Network Working Group L. Iannone TOC

Internet-Draft D. Saucez

Intended status:

. 0. Bonaventure
Informational

UCLouvain,
Belgium

July 16, 2008

Expires: January 17, 2009

OpenLISP Implementation Report
draft-iannone-openlisp-implementation-01

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The 1list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 17, 2009.

Abstract

The RRG is working on the design of an alternate Internet Architecture
in order solve issues of the current architecture related to
scalability, mobility, multi-homing, and inter-domain routing. Among
the various proposals, LISP (Locator/ID Separation Protocol) is one of
the most advanced. The present draft describes the overall architecture
of OpenLISP, an open source implementation of the LISP proposal.
Further, the draft contains some general remarks concerning the design
and the implementation of the LISP protocol.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

1. Introduction
1.1. Terms Definition
2. Map Tables
3. Protocol Stack Modifications
3.1. Incoming Packets
3.2. Outgoing Packets
3.3. Implementation Status
4. Mapping Sockets API
4.1. An example of mapping sockets usage
5. Sysctl API
6. LISP and OpenLISP issues
6.1. Multicast
6.2. OpenLISP and LISP variants
6.3. OpenLISP as TE-ITR/TE-ETR
6.4. OpenLISP and nonce
6.5. OpenLISP and RLOC order
6.6. LISP Source port and statefull firewall
6.7. ICMP
6.8. MTU Management
6.8.1. OpenLISP local MTU Management
6.8.2. OpenLISP Extended MTU Management
7. Conclusion
8. Acknowledgements
9. 1IANA Considerations
10. Security Considerations

10.1. Reachability bits DoS
11. 1Informative References
Appendix A. Man Pages

A.1. map(1)

A.2. map(4)

A.3. mapstat

§ Authors' Addresses
8§ Intellectual Property and Copyright Statements
1. Introduction TOC

Very recent activities in the IETF and in particular in the Routing
Research Group (RRG) have focused on defining a new Internet
architecture, in order to solve issues related to scalability,
addressing, mobility, multi-homing, inter-domain traffic engineering
and routing ([I-D.iab-raws-report] (Meyer, D., “Report from the IAB
Workshop on Routing and Addressing,” April 2007.),
[I-D.irtf-rrg-design-goals] (Li, T., “Design Goals for Scalable

Internet Routing,” July 2007.)). It is widely recognized that the
approach based on the separation of the end-systems' addressing space
(the identifiers) and the routing locators' space is the way to go.
This separation is meant to alleviate the routing burden of the Default
Free Zone (DFZ), but it implies the need of distributing and storing
mappings between identifiers and locators on caches placed on routers
and to perform tunneling or address translation operation.

Among the various proposals presented in various RRG's meeting, LISP
(Locator/ID Separation Protocol), based on the map-and-encap approach
[I-D.farinacci-1isp] (Farinacci, D., Fuller, V., Oran, D., and D.
Mever, “lLocator/ID Separation Protocol (LISP),” April 2008.), is one of
the most advanced and promising proposals. UC Louvain his currently
developing an implementation, called OpenLISP, of this protocol in the
FreeBSD kernel (version 7.0 - [FreeBSD] (The FreeBSD Project, “FreeBSD,
the power to serve,” .)). OpenLISP can be downloaded from: http://
inl.info.ucl.ac.be. Note that the current release refers to version 07
of the LISP draft.

This draft describes the overall architecture of this implementation
and its main data structures. The draft is structured as follows. We
first describe the kernels' data structures created to store the
mappings necessary to perform encapsulation and decapsulation
operations. Then, we show the architectural modifications made to the
FreeBSD protocol stack in order to support the LISP protocol. Then, we
describe the new mapping sockets that have been introduced in order to
access the mappings from user space. This feature will be useful to
develop Mapping Distribution Protocols in the user space. Finally, we
discuss some issues related to the design and the implementation of the
LISP proposal.

1.1. Terms Definition TOC

The present draft uses the terms that are originally defined in
[I-D.farinacci-1lisp] (Farinacci, D., Fuller, V., Oran, D., and D.
Meyer, “lLocator/ID Separation Protocol (LISP),” April 2008.). For terms
like EID, RLOC, ITR, ETR, etc, please refer to the original LISP
specification.

