
Network Working Group L. Iannone
Internet-Draft O. Bonaventure
Intended status: Informational UC Louvain
Expires: August 21, 2008 February 18, 2008

OpenLISP Implementation Report
draft-iannone-openlisp-implementation-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 21, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Iannone & Bonaventure Expires August 21, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft OpenLISP Implementation Report February 2008

Abstract

 The RRG is working on the design of an alternate Internet
 Architecture in order solve issues of the current architecture
 related to scalability, mobility, multi-homing, and inter-domain
 routing. Among the various proposals, LISP (Locator/ID Separation
 Protocol) is one of the most advanced. UC Louvain is working on an
 implementation of this protocol on a FreeBSD platform. The present
 draft describes the overall architecture of this implementation and
 its main data structures.

Table of Contents

1. Introduction . 3
1.1. Terms Definition . 3

2. Map Tables . 5
3. Protocol Stack Modifications 7
3.1. Incoming Packets . 7
3.2. Outgoing Packets . 9

4. Mapping Sockets . 11
4.1. An example of mapping sockets usage 13

5. Conclusion . 16
6. Acknowledgements . 17
7. IANA Considerations . 18
8. Security Considerations 19
9. Informative References . 20

 Authors' Addresses . 21
 Intellectual Property and Copyright Statements 22

Iannone & Bonaventure Expires August 21, 2008 [Page 2]

Internet-Draft OpenLISP Implementation Report February 2008

1. Introduction

 Very recent activities in the IETF and in the Routing Research Group
 (RRG) have focused on defining a new Internet architecture, in order
 to solve issues related to scalability, addressing, mobility, multi-
 homing, inter-domain traffic engineering and routing
 ([I-D.iab-raws-report], [I-D.irtf-rrg-design-goals]). It is widely
 recognized that the approach based on the separation of the end-
 systems' addressing space (the identifiers) and the routing locators'
 space is the way to go. This separation is meant to alleviate the
 routing burden of the Default Free Zone, but it implies the need of
 distributing and storing mappings between identifiers and locators on
 caches placed on routers and to perform tunneling or address
 translation operation.

 Among the various proposals presented in various RRG's meeting, LISP
 (Locator/ID Separation Protocol), based on the map/encap approach
 [I-D.farinacci-lisp], is one of the most advanced and promising
 proposals. UC Louvain his currently developing an implementation,
 called OpenLISP of this protocol in the FreeBSD kernel (version 6.2 -
 [FreeBSD]). This draft describes the overall architecture of this
 implementation and its main data structures. The draft is structured
 as follows. We first describe the kernels' data structures created
 to store the mappings necessary to perform encapsulation and
 decapsulation operations. Then, we show the architectural
 modifications made to the FreeBSD protocol stack in order to support
 LISP. Finally we describe the new mapping sockets that we have
 introduced to access the mappings from user space.

1.1. Terms Definition

 The present draft uses the following terms, which are originally
 defined in [I-D.farinacci-lisp]. The terms are reported hereafter
 only as a recall.

 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress tunnel
 router (ETR). It is the output of a EID-to-RLOC mapping lookup.
 An EID maps to one or more RLOCs. Typically, RLOCs are numbered
 from topologically-aggregatable blocks that are assigned to a
 site at each point to which it attaches to the global Internet;
 where the topology is defined by the connectivity of provider
 networks, RLOCs can be thought of as PA addresses. Multiple
 RLOCs can be assigned to the same ETR device or to multiple ETR
 devices at a site.

