in a certain usage scenario. Standardizing such a complete solution
 to accomplish a full level of interoperability between two devices
 manufactured by different vendors takes time but there are obvious
 rewards for end customers and vendors.

2.2. Device-to-Cloud Communication Pattern

 Figure 2 shows a design pattern for uploading sensor data to a cloud-
 based infrastructure. Often the application service provider
 (example.com in our illustration) also sells smart objects as well.
 In that case the entire communication happens internally to the
 provider and no need for interoperability arises. Still, it is
 useful for example.com to re-use existing specifications to lower the
 design, implementation, testing and development effort.

 While this pattern allows using IP-based communication end-to-end it
 may still lead to silos. To prevent silos, example.com may allow
 third party device vendors to connect to their server infrastructure
 as well. For those cases, the protocol interface used to communicate
 with the server infrastructure needs to be made available, and
 various standards are available, such as CoAP, DTLS, UDP, IP, etc as
 shown in Figure 2.

 Since the access networks to which various smart objects are
 connected are typically not under the control of the application
 service provider, commonly used radio technologies (such as WLAN,
 wired Ethernet, and cellular radio) together with the network access
 authentication technology have to be re-used. The same applies to
 standards used for IP address configuration.

Tschofenig, et al. Expires January 5, 2015 [Page 5]

Internet-Draft Smart Object Architectural Considerations July 2014

 | Application |
 | Service |
 | Provider |
 | example.com |
 |_______________|
 _, .
 HTTP ,' `. CoAP
 TLS _,' `. DTLS
 TCP ,' `._ UDP
 IP-' - IP
 ,'''''''''''''| ,'''''''''''''''''|
 | Device with | | Device with |
 | Temperature | | Carbon Monoxide |
 | Sensor | | Sensor |
 |.............' |.................'

 Figure 2: Device-to-Cloud Communication Pattern

2.3. Device-to-Gateway Communication Pattern

 The device-to-cloud communication pattern, described in Section 2.2,
 is convenient for vendors of smart objects and works well if they use
 choose a radio technology that is widely deployed in the targeted
 market, such as IEEE 802.11-based Wifi for smart home use cases.
 Sometimes less widely available radio technologies are needed (such
 as IEEE 802.15.4) or special application layer functionality (e.g.,
 local authentication and authorization) has to be provided. In those
 cases a gateway has to be introduced into the communication
 architecture that bridges between the different physical layer/link
 layer technologies and performs other networking and security
 functionality. Figure 3 shows this pattern graphically. Often,
 these gateways are provided by the same vendor that offers the IoT
 product, for example because of the use of proprietary protocols, to
 lower the dependency on other vendors, or to avoid potential
 interoperability problems. It is expected that in the future more
 generic gateways will be deployed to lower cost and infrastructure
 complexity for end consumers, enterprises, and industrial
 environments.

 This design pattern can frequently be found with smart object
 deployments that require remote configuration capabilities and real-
 time interactions. The gateway is thereby assumed to be always
 connected to the Internet.

Tschofenig, et al. Expires January 5, 2015 [Page 6]

Internet-Draft Smart Object Architectural Considerations July 2014

 | Application |
 | Service |
 | Provider |
 | example.com |
 |_______________|
 |
 |
 |

 | Local |
 | Gateway |
 | |
 |_______________|
 _, .
 HTTP ,' `. CoAP
 TLS _,' Bluetooth Smart `. DTLS
 TCP ,' IEEE 802.11 `._ UDP
 IP-' IEEE 802.15.4 - IP/6lo
 ,'''''''''''''| ,'''''''''''''''''|
 | Device with | | Device with |
 | Temperature | | Carbon Monoxide |
 | Sensor | | Sensor |
 |.............' |.................'