2. Map Tables TOC

LISP defines two different databases to store mappings between EID-
prefixes and RLOCs. The "LISP Cache" stores short-lived mappings in an
on-demand fashion when new flows start. The "LISP Database" stores all
the local mappings, i.e., all the mappings of the EID-Prefixes behind
the router. In OpenLISP we merged the two databases in a single radix

tree data structure [TCPIP] (Wright, G. and W. Stevens, “TCP/IP
Tllustrated Volume 2, The Implementation.,” 1995.). This allows to have
an efficient indexing structure for all the EID-Prefixes that need to
be stored in the system. EID-Prefixes that are part of the LISP
Database are marked by a "local" flag, indicating that they are EID-
Prefixes for which the mapping is owned locally. Thus, from a logical
point of view the two "databases" are still separated. Actually there
are two radix structures in the system, one for IPv4 EID-Prefixes and
another for IPv6 EID-Prefixes. In both map tables, each entry has the
format depicted in Figure 1.

struct mapentry {
struct radix_node map_nodes[2]; /* tree glue, and other values */

struct sockaddr_storage *EID; /* EID value */

struct locator_chain * rlocs; /* Set of locators */
int rlocs_cnt; /* Number of rlocs */
u_long map_flags; /* up/down?, local */

B

The mapentry structure

Figure 1

Besides the fields necessary to build the radix tree itself, the
entries contain a pointer to a socket address structure that holds the
EID-Prefix to which the entry is related.

The "map_flags" field contains general flags that apply to the whole
mapping. Insofar, four flags have been defined and are listed in

Table 1 (General mapping flags). The MAPF_UP flag just states that the
mapping is usable. The MAPF_LOCAL flag means that the mapping is owned
locally (i.e., it is part of the LISP Database). In OpenLISP, when
inserting a "local" mapping it is mandatory that at least one RLOC is a
local address; i.e., an address of one of the interfaces of the system,
otherwise, during insertion, the system will return EINVAL error. This
is because, when OpenLISP performs encapsulation, it only selects
source RLOCs that are addresses of the system. Doing otherwise would
introduce the risk of packet filtering on upstream routers if packets
are sent with a source address that does not belong to the system
performing the encapsulation operation. The MAPF_STATIC indicates that
the mapping has been manually added, e.g., through the map utility (see
Appendix A.1 (map(1))). The MAPF_DONE flag is used for messages through

mapping sockets (see Section 4 (Mapping Sockets API)). Note that in the
actual release of OpenLISP, both static and non-static entries are
treated in the same way: they need to be explicitly deleted. Future
releases of OpenLISP will include the possibility to introduce a
timeout for non-local entries.

Constant Value Description
MAPF_UP 0x1 Mapping usable.

Mapping is local. This means that it should be
considered as part of the LISP Database.

MAPF_STATIC 0x4 Mapping manually added.
MAPF_DONE 0x8 Message confirmed.

MAPF_LOCAL 0Ox2

Table 1: General mapping flags

The other main field of the mapentry data structure is the rlocs_cnt
field, containing the number of RLOCs present in the mapping. These
RLOCs are stored in a chained list whose head is referenced by the
"rlocs" pointer. The list of RLOCs is always maintained ordered by
increasing priority values, which means that RLOCs with higher priority
are at the head of the list.

Each element of the RLOCs list is a socket address structure containing
the locator and an rloc_mtx structure. The latter, depicted in

Figure 2, contains the priority and weight parameters, whose meaning
and use are defined in the original LISP specification (including the
particular 255 value for the priority field). Note that load balancing
is not yet implemented in OpenLISP, thus the weight is not considered
during RLOC selection. Future versions of OpenLISP will include load
balancing and hence full support of the weight parameter. Furthermore,
there is also a flags field, for flags that are specific to a RLOC, and
a mtu field.

struct rloc_mtx { /* Metrics associated to the RLOC
*/

u_int8_t priority; /* Each RLOC has a priority.
* A value of 255 means that
* RLOC MUST not be used.
*/

u_int8_t weight; /* Each locator has a weight.
* Used for load balancing
* purposes when two or more
* locators have the same
* priority.

*/

u_inti6_t flags; /* RLOC-related flags.
*/

u_int32_t mtu; /* MTU for the specific RLOC.
*/

H
RLOCs metric data structure.

Figure 2

Constant Value Description
RLOCF_REACH O0x1 RLOC Reachable.

RLOC is a local address. This valid only for mappings

RLOCF_LIF Ox2 .
with the MAPF_LOCAL flag set.