Iannone & Bonaventure Expires August 21, 2008 [Page 3]

Internet-Draft OpenLISP Implementation Report February 2008

 Endpoint ID (EID): a 32- or 128-bit value used in the source and
 destination address fields of the first (most inner) LISP header
 of a packet. The host obtains a destination EID the same way it
 obtains an destination address today, for example through a DNS
 lookup or SIP exchange. The source EID is obtained via existing
 mechanisms used to set a hosts "local" IP address. An EID is
 allocated to a host from an EID-prefix block associated with the
 site the host is attached to. An EID can be used by a host to
 refer to other hosts. LISP uses PI blocks for EIDs; such EIDs
 MUST NOT be used as LISP RLOCs. Note that EID blocks may be
 assigned in a hierarchical manner, independent of the network
 topology, to facilitate scaling of the mapping database. In
 addition, an EID block assigned to a site may have site-local
 structure (subnetting) for routing within the site; this
 structure is not visible to the global routing system.

 EID-prefix: A power-of-2 block of EIDs which are allocated to a site
 by an address allocation authority. EID-prefixes are associated
 with a set of RLOC addresses which make up a "database mapping".
 EID-prefix allocations can be broken up into smaller blocks when
 an RLOC set is to be associated with the smaller EID- prefix.

Iannone & Bonaventure Expires August 21, 2008 [Page 4]

Internet-Draft OpenLISP Implementation Report February 2008

2. Map Tables

 LISP defines two different databases to store mappings between EID-
 prefixes and RLOCs. The "LISP Cache" stores short-lived mappings in
 an on-demand fashion when new flows start. The "LISP Database"
 stores all the local mappings, i.e., all the mappings of the EID-
 Prefixes behind the router. In OpenLISP we merged the two databases
 in a single radix tree data structure [TCPIP]. This allows to have
 an efficient indexing structure for all the EID-Prefixes that need to
 be stored in the system. EID-Prefixes that are part of the LISP
 Database are marked by a MAPF_LOCAL flag, indicating that they are
 EID-Prefixes for which the mapping is owned locally. Thus, from a
 logical point of view the two "databases" are still separated.
 Actually there are two radix structures in the system, one for IPv4
 EID-Prefixes and another for IPv6 EID-Prefixes. In both map tables,
 each entry has the format depicted in Figure 1.

 struct mapentry {
 struct radix_node map_nodes[2]; /* tree glue, and other values */

 struct sockaddr_storage *EID; /* EID value */

 struct locator_chain * rlocs; /* Set of locators */
 int rlocs_cnt; /* Number of rlocs */

 u_long map_flags; /* up/down?, local */

 };

 The mapentry structure

 Figure 1

 Besides the fields necessary to build the radix tree itself, the
 entries contain a pointer to a socket address structure that holds
 the EID-Prefix to which the entry is related. Furthermore, there is
 a pointer to a simple list containing all the RLOCs associated to the
 EID-Prefix. Each element of the list is a socket address structure
 containing the locator and an rloc_mtx structure. The latter,
 depicted in Figure 2, contains the priority and weight parameters,
 whose meaning and use are defined in the original LISP specification.

Iannone & Bonaventure Expires August 21, 2008 [Page 5]

Internet-Draft OpenLISP Implementation Report February 2008

 struct rloc_mtx { /* Metrics associated to the RLOC
 */

 u_int8_t priority; /* Each RLOC has a priority.
 * A value of 255 means that
 * RLOC MUST not be used.
 */
 u_int8_t weight; /* Each locator has a weight.
 * Used for load balancing
 * purposes when two or more
 * locators have the same
 * priority.
 */
 u_int16_t flags; /* Local flags (future use).
 */
 };

 RLOCs metric data structure.

 Figure 2

 The number of RLOCs present in the mapping is stored in the rlocs_cnt
 field, while the map_flags contains the flags that concern the
 mapping as a whole (e.g., MAPF_LOCAL). The list of RLOCs is always
 maintained ordered by increasing priority.

 The use of a chained list, to store the RLOCs, allows mixing IPv4 and
 IPv6 RLOCs. This in turn allows to use IPv6 tunneling for IPv4
 packets and vice versa. Even more, in this way it is possible, for
 the same EID, to perform both IPv6 and IPv4 tunneling depending on
 the RLOC eventually chosen for the encapsulation. This avoids the
 constraint of having the tunnels toward the same EID either all IPv4
 or all IPv6.