 Figure 3: Device-to-Gateway Communication Pattern

 A variation of this model is the case where the gateway role is
 actually incorporated into the smart phone. Of course, if the smart
 phone is not connected to smart objects, for example because the
 phone moved out of range, they are not connected with the Internet
 anymore. This limits the applicability of such a design pattern but
 is nevertheless very common with wearables and other IoT devices that
 do not need always-on Internet or real-time Internet connectivity.
 From an interoperability point of view it is worth noting that smart
 phones with their sophisticated software update mechanism via app
 stores allow new functionality to be updated regularly at the smart
 phone and sometimes even at the IoT device. With special apps that
 are tailored to each specific IoT device interoperability is mainly a
 concern with regard to the lower layers of the protocol stack, such
 as the radio interface, and less so at the application layer.

2.4. Back-end Data Sharing Pattern

 The device-to-cloud pattern often leads to silos; IoT devices upload
 data only to a single application service provider. However, users
 often demand the ability to export and to analyze data in combination
 with data from other sources. Hence, the urge for granting access to

Tschofenig, et al. Expires January 5, 2015 [Page 7]

Internet-Draft Smart Object Architectural Considerations July 2014

 the uploaded sensor data to third parties arises. This design is
 shown in Figure 4. This pattern is known from the Web in case of
 mashups and is therefore re-applied to the smart object context. To
 offer familiarity for developers, typically a RESTful API design in
 combination with a federated authentication and authorization
 technology (like OAuth 2.0 [13]) is re-used. While this offers re-
 use at the level of building blocks, the entire protocol stack
 (including the data model and the API definition) is often not
 standardized.

 | Application |
 .| Service |
 ,-` | Provider |
 .` | b-example.com |
 ,-` |_______________|
 .`
 ,-`
 | Application |-` HTTPS
 | Service | OAuth 2.0
 | Provider | JSON
 | example.com |-,
 |_______________| '.
 _, `',
 ,' '.
 _,' CoAP or `',
 ,' HTTP '. | Application |
 -' `'| Service |
 ,''''''''| | Provider |
 | Light | | c-example.com |
 | Sensor | |_______________|
 |........'

 Figure 4: Backend Data Sharing Pattern

3. Re-Use Internet Protocols

 When discussing the need for re-use of available standards vs.
 extending or re-designing protocols, it is useful to look back at the
 criteria for success of the Internet.

RFC 1958 [6] provides lessons from the early days of the Internet and
 says:

 "The Internet and its architecture have grown in evolutionary
 fashion from modest beginnings, rather than from a Grand Plan",

https://datatracker.ietf.org/doc/html/rfc1958

Tschofenig, et al. Expires January 5, 2015 [Page 8]

Internet-Draft Smart Object Architectural Considerations July 2014

 and adds:

 "A good analogy for the development of the Internet is that of
 constantly renewing the individual streets and buildings of a
 city, rather than razing the city and rebuilding it."

 Yet because building very small, battery-powered devices is
 challenging, it may be difficult to resist the temptation to build
 solutions tailored to a specific applications, or even to re-design
 networks from scratch to suit a particular application.

 While developing consensus-based standards in an open and transparent
 process takes longer than developing proprietary solutions, the
 resulting solutions often remain relevant over a longer period of
 time.

RFC 1263 [4] considers protocol design strategy and the decision to
 design new protocols or to use existing protocols in a non-backward
 compatible way:

 "We hope to be able to design and distribute protocols in less
 time than it takes a standards committee to agree on an acceptable
 meeting time. This is inevitable because the basic problem with
 networking is the standardization process. Over the last several
 years, there has been a push in the research community for
 lightweight protocols, when in fact what is needed are lightweight
 standards. Also note that we have not proposed to implement some
 entirely new set of 'superior' communications protocols, we have
 simply proposed a system for making necessary changes to the
 existing protocol suites fast enough to keep up with the
 underlying change in the network. In fact, the first standards
 organization that realizes that the primary impediment to
 standardization is poor logistical support will probably win."

 While [4] was written in 1991 when the standardization process was
 more lightweight than today, these thoughts remain relevant in smart
 object development.

 Interestingly, a large range of already standardized protocols are
 relevant for smart object deployments. RFC 6272 [5], for example,
 made the attempt to identify relevant IETF specifications for use in
 smart grids.