Table 2: RLOC Specific flags

Concerning flags, there are only two RLOC specific flags defined
insofar and described in Table 2 (RLOC Specific flags). The RLOCF_REACH
flag just indicates if the RLOC is reachable or not. This flag is
meaningful no matter if the mapping is local or not. The RLOCF_LIF flag
is meaningful only for local mappings and indicates if the RLOC address
belongs to the system. When performing encapsulation, a RLOC is
selected from a local mapping only if it has this flag set, it is
reachable, and its priority is less than 255. This in order to issue
packets that have a source address which belongs to the system itself.

The "mtu" field is used to check if the size of the LISP-encapsulated
packet fits the MTU (Maximum Transmission Unit) of the outgoing
interface. OpenLISP automatically fill this field when a local mapping
is added. In particular, OpenLISP checks all the RLOCs of the local
mappings, if it is an address belonging to the system it sets the
RLOCF_LIF flag and copies the MTU of the interface associated to the
address. Note that, the check is done only upon insertion, thus changes
in the local address or the MTU are not automatically copied in the
mapping entry. For details on the use of this field please refer to
Section 6.8 (MTU Management).

The use in OpenLISP of a chained list to store the RLOCs, allows mixing
IPv4 and IPv6 RLOCs. This in turn allows to use IPv6 tunneling for IPv4
packets and vice versa. Even more, in this way it is possible, for the
same EID, to perform both IPv6 and IPv4 tunneling depending on the RLOC
eventually chosen for the encapsulation. This avoids the constraint of
having the tunnels toward the same EID either all IPv4 or all IPv6.
Even if in the actual implementation status of OpenLISP, both IPv4 and
IPv6 EIDs mapping tables are present, and both IPv4 and IPv6 RLOCs can
be introduced without limitation on the EID address family, the
encapsulation and decapsulation operation are implemented only for
IPv4, as long as the map and mapstat utility (see Appendix A.1 (map(1))
and Appendix A.3 (mapstat)). Future releases of OpenLISP will support
IPv6 encapsulation.

3. Protocol Stack Modifications TOC

Compared to the original protocol stack implementation of the FreeBSD
0S ([TCPIP] (Wright, G. and W. Stevens, “TCP/IP Illustrated Volume 2,
The Implementation.,” 1995.), [FreeBSD] (The FreeBSD Project, “FreeBSD,
the power to serve,” .)) four main modules have been added, namely
lisp_input(), lisp6_input(), lisp_output(), and lisp6_output(). As
should be clear from the names, the first two modules manage incoming
IPv4 and IPv6 LISP packets, while the last two modules are responsible
for outgoing IPv4 and IPv6 LISP packets. To describe the global
architecture, we use the same module representation as in [TCPIP]
(Wright, G. and W. Stevens, “TCP/IP Illustrated Volume 2, The
Implementation.,” 1995.) and show how packets are processed inside the
protocol stack.

3.1. 1Incoming Packets TOC

The lisp_input() and lisp6_input() modules are positioned right above
respectively the ip_input() and ip6_input() modules, from which they
are called, as depicted in Figure 3.

Let us for simplicity assume that an IPv4 LISP packet is received by
the system. The packet will be first treated by the ip_input() module.
The ip_input() module has been patched in order to recognize LISP
packets. The patch consists simply to divert towards lisp_input(), all
incoming UDP packets destined to the local machine and having
destination port number set to the LISP reserved value 4341 (for
encapsulated data packets). If the UDP packet has not such a port
number it is delivered as usual to the transport layer (i.e.,
udp_input()). In the case of an encapsulated data packet (port number
4341), the module strips the UDP header and then it treats the
reachability bits and the nonce of the LISP specific header.

OpenLISP checks all of the reachability bits and updates reachability
information in the map tables. While performing such an update a
consistency check is performed. In particular, the number of
reachability blocks (32 bits) present in the packet is compared to the
number of reachability blocks present in the matching mapping entry, if
different the packet is dropped for bad LISP encapsulation and a
message is sent through open mapping sockets (see Section 4 (Mapping

Sockets API)).

Protocol Stack Modifications for incoming packets.