Iannone & Bonaventure Expires August 21, 2008 [Page 6]

Internet-Draft OpenLISP Implementation Report February 2008

3. Protocol Stack Modifications

 Compared to the original protocol stack implementation of the FreeBSD
 OS ([TCPIP], [FreeBSD]) four main modules have been added, namely
 lisp_input(), lisp6_input(), lisp_output(), and lisp6_output(). As
 should be clear from the names, the first two modules manage incoming
 IPv4 and IPv6 LISP packets, while the last two modules are
 responsible for outgoing IPv4 and IPv6 LISP packets. To describe the
 global architecture, we use the same module representation as in
 [TCPIP] and show how packets are processed inside the protocol stack.

3.1. Incoming Packets

 The lisp_input() and lisp6_input() modules are positioned right above
 respectively the ip_input() and ip6_input() modules, from which they
 are called, as depicted in Figure 3.

 Let's for simplicity assume that an IPv4 LISP packet is received by
 the system. The packet will be first treated by the ip_input()
 module. The ip_input() module has been patched in order to recognize
 LISP packets. The patch consists simply to divert towards
 lisp_input(), all incoming UDP packets destined to the local machine
 and having destination port number set to the LISP reserved values
 4341 (for encapsulated data packets) or 4342 (for signaling packets).
 If the UDP packet has neither such a port number it is delivered as
 usual to the transport layer (i.e., udp_input()). Once the packet
 reaches the lisp_input(), if the port number is 4342, it is a
 signaling packet (e.g., Map-Request or Map-reply) and the
 corresponding action, as defined by LISP, is performed. The complete
 list of signaling packets and corresponding actions can be found in
 [I-D.farinacci-lisp]. In the case of an encapsulated data packet
 (port number 4341), the module strips the UDP header, then it treats
 the reachability bits and the nonce of the LISP specific header.
 After having performed with these operations, the LISP header is also
 stripped. At this point the address family of the IP header of the
 remaining packet is checked in order to decide to which module to
 deliver the packet. In practice this means to re-inject the packet
 in the IP protocol stack, by putting it in the input buffer either of
 the ip_input() or the ip6_input() module.

Iannone & Bonaventure Expires August 21, 2008 [Page 7]

Internet-Draft OpenLISP Implementation Report February 2008

 Protocol Stack Modifications for incoming packets.

 +------------------------>+--------+
 | | |
 +-----+<-------------------------+ | |
 | | | | | |
 | +---------------+ +---------------+ |
	lisp_input()		lisp6_input()	
	_______________		_______________	
^ ^				
	(Transport Layer)			
	^ ^			
	/ \			
	/ \			
	/ \			
+--------------+ +---------------+				
	ip_input()		ip6_input()	
	______________		_______________	
^ ^				
 +-------->| |<----------+
 | /
 \ /
 \ /
 \ /
 \ /
 (Data Link Layer)

 Figure 3

 In the case of an IPv6 LISP packet the overall process is the same.
 The packet is first received by ip6_input(), where if the packet is a
 locally destined UDP packet with destination port number equal to the
 LISP reserved 4341 or 4342 values it is delivered to lisp6_input().
 The latter module performs the same operations as lisp_input(), with
 the only difference that it is specialized in treating IPv6 headers.
 If the packet is a data packet, depending on the address family of
 the inner header, once decapsulated it is re-injected either in the
 input buffer of the ip_input() module or the input buffer of
 ip6_input() module.

Iannone & Bonaventure Expires August 21, 2008 [Page 8]

Internet-Draft OpenLISP Implementation Report February 2008

 Once the packet is re-injected in the protocol stack, in both IPv4
 and IPv6 cases, the packet follows the normal process. This means
 that if the decapsulated packet is not destined to the local host it
 will be first delivered to the forwarding module (ip_forward() or
 ip6_forward()) that will in turn deliver it to the output module
 (ip_output() or ip6_output()) in order to send it down to the data
 link layer and transmit it toward its final destination. These last
 actions are driven by the content of the routing table of the system.