 Still, many commercial products contain proprietary or industry-
 specific protocol mechanisms and researchers have made several
 attempts to design new architectures for the entire Internet system.
 There are several architectural concerns that deserve to be
 highlighted:

https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/rfc6272

Tschofenig, et al. Expires January 5, 2015 [Page 9]

Internet-Draft Smart Object Architectural Considerations July 2014

 Vertical Profiles

 The discussions at the IAB workshop (see Section 3.1.2 of [1])
 revealed the preference of many participants to develop domain-
 specific profiles that select a minimum subset of protocols needed
 for a specific operating environment. Various standardization
 organizations and industry fora are currently engaged in
 activities of defining their preferred profile(s). Ultimately,
 however, the number of domains where smart objects can be used is
 essentially unbounded. There is also an ever-evolving set of
 protocols and protocol extensions.

 However, merely changing the networking protocol to IP does not
 necessarily bring the kinds of benefits that industries are
 looking for in their evolving smart object deployments. In
 particular, a profile is rigid, and leaves little room for
 interoperability among slightly differing, or competing technology
 variations. As an example, layer 1 through 7 type profiles do not
 account for the possibility that some devices may use different
 physical media than others, and that in such situations a simple
 router could still provide an ability to communicate between the
 parties.

 Industry-Specific Solutions

 The Internet Protocol suite is more extensive than merely the use
 of IP. Often significant benefits can be gained from using
 additional, widely available, generic technologies such as web
 services. Benefits from using these kinds of tools include access
 to a large available workforce, software, and education already
 geared towards employing the technology.

 Tight Coupling

 Many applications are built around a specific set of servers,
 devices, and users. However, often the same data and devices
 could be useful for many purposes, some of which may not be easily
 identifiable at the time that the devices are deployed.

 As a result, the following recommendations can be made. First, while
 there are some cases where specific solutions are needed, the
 benefits of general-purpose technology are often compelling, be it
 choosing IP over some more specific communication mechanism, a widely
 deployed link-layer (such as wireless LAN) over a more specific one,
 web technology over application specific protocols, and so on.

 However, when employing these technologies, it is important to
 embrace them in their entirety, allowing for the architectural

Tschofenig, et al. Expires January 5, 2015 [Page 10]

Internet-Draft Smart Object Architectural Considerations July 2014

 flexibility that is built onto them. As an example, it rarely makes
 sense to limit communications to on-link or to specific media.
 Design your applications so that the participating devices can easily
 interact with multiple other applications.

4. The Deployed Internet Matters

 Despite the applicability of the Internet Protocols for smart
 objects, picking the specific protocols for a particular use case can
 be tricky. As the Internet has evolved over time, certain protocols
 and protocol extensions have become the norm and others have become
 difficult to use in all circumstances.

 Taking into account these constraints is particularly important for
 smart objects, as there is often a desire to employ specific features
 to support smart object communication. For instance, from a pure
 protocol specification perspective, some transport protocols may be
 more desirable than others. These constraints apply both to the use
 of existing protocols as well as designing new ones on top of the
 Internet Protocol stack.

 The following list illustrates a few of those constraints, but every
 communication protocol comes with its own challenges.

 In 2005, Fonseca, et al. [15] studied the usage of IP options-enabled
 packets in the Internet and found that overall, approximately half of
 Internet paths drop packets with options, making extensions using IP
 options "less ideal" for extending IP.

 In 2010, Honda, et al. [17] tested 34 different home gateways
 regarding their packet dropping policy of UDP, TCP, DCCP, SCTP, ICMP,
 and various timeout behavior. For example, more than half of the
 tested devices do not conform to the IETF recommended timeouts for
 UDP, and for TCP the measured timeouts are highly variable, ranging
 from less than 4 minutes to longer than 25 hours. For NAT traversal
 of DCCP and SCTP, the situation is poor. None of the tested devices,
 for example, allowed establishing a DCCP connection.

 In 2011, [16] tested the behavior of networks with regard to various
 TCP extensions: "From our results we conclude the middleboxes
 implementing layer 4 functionality are very common -- at least 25% of
 paths interfered with TCP in some way beyond basic firewalling."