(Transport Layer)

I I
/ \
/ \

/ \
TR —— + SRS —— +
I | | |
| ip_input() | | ip6_input() |
I I I I
I I I I

A A
Fommmaa- > | [<--------- +
| /
\ /
\ /
\ /
\ /

(Data Link Layer)

Figure 3

The same action is triggered if the number of reachability bits that
are set in the blocks differs from what expected. For instance, let us
assume the stored mapping contains two (2) RLOCs and the incoming
packets contains three (3) reachability bits set, this should never
happen, thus the packet is discarded and a message is sent through open
mapping sockets, in order to inform possible existing mapping
management processes. Note that a mismatch in the number of
reachability bits can be discovered only if they are set to reachable.
If everything matches, but some reachability bits have changed, they
are updated in the mapping and a message is sent through open mapping
sockets to notify this change. Note that this last message is not a an

error message, but just a notification message, necessary to notify
possible mapping management processes in the user space about the
reachability change.

After having performed these operations, the IP header of the remaining
packet is checked in order to decide to which module to deliver the
packet. In practice this means to re-inject the packet in the IP
protocol stack, by putting it in the input buffer either of the
ip_input() or the ip6_input() module.

In the case of an IPv6 LISP packet the overall process is the same. The
packet is first received by ip6_input(), where if the packet is a
locally destined UDP packet with destination port number equal to the
LISP reserved 4341 value it is delivered to lisp6_input(). The latter
module performs the same operations as lisp_input(), with the only
difference that it is specialized in treating IPv6 headers. If the
packet is a data packet, depending on the address family of the inner
header, once decapsulated it is re-injected either in the input buffer
of the ip_input() module or the input buffer of ip6_input() module.
Once the packet is re-injected in the protocol stack, in both IPv4 and
IPv6 cases, the packet follows the normal process. This means that if
the decapsulated packet is not destined to the local host it will be
first delivered to the forwarding module (ip_forward() or
ip6_forward()) that will in turn deliver it to the output module
(ip_output() or ip6_output()) in order to send it down to the data link
layer and transmit it toward its final destination. These last actions
are driven by the content of the routing table of the system.

3.2. Outgoing Packets TOC
The lisp_output() and lisp6_output() modules are positioned right above

respectively the ip_output() and ip6_output() modules, from which they
are called, as depicted in Figure 4.

Protocol Stack Modifications for outgoing packets.

I
I
I
I
I
I
/ \ |
I
v

(Data Link Layer)

Figure 4

Let us for simplicity assume that an IPv4 is received by the
ip_output() module, coming either from the ip_forward() module or the
transport layer (i.e., either tcp_output() or udp_output()). Note that
we refer to a normal IPv4 packet, not a LISP encapsulated packet. The
ip_output() module has been patched in order to recognize if the packet
needs to be encapsulated with a LISP header. The patch consists in
first checking if there is a valid mapping in the LISP database. This
means to perform a search in the map table using the source address
(source EID) of the packet. If the lookup returns an entry with the
MAPF_LOCAL flag set (recall Section 2 (Map Tables)), then a second
lookup is performed in order to find a mapping for the destination EID.
If there is no mapping available a message is sent through open mapping
sockets in order to notify the cache miss. This is needed in order to

trigger a mapping lookup, i.e., to send a Map-Request, by the Mapping
Distribution Protocol. Since there is no mapping available the packet
is not encapsulated. It is normally treated by the IP layer, which
means that if the destination EID is routable and a route exist in the
IP routing table it is forwarded without being encapsulated. Otherwise
the IP layer will drop it.

If a mapping for the destination EID is present, the packet is diverted
toward the lisp_output() module. The lisp_output(), will first perform
MTUs checks (see Section 6.8.1 (OpenLISP local MTU Management)), then
it prepends to the packet the LISP header (i.e. reach bits and nonce).
Final step is to prepend a new IP + UDP header using selected RLOCs.
The destination RLOC is selected using the policy described in the
original LISP specification. The source RLOC is chosen in a slightly
more restrictive way, as described in Section 2 (Map Tables).
Subsequently the packet is sent again to the IP layer in order to ship
it to the data-link layer. This does not mean that the packet is
delivered to ip_output(). Indeed, the mapping for the destination
address can have an IPv6 RLOC as a first element of the list of
locators, meaning that the prepended header is IPv6+UDP and that the
packet is delivered to the ip6_output() module. Note that the new LISP
encapsulated packet cannot be recursively encapsulated. Indeed, the
mbuf containing the packet is tagged with a new M_TAG_LISP tag, which
avoids to re-perform encapsulation check by performing lookups on the
map tables. This allows to reduce computational overhead while
protecting against bad setups generating loops where a packet is
recursively encapsulated until it is dropped due to MTU checks.