3.2. Outgoing Packets

 The lisp_output() and lisp6_output() modules are positioned right
 above respectively the ip_output() and ip6_output() modules, from
 which they are called, as depicted in Figure 4.

 Let's for simplicity assume that an IPv4 is received by the
 ip_output() module, coming either from the ip_forward() module or the
 transport layer (i.e., either tcp_output() or udp_output()). Note
 that we refer to a normal IPv4 packet, not a LISP encapsulated
 packet. The ip_output() module has been patched in order to
 recognize if the packet needs to be encapsulated with a LISP header.
 The patch consists in checking if there is a valid mapping in the
 LISP database. This means to perform a search in the map table using
 the source address (source EID) of the packet. If the lookup returns
 an entry with the MAPF_LOCAL flag set (recall Section 2) then the
 packet is diverted toward the lisp_output() module. The
 lisp_output(), will first prepend to the packet the LISP header (i.e.
 reach bits and nonce). Then a second lookup using the destination
 address (destination EID) of the original packet is performed on the
 map table in order retrieve a valid mapping. If a mapping is found,
 the first RLOC of the list is used, along with the mapping found from
 the previous lookup on the source EID, to build the IP+UDP header to
 be prepended to the packet. If no mapping is found, the LISP 1
 variant encapsulation is used, i.e., the original destination EID is
 used also in the outer header. Subsequently the packet is sent again
 to the IP layer in order to ship it to the data-link layer. This
 does not mean that the packet is delivered to ip_output(). Indeed,
 the mapping for the destination address can have an IPv6 RLOC as a
 first element of the list of locators, meaning that the prepended
 header is IPv6+UDP and that the packet is delivered to the
 ip6_output() module.

Iannone & Bonaventure Expires August 21, 2008 [Page 9]

Internet-Draft OpenLISP Implementation Report February 2008

 Protocol Stack Modifications for outgoing packets.

 +-----+ +-------+
 | | | |
 | V V |
 | +---------------+ +---------------+ |
	lisp_output()		lisp6_output()	
	_______________		_______________	
	+--------------------+			
	+-------------------+			
		(Transport Layer)		
		/ \		
		/ \		
V V V V V V				
+--------------+ +---------------+				
	ip_output()		ip6_output()	
	______________		_______________	
 +-----+ | | +------+
 \ /
 \ /
 V V
 (Data Link Layer)

 Figure 4

 In the case of an outgoing IPv6 packet the overall process is the
 same. The packet, if a mapping exists for the source EID, is first
 diverted toward lisp6_output(), which prepends the correct headers to
 the packet and, depending of the RLOC used, delivers the packet
 either to the ip_output() module or the ip6_output() module.

 Once the packet is re-injected in the protocol stack, in both IPv4
 and IPv6 cases, the packet follows the normal process. This means
 that the encapsulated packet will be delivered to the data-link
 layer.

Iannone & Bonaventure Expires August 21, 2008 [Page 10]

Internet-Draft OpenLISP Implementation Report February 2008

4. Mapping Sockets

 In line with the UNIX philosophy and to give the possibility for
 future mapping distribution systems running in the user space to
 access the kernel's map tables a new type of socket, namely the
 "mapping sockets", has been defined.

 Mapping sockets are based on raw sockets in the new AF_MAP domain and
 are very similar to the well known routing sockets ([TCPIP],
 [NetProg].) A mapping socket is easily created in the following way:

 #include <net/maptables.h>

 int s = socket(PF_MAP, SOCK_RAW, 0);

 Note that <net/maptables.h> is the header file containing all the
 useful data structures and definitions.