 Extending protocols to fulfill new uses and to add new functionality
 may range from very easy to difficult, as [2] explains in great
 detail. A challenge many protocol designers are facing is to ensure
 incremental deployability and interoperability with incumbent
 elements in a number of areas. In various cases, the effort it takes

Tschofenig, et al. Expires January 5, 2015 [Page 11]

Internet-Draft Smart Object Architectural Considerations July 2014

 to design incrementally deployable protocols has not been taken
 seriously enough at the outset. RFC 5218 on "What Makes For a
 Successful Protocol?" [9] defines wildly successful protocols as
 protocols that are widely deployed beyond their envisioned use cases.

 As these examples illustrate, protocol architects have to take
 developments in the greater Internet into account, as not all
 features can be expected to be usable in all environments. For
 instance, middleboxes [8] complicate the use of extensions in the
 basic IP protocols and transport-layers.

RFC 1958 [6] considers this aspect and says "... the community
 believes that the goal is connectivity, the tool is the Internet
 Protocol, and the intelligence is end to end rather than hidden in
 the network." This statement is challenged more than ever with the
 perceived need to develop clever intermediaries interacting with dumb
 end devices. However, RFC 3724 [12] has this to say about this
 crucial aspect: "One desirable consequence of the end-to-end
 principle is protection of innovation. Requiring modification in the
 network in order to deploy new services is still typically more
 difficult than modifying end nodes." Even this statement will become
 challenged, as large numbers of devices are deployed and it indeed
 might be the case that changing those devices is hard. But RFC 4924
 [7] adds that a network that does not filter or transform the data
 that it carries may be said to be "transparent" or "oblivious" to the
 content of packets. Networks that provide oblivious transport enable
 the deployment of new services without requiring changes to the core.
 It is this flexibility that is perhaps both the Internet's most
 essential characteristic as well as one of the most important
 contributors to its success.

5. Design for Change

 How to embrace rapid innovation and at the same time accomplish a
 high level of interoperability is one of the key aspects for
 competing in the market place. RFC 1263 [4] points out that
 "protocol change happens and is currently happening at a very
 respectable clip. We simply propose [for engineers developing the
 technology] to explicitly deal with the changes rather keep trying to
 hold back the flood.".

 In [18] Clark, et al. suggest to "design for variation in outcome, so
 that the outcome can be different in different places, and the tussle
 takes place within the design, not by distorting or violating it. Do
 not design so as to dictate the outcome. Rigid designs will be
 broken; designs that permit variation will flex under pressure and
 survive.". The term tussle refers to the process whereby different
 parties, which are part of the Internet milieu and have interests

https://datatracker.ietf.org/doc/html/rfc5218
https://datatracker.ietf.org/doc/html/rfc1958
https://datatracker.ietf.org/doc/html/rfc3724
https://datatracker.ietf.org/doc/html/rfc4924
https://datatracker.ietf.org/doc/html/rfc1263

Tschofenig, et al. Expires January 5, 2015 [Page 12]

Internet-Draft Smart Object Architectural Considerations July 2014

 that may be adverse to each other, adapt their mix of mechanisms to
 try to achieve their conflicting goals, and others respond by
 adapting the mechanisms to push back.

 In order to accomplish this, Clark, et al. suggest to

 1. Break complex systems into modular parts, so that one tussle does
 not spill over and distort unrelated issues.

 2. Design for choice to permit the different players to express
 their preferences. Choice often requires open interfaces.

 The main challenge with the suggested approach is to predict how
 conflicts among the different players will evolve. Since tussles
 evolve over time, there will be changes to the architecture too. It
 is certainly difficult to pick the right set of building blocks and
 to develop a communication architecture that will last a long time,
 and many smart object deployments are envisioned to be rather long-
 lived.

 Luckily, the design of the system does not need to be cast in stone
 during the design phase. It may adjust dynamically since many of the
 protocols allow for configurability and dynamic discovery. But
 ultimately software update mechanisms may provide the flexibility
 needed to deal with more substantial changes.

 A solid software update mechanism is needed not only for dealing with
 the changing Internet communication environment and for
 interoperability improvements but also for adding new features and
 for fixing security bugs. This approach may appear to be in conflict
 with classes of severely restricted devices since, in addition to a
 software update mechanism, spare flash and RAM capacity is needed.
 It is, however, a tradeoff worth thinking about since better product
 support comes with a price.