In the case of an outgoing IPv6 packet the overall process is the same.
The packet, if a mapping exists for the source EID, is first diverted
toward lisp6_output(), which prepends the correct headers to the packet
and, depending of the RLOC used, delivers the packet either to the
ip_output() module or the ip6_output() module.

Once the packet is re-injected in the protocol stack, in both IPv4 and
IPv6 cases, the packet follows the normal process. This means that the
encapsulated packet will be delivered to the data-link layer.

3.3. Implementation Status TOC

In the current public release of OpenLISP, only the modules
lisp_input() and lisp_output() are present. Thus only IPv4
encapsulation/decapsulation operations are supported. Future releases
will include encapsulation/decapsulation support for IPv6.

Similarly, the gleaning mechanism is not yet supported. Thus, OpenLISP
is not able to generate and manage Data-Probe packets.

T0C

4. Mapping Sockets API

In line with the UNIX philosophy and to give the possibility for future
Mapping Distribution Systems running in the user space to access the
kernel's map tables a new type of socket, namely the "mapping sockets",
has been defined.

Mapping sockets are based on raw sockets in the new AF_MAP domain and
are very similar to the well known routing sockets ([TCPIP] (Wright, G.
and W. Stevens, “TCP/IP Illustrated Volume 2, The Implementation.,”
1995.), [NetProg] (Stevens, W., Fenner, B., and A. Rudoff, “UNIX
Network Programming, The Sockets Networking API.,” 2004.).) A mapping
socket is easily created in the following way:

#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/maptables.h>

int s = socket(PF_MAP, SOCK_RAW, 0);

Note that <net/maptables.h> is the header file containing all the
useful data structures and definitions.

Once a process has created a mapping socket, it can perform the
following operations by sending messages across it:

MAPM_ADD: wused to add a mapping. The process writes the new mapping
to the kernel and reads the result of the operation on the same
socket.

MAPM_DELETE: used to delete a mapping. It works in the same way as
MAPM_ADD.

MAPM_GET: used to retrieve a mapping. The process writes on the
socket the request of a mapping for a specific EID and reads on
the same socket the result of the query.

The messages sent across mapping socket for the above operations all
use the same data structure, namely map_msghdr{}, depicted in Figure 5.
The field map_type can be set only to the type listed above. The fields
map_msglen, map_version, map_pid, map_seq, and map_errno have the same
meaning and are used in the same way as for the rt_msghdr{} structure
for routing sockets. Details about these fields and their use can be
found in [TCPIP] (Wright, G. and W. Stevens, “TCP/IP TIllustrated Volume
2, The Implementation.,” 1995.). The map_flags field is used to set
some general flags that concern the whole mapping entry or the message.
The possible values are listed in Table 1 (General mapping flags) along
with their meaning in Section 2 (Map Tables). The only value that was
not described in Section 2 (Map Tables) is the MAPF_DONE flag. This

particular flag is set by the kernel and just state that the operation
requested has been performed successfully. Note that all of the
messages are returned by the kernel and copies are sent to all
interested listeners (open mapping sockets). A process may avoid the
expense of reading replies to its own messages by issuing a
setsockopt(2) call indicating that the SO_USELOOPBACK option at the
SOL_SOCKET level is to be turned off. A process may ignore all messages
from the mapping socket by doing a shutdown(2) system call for further
input.

Mapping Message Header.

struct map_msghdr { /* From maptables.h
*/
u_short map_msglen; /* to skip over non-understood
* messages
*/
u_char map_version; /* future binary compatibility
*/
u_char map_type; /* message type */
int map_flags; /* flags, incl. kern & message,
* e.g. DONE
*/
int map_addrs; /* bitmask identifying sockaddrs
* in msg
*/
int map_rloc_count; /* Number of rlocs appended to
the msg */
pid_t map_pid; /* identify sender
*/
int map_seq; /* for sender to identify action
*/
int map_errno; /* why failed
*/
3
Figure 5

When trying to install a new mapping, the OpenLISP code can return the
following error codes if something goes wrong:

ENOBUFS: If insufficient resources were available to install a new
mapping.

EEXIST: If the EID-Prefix already exists in the mapping table.