 Once a process has created a mapping socket, it can perform the
 following operations by sending messages across it:

 o MAPM_ADD: used to add a mapping. The process writes the new
 mapping to the kernel and reads the result of the operation on the
 same socket.

 o MAPM_DELETE: used to delete a mapping. It works in the same way
 as MAPM_ADD.

 o MAPM_GET: used to retrieve a mapping. The process writes on the
 socket the request of a mapping for a specific EID and reads on
 the same socket the result of the query.

 The messages sent across mapping socket for the above operations all
 use the same data structure, namely map_msghdr{}, depicted in
 Figure 6.

 The field map_type can be set only to the type listed above. The
 fields map_msglen, map_version, map_pid, map_seq, and map_errno have
 the same meaning and are used in the same way as for the rt_msghdr{}
 structure for routing sockets. Details about these fields and their
 use can be found in [TCPIP]. The map_flags field is used to set some
 general flags that concern the whole mapping entry or the message, as
 described in Table 1.

Iannone & Bonaventure Expires August 21, 2008 [Page 11]

Internet-Draft OpenLISP Implementation Report February 2008

 Mapping Message Header.

 struct map_msghdr { /* From maptables.h
 */
 u_short map_msglen; /* to skip over non-understood
 * messages
 */
 u_char map_version; /* future binary compatibility
 */
 u_char map_type; /* message type */
 int map_flags; /* flags, incl. kern & message,
 * e.g. DONE
 */
 int map_addrs; /* bitmask identifying sockaddrs
 * in msg
 */
 int map_rloc_count; /* Number of rlocs appended to
 the msg */
 pid_t map_pid; /* identify sender
 */
 int map_seq; /* for sender to identify action
 */
 int map_errno; /* why failed
 */
 };

 Figure 6

 +-------------+-------+---+
 | Constant | Value | Description |
 +-------------+-------+---+
MAPF_UP	0x1	Mapping usable.
MAPF_LOCAL	0x2	Mapping is local. This means that it
		should be considered as part of the LISP
		Database.
MAPF_STATIC	0x4	Mapping manually added.
MAPF_DONE	0x8	Message confirmed.
 +-------------+-------+---+

 Table 1: General mapping flags

 As can be noted, there is a flag (MAPF_LOCAL) that indicates whether
 the mapping is part of the LISP cache or the LISP database as defined
 in [I-D.farinacci-lisp]. From a logical perspective these are
 different data structures. However, as explained in Section 2, they

Iannone & Bonaventure Expires August 21, 2008 [Page 12]

Internet-Draft OpenLISP Implementation Report February 2008

 are merged in the radix data structure in order to have an efficient
 lookup mechanism for all possible EIDs.

 The map_addrs field is a bitmask identifying the nature and number of
 data structures present in the message right after the header. The
 possible values and related descriptions can be found in Table 2.

 +--------------+-------+--+
 | Constant | Value | Description |
 +--------------+-------+--+
MAPA_EID	0x1	EID socket address present.
MAPA_EIDMASK	0x2	EID netmask socket address present.
MAPA_RLOC	0x4	At least one RLOC is present. The exact
		number of RLOCs can be found in the
		map_rloc_count field.
 +--------------+-------+--+

 Table 2: Data structure bitmask

 The map_addrs field does not contain exactly all the data structures,
 in particular, for RLOCs, a bit just states if at least one RLOC is
 present. The exact number of RLOCs present is contained in the
 map_rloc_count field. While EID and its mask, if present, are simple
 socket address structures, an RLOC is composed of a socket address
 structure followed by an rloc_mtx structure containing the metrics of
 that specific RLOC. The rloc_mtx data structure has been described
 in Section 2, and is depicted in Figure 2 with a description of each
 metric.