 As technology keeps advancing, the constraints that the technology
 places on devices evolve as well. Microelectronics became more
 capable as time goes by, sometimes making it even possible for new
 devices to be both less expensive and more capable than their
 predecessors. This trend can, however, be in some cases offset by
 the desire to embed communications technology in even smaller and
 cheaper objects. But it is important to design communications
 technology not just for today's constraints, but also tomorrow's.
 This is particularly important since the cost of a product is not
 only determined by the cost of hardware but also by the cost of
 writing custom protocol stacks and embedded system software.

Tschofenig, et al. Expires January 5, 2015 [Page 13]

Internet-Draft Smart Object Architectural Considerations July 2014

 Software updates are common in operating systems and application
 programs today. Without them, most devices would pose a latent risk
 to the Internet at large. Arguably, the JavaScript-based web employs
 a very rapid software update mechanism with code being provided by
 many different parties (i.e., by websites loaded into the browser or
 by smart phone apps).

6. Security Considerations

 Section 3.3 of [1] reminds us about the IETF work style regarding
 security:

 In the development of smart object applications, as with any other
 protocol application solution, security must be considered early
 in the design process. As such, the recommendations currently
 provided to IETF protocol architects, such as RFC 3552 [10], and

RFC 4101 [11], apply also to the smart object space.

 In the IETF, security functionality is incorporated into each
 protocol as appropriate, to deal with threats that are specific to
 them. It is extremely unlikely that there is a one-size-fits-all
 security solution given the large number of choices for the 'right'
 protocol architecture (particularly at the application layer). For
 this purpose, [5] offers a survey of IETF security mechanisms instead
 of suggesting a preferred one.

 A more detailed security discussion can be found in the report from
 the 'Smart Object Security' workshop [14] that was held prior to the
 IETF meeting in Paris, March 2012.

 As current attacks against embedded systems demonstrate, many of the
 security vulnerabilities are quite basic and remind us about the
 lessons we should have learned in the late 90's: software has to be
 tested properly, it has to be shipped with a secure default
 configuration (which includes no default accounts, no debugging
 interfaces enabled, etc.), and software and processes need to be
 available to provide patches. While these aspects are typically
 outside the realm of standardization, they are nevertheless important
 to keep in mind.

7. Privacy Considerations

 This document mainly focuses on an engineering audience, i.e., those
 who are designing smart object protocols and architecture. Since
 there is no value-free design, privacy-related decisions also have to
 be made, even if they are just implicit in the re-use of certain
 technologies. RFC 6973 [3] was written as guidance specifically for
 that audience and it is also applicable to the smart object context.

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc4101
https://datatracker.ietf.org/doc/html/rfc6973

Tschofenig, et al. Expires January 5, 2015 [Page 14]

Internet-Draft Smart Object Architectural Considerations July 2014

 For those looking at privacy from a deployment point of view, the
 following additional guidelines are suggested:

 Transparency: Transparency of data collection and processing is key
 to avoid unpleasant surprises for owners and users of smart
 objects. Users and impacted parties must, except in rare cases,
 be put in a position to understand what items of personal data
 concerning them are collected and stored, as well for what
 purposes they are sought.

 Data Quality: Smart objects should only store personal data that is
 adequate, relevant and not excessive in relation to the purpose(s)
 for which they are processed. The use of anonymized data should
 be preferred wherever possible.

 Data Access: Before deployment starts, it is necessary to consider
 who can access personal data collected by smart objects and under
 which conditions. Appropriate and clear procedures should be
 established in order to allow data subjects to properly exercise
 their rights.

 Data Security: Standardized data security measures to prevent
 unlawful access, alteration or loss of smart object data need to
 be defined and deployed. Robust cryptographic techniques and
 proper authentication frameworks have to be used to limit the risk
 of unintended data transfers or unauthorized access.

8. IANA Considerations

 This document does not require actions by IANA.

9. Acknowledgements

 We would like to thank the participants of the IAB Smart Object
 workshop for their input to the overall discussion about smart
 objects.