EINVAL:

This error code can be returned in two cases. The first
case is when the list of RLOC provided for a mapping contains
replicated addresses. The second case is when a "local" mapping
is provided without any RLOC (address) belonging to the system.
Note the OpenLISP does not support Negative Mapping Entries.

As can be noted, the use of the MAPF_LOCAL flag allows to use the
mapping socket API for mappings in both the LISP Database and LISP
Cache. As explained in Section 2 (Map Tables), they are merged in the
radix data structure in order to have an efficient lookup mechanism for
all possible EIDs.

The OpenLISP kernel code can trigger some messages to be sent through
the mapping sockets if some particular events take place. The messages
triggered by the kernel are the following:

MAPM_MISS: a lookup operation has generated a miss (mapping not
present). This message is generated when a LISP encapsulated
packet is received, but no mapping exists, in the map tables, for
the source EID.

MAPM_BADREACH: a LISP encapsulated packet has been received but the
reachability bits do not match existing mapping. This message
informs possible existing mapping distribution systems in the
user space that a non recoverable mismatch has been detected
between the reachability bits in the header of a LISP
encapsulated packet and what expected from the mapping present in
the map tables. Details on this case can be found in Section 3.1
(Incoming Packets).

MAPM_REACH: reachability bits have changed. This message informs
possible existing mapping distribution systems in the user space
that reachability bits in an existing mapping have changed due to
the reception of an LISP encapsulated packet.

Note that the above messages contain the EID for which the message has
been triggered. On the one hand, this allows interested existing
mapping distribution systems, in case of a MAPM_REACH message, to
retrieve the updated mapping by means of a MAPM_GET message. On the
other hand, for both MAPM_REACH and MAPM_BADREACH messages, the mapping
distribution system in the user space can issue a Map-Request message
in order to either ask confirmation of the change to the mapping owner
or to obtain a fresh mapping.

The complete list of possible mapping sockets messages and their type
values are summarized in Table 3 (Mapping Socket Message Types).

Constant Value Description

MAPM_ADD 0x01 Add Map.

MAPM_DELETE 0x02 Delete Map.

MAPM_GET Ox04 Returns mapping for a specific EID.
MAPM_MISS 0x05 Lookup Failed.

MAPM_BADREACH 0x06 Reachability Bits Problem.
MAPM_REACH Ox07 Reachability Bits Changed.

Table 3: Mapping Socket Message Types

Constant Value Description
MAPA_EID 0x1 EID socket address present.
MAPA_EIDMASK 0x2 EID netmask socket address present.

At least one RLOC is present. The exact number of

MAPA_RLOC 0x4 . .
- RLOCs can be found in the map_rloc_count field.

Table 4: Data structure bitmask

The map_addrs field is a bitmask identifying the nature and number of
data structures present in the message right after the header. The
possible values and related descriptions can be found in Table 4 (Data
structure bitmask).

The map_addrs field does not contain exactly all the data structures,
in particular, for RLOCs, a bit just states if at least one RLOC is
present. The exact number of RLOCs present is contained in the
map_rloc_count field. While EID and its mask, if present, are simple
socket address structures, an RLOC is composed of a socket address
structure followed by an rloc_mtx structure containing the metrics of
that specific RLOC. The rloc_mtx data structure has been described in
Section 2 (Map Tables), and is depicted in Figure 2 with a description
of each metric.

4.1. An example of mapping sockets usage TOC

Hereafter is described an example using mapping sockets. Along with the
code in the kernel, a small utility called "map" has been written. This

utility has similar functionalities to the "route" utility present in
UNIX systems. It allows to manually manage map tables. The complete man
page of the map utility can be found in Appendix A.1 (map(l1)).

Assuming we want to retrieve the mapping for the EID 10.0.0.1, we can

type:

freebsd% map get -inet 10.0.0.1

The map utility first builds a buffer containing a map_msghdr{}
structure, followed by a socket address structure containing the EID
for the kernel to look up, as depicted in Figure 6. The map_type is set
to MAPM_GET and the map_addrs is set to MAPA_EID. The entire buffer is
written to a mapping socket previously open.

Data sent to the kernel across mapping socket for MAP_GET command.

map_msghdr{}

map_type = MAP_GET

EID
Socket
Address

Structure

Figure 6

Afterwards, map reads from the socket the reply of the kernel. Assuming
that the kernel has a mapping for 10.0.0.0/16 associated to two
locators, the kernel will reply with a message which has the format
depicted in Figure 7.