4.1. An example of mapping sockets usage

 Hereafter is described an example using mapping sockets. Along with
 the code in the kernel, a small utility called "map" has been
 written. This utility has similar functionalities to the "route"
 utility present in UNIX systems. It allows to manually manage map
 tables. Assuming we want to retrieve the mapping for the EID
 10.0.0.1, we can type:

 freebsd% map get -inet 10.0.0.1

 The map tools first builds a buffer containing a map_msghdr{}
 structure, followed by a socket address structure containing the EID
 for the kernel to look up, as depicted in Figure 8. The map_type is
 set to MAPM_GET and the map_addrs is set to MAPA_EID. The entire
 buffer is written to a mapping socket previously open.

Iannone & Bonaventure Expires August 21, 2008 [Page 13]

Internet-Draft OpenLISP Implementation Report February 2008

 Data sent to the kernel across mapping socket for MAP_GET command.

 +-----------------------+
 | |
 | map_msghdr{} |
 | |
 | |
 | map_type = MAP_GET |
 |_______________________|
 | |
 | EID |
 | Socket |
 | Address |
 | Structure |
 |_______________________|

 Figure 8

 Afterwards, map reads from the socket the reply of the kernel.
 Assuming that the kernel has a mapping for 10.0.0.0/16 associated to
 two locators, the kernel will reply with a message which has the
 format depicted in Figure 10.

 The first part of the message is a map_msghdr{} structure, with the
 map_type unchanged, the map_addrs set to 0x07, which is equivalent to
 MAPA_EID, MAPA_EIDMASK, and MAPA_RLOC all set, and finally the
 map_rloc_count set to 2. Right after the map_msghdr{} there is a
 first socket address structure containing the EID prefix, which is
 10.0.0.0 in this example. The second socket address structure
 contains the netmask, 255.255.0.0 in this case. The third socket
 address structure contains the first RLOC. RLOCs are returned
 ordered by increasing priority. After the first RLOC there is an
 rloc_mtx structure containing the metrics associated to the first
 RLOC. The message ends with the socket address structure for the
 second RLOC and the rloc_mtx structure for its metrics.

 When using the map utility a possible output for the get request for
 EID 10.0.0.1 can be:

 freebsd% map get -inet 10.0.0.1
 Mapping for EID: 10.0.0.1
 EID: 10.0.0.0
 EID mask: 255.255.0.0
 RLOC Addr: inet6 2001::1 P 255 W 100
 RLOC Addr: inet 10.1.0.0 P 255 W 100

Iannone & Bonaventure Expires August 21, 2008 [Page 14]

Internet-Draft OpenLISP Implementation Report February 2008

 Data sent from the kernel across mapping socket for MAP_GET command.

 +-----------------------+
 | |
 | map_msghdr{} |
 | |
 | |
 | map_type = MAP_GET |
 | |
 | map_rloc_count = 2 |
 |_______________________|
 | |
 | EID |
 | Socket |
 | Address |
 | Structure |
 |_______________________|
 | |
 | EID Netmask |
 | Socket |
 | Address |
 | Structure |
 |_______________________|
 | |
 | RLOC 1 |
 | Socket |
 | Address |
 | Structure |
 |_______________________|
 | |
 | RLOC 1 |
 | rlocs_mtx |
 | Structure |
 |_______________________|
 | |
 | RLOC 2 |
 | Socket |
 | Address |
 | Structure |
 |_______________________|
 | |
 | RLOC 2 |
 | rlocs_mtx |
 | Structure |
 |_______________________|

 Figure 10

Iannone & Bonaventure Expires August 21, 2008 [Page 15]

Internet-Draft OpenLISP Implementation Report February 2008

5. Conclusion

 The present memo describes the overall architecture of OpenLISP, an
 implementation of the LISP proposal in the FreeBSD OS. OpenLISP
 provides support for encap/decap operations and EID-to-RLOC mappings
 storage in the kernel space. It can work as both a router and end-
 host, thus providing a wide range of test scenarios. The code will
 be publicly released as soon as the main debugging phase has ended
 and the code shows very stable behavior. However, people interested
 in this software can already contact the authors. We think that the
 mapping sockets introduced by OpenLISP is a great tool for easy
 development of Mapping Distribution Protocols in the user space.
 People working in this area can contact authors. We believe that a
 complete working system composed by OpenLISP and a mapping
 distribution protocol would provide very helpful insights, leading to
 important improvements for both OpenLISP and the mapping distribution
 protocol.