 Furthermore, we would like to thank Jan Holler, Patrick Wetterwald,
 Atte Lansisalmi, Hannu Flinck, Joel Halpern, Bernard Aboba, and
 Markku Tuohino for their review comments.

10. Informative References

 [1] Tschofenig, H. and J. Arkko, "Report from the Smart Object
 Workshop", RFC 6574, April 2012.

https://datatracker.ietf.org/doc/html/rfc6574

Tschofenig, et al. Expires January 5, 2015 [Page 15]

Internet-Draft Smart Object Architectural Considerations July 2014

 [2] Carpenter, B., Aboba, B., and S. Cheshire, "Design
 Considerations for Protocol Extensions", RFC 6709,
 September 2012.

 [3] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973, July
 2013.

 [4] O'Malley, S. and L. Peterson, "TCP Extensions Considered
 Harmful", RFC 1263, October 1991.

 [5] Baker, F. and D. Meyer, "Internet Protocols for the Smart
 Grid", RFC 6272, June 2011.

 [6] Carpenter, B., "Architectural Principles of the Internet",
RFC 1958, June 1996.

 [7] Aboba, B. and E. Davies, "Reflections on Internet
 Transparency", RFC 4924, July 2007.

 [8] Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
 Issues", RFC 3234, February 2002.

 [9] Thaler, D. and B. Aboba, "What Makes For a Successful
 Protocol?", RFC 5218, July 2008.

 [10] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552, July
 2003.

 [11] Rescorla, E. and IAB, "Writing Protocol Models", RFC 4101,
 June 2005.

 [12] Kempf, J., Austein, R., and IAB, "The Rise of the Middle
 and the Future of End-to-End: Reflections on the Evolution
 of the Internet Architecture", RFC 3724, March 2004.

 [13] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
6749, October 2012.

 [14] Gilger, J. and H. Tschofenig, "Report from the 'Smart
 Object Security Workshop', March 23, 2012, Paris, France",

draft-gilger-smart-object-security-workshop-02 (work in
 progress), October 2013.

https://datatracker.ietf.org/doc/html/rfc6709
https://datatracker.ietf.org/doc/html/rfc6973
https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/rfc6272
https://datatracker.ietf.org/doc/html/rfc1958
https://datatracker.ietf.org/doc/html/rfc4924
https://datatracker.ietf.org/doc/html/rfc3234
https://datatracker.ietf.org/doc/html/rfc5218
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc4101
https://datatracker.ietf.org/doc/html/rfc3724
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/draft-gilger-smart-object-security-workshop-02

Tschofenig, et al. Expires January 5, 2015 [Page 16]

Internet-Draft Smart Object Architectural Considerations July 2014

 [15] Fonseca, R., Porter, G., Katz, R., Shenker, S., and I.
 Stoica, "IP options are not an option, Technical Report
 UCB/EECS", 2005.

 [16] Honda, M., Nishida, Y., Greenhalgh, A., Handley, M., and
 H. Tokuda, "Is it Still Possible to Extend TCP? In Proc.
 ACM Internet Measurement Conference (IMC), Berlin,
 Germany", Nov 2011.

 [17] Eggert, L., "An experimental study of home gateway
 characteristics, In Proceedings of the '10th annual
 conference on Internet measurement'", 2010.

 [18] Clark, D., Wroslawski, J., Sollins, K., and R. Braden,
 "Tussle in Cyberspace: Defining Tomorrow's Internet, In
 Proc. ACM SIGCOMM", 2002.

Authors' Addresses

 Hannes Tschofenig
 Austria

 Email: Hannes.Tschofenig@gmx.net
 URI: http://www.tschofenig.priv.at

 Jari Arkko
 Jorvas 02420
 Finland

 Email: jari.arkko@piuha.net

 Dave Thaler
 One Microsoft Way
 Redmond, WA 98052
 US

 Email: dthaler@microsoft.com

 Danny McPherson
 US

 Email: danny@tcb.net

http://www.tschofenig.priv.at

Tschofenig, et al. Expires January 5, 2015 [Page 17]