Iannone & Bonaventure Expires August 21, 2008 [Page 16]

Internet-Draft OpenLISP Implementation Report February 2008

6. Acknowledgements

 The work described in the present memo has been partially supported
 by the European Commission within the IST AGAVE Project.

Iannone & Bonaventure Expires August 21, 2008 [Page 17]

Internet-Draft OpenLISP Implementation Report February 2008

7. IANA Considerations

 This memo includes no request to IANA.

Iannone & Bonaventure Expires August 21, 2008 [Page 18]

Internet-Draft OpenLISP Implementation Report February 2008

8. Security Considerations

 The present memo does not introduce any new security issue that is
 not already mentionned in [I-D.farinacci-lisp] and
 [I-D.bagnulo-lisp-threat].

Iannone & Bonaventure Expires August 21, 2008 [Page 19]

Internet-Draft OpenLISP Implementation Report February 2008

9. Informative References

 [FreeBSD] The FreeBSD Project, "FreeBSD, the power to serve",
 <http://www.freebsd.org>.

 [I-D.bagnulo-lisp-threat]
 Bagnulo, M., "Preliminary LISP Threat Analysis",

draft-bagnulo-lisp-threat-01 (work in progress),
 July 2007.

 [I-D.farinacci-lisp]
 Farinacci, D., "Locator/ID Separation Protocol (LISP)",

draft-farinacci-lisp-05 (work in progress), November 2007.

 [I-D.iab-raws-report]
 Meyer, D., "Report from the IAB Workshop on Routing and
 Addressing", draft-iab-raws-report-02 (work in progress),
 April 2007.

 [I-D.irtf-rrg-design-goals]
 Li, T., "Design Goals for Scalable Internet Routing",

draft-irtf-rrg-design-goals-01 (work in progress),
 July 2007.

 [NetProg] Stevens, W., Fenner, B., and A. Rudoff, "UNIX Network
 Programming, The Sockets Networking API.", Addison-Wesley
 Professional Computing Series Volume 1 - Third Edition,
 2004.

 [TCPIP] Wright, G. and W. Stevens, "TCP/IP Illustrated Volume 2,
 The Implementation.", Addison-Wesley
 Professional Computing Series, 1995.

http://www.freebsd.org
https://datatracker.ietf.org/doc/html/draft-bagnulo-lisp-threat-01
https://datatracker.ietf.org/doc/html/draft-farinacci-lisp-05
https://datatracker.ietf.org/doc/html/draft-iab-raws-report-02
https://datatracker.ietf.org/doc/html/draft-irtf-rrg-design-goals-01

Iannone & Bonaventure Expires August 21, 2008 [Page 20]

Internet-Draft OpenLISP Implementation Report February 2008

Authors' Addresses

 Luigi Iannone
 UC Louvain
 Place St. Barbe 2
 Louvain la Neuve, B-1348
 Belgium

 Phone: +32 10 47 87 18
 Email: luigi.iannone@uclouvain.be
 URI: http://inl.info.ucl.ac.be

 Olivier Bonaventure
 UC Louvain
 Place St. Barbe 2
 Louvain la Neuve, B-1348
 Belgium

 Email: Olivier.Bonaventure@uclouvain.be
 URI: http://inl.info.ucl.ac.be

http://inl.info.ucl.ac.be
http://inl.info.ucl.ac.be

Iannone & Bonaventure Expires August 21, 2008 [Page 21]

Internet-Draft OpenLISP Implementation Report February 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Iannone & Bonaventure Expires August 21, 2008 [Page 22]