Data sent from the kernel across mapping socket for MAP_GET command.

map_msghdr{}

map_type = MAP_GET

map_rloc_count = 2

EID
Socket
Address

Structure

EID Netmask
Socket
Address

Structure

RLOC 1
Socket
Address
Structure

RLOC 1
rlocs_mtx
Structure

RLOC 2
Socket
Address
Structure

RLOC 2
rlocs_mtx
Structure

Figure 7

The first part of the message is a map_msghdr{} structure, with the
map_type unchanged, the map_addrs set to 0x07, which is equivalent to
MAPA_EID, MAPA_EIDMASK, and MAPA_RLOC all set, and finally the
map_rloc_count set to 2. Right after the map_msghdr{} there is a first
socket address structure containing the EID prefix, which is 10.0.0.0
in this example. The second socket address structure contains the
netmask, 255.255.0.0 in this case. The third socket address structure
contains the first RLOC. RLOCs are returned ordered by increasing
priority. After the first RLOC there is an rloc_mtx structure
containing the metrics associated to the first RLOC. The message ends
with the socket address structure for the second RLOC and the rloc_mtx
structure for its metrics.

When using the map utility a possible output for the get request for
EID 10.0.0.1 can be:

freebsd% map get -inet 10.0.0.1
Mapping for EID: 10.0.0.1
EID: 10.0.0.0
EID mask: 255.255.0.0
RLOC Addr: inet6 2001::1 P 1 W 100 Flags R MTU ©
RLOC Addr: inet 10.1.0.0 P2 W 100 Flags MTU ©
flags: <UP,STATIC,DONE>

The above output is of straightforward reading. The requested lookup
for EID 10.0.0.1 matches the entry with EID address 10.0.0.0 and EID
mask 255.255.0.0 (/16). Note that since the map tables are radix trees,
the longest prefix match is always returned. The mapping contains two
(2) RLOCs. The first is the IPv6 RLOC 2001::1, having priority equal to
1, weight equal to 100, the R flag indicates that the RLOC is
reachable, the MTU equal to 0 just states that no MTU is actually set.
The second RLOC, is the IPv4 RLOC 10.1.0.0, having priority equal to 2,
weight equal to 100, it has no flags, thus it is not reachable, and the
MTU is not set.

Using the map utility, the command line to set the above-described
mapping 1is:

freebsd% map add -inet 10.0.0.0/16 -inet6 2001::1 1 100 1
-inet 10.1.0.0 2 100 0

Further examples of the map utility can be found in Appendix A.1
(map(1)). A useful exercise in order to get familiar with the content
of mapping socket messages is to run the map utility in "monitor" mode
in one terminal, by typing:

freebsd% map monitor

while modifying the mapping tables using the map utility in another
terminal. The monitor mode of the map utility just dumps all the
messages going through mapping sockets.

Along with the map utility the "mapstat" utility is provided with
OpenLISP. Mapstat is a modification of the netstat utility, already
present on FreeBSD, able to provide LISP specific information. In
particular a new "-X" option has been added in order to obtain a dump
of the map tables. Referring to the mapping previously described, the
result of the mapstat utility would be:

freebsd% mapstat -X
Mapping tables

Internet:
EID Flags Refs # RLOC(s)
10.0.0.0/16 us 1 1 2001::1 1 100 R (0]

2 10.1.0.0 2 100 0

The dump shows how only the 10.0/16 mapping is present in the map
tables. The general flags show that the mapping is up ("U") and static
"S", one reference exists to this mapping. Then there are the RLOCs.
The information for the two RLOCs is the same like for the get command
of the map utility, except for two differences. The first difference is
the "#" column, which shows the position of the RLOC in the chained
list of RLOCs. Second difference is the last value of the line: it
expresses the number of time the RLOC has been selected for an
encapsulation operation.

Along with the "-X" option, mapstat can show LISP-related network
status. Where applies, mapstat accepts also the word "lisp" as
protocol. As an example the following command:

freebsd% mapstat -sf inet -p lisp

will give the following result:

freebsd% mapstat -sf inet -p lisp
lisp:

datagrams received

with incomplete header
with bad encap header

with bad data length field
delivered

datagrams output

dropped on output

sent

[clN ol oMo oo oMOo]

34
43

The first five (5) counters concern incoming LISP encapsulated packets.
In particular, the first counter gives the total number of LISP
encapsulated packets received by the system. The following three gives
the number of LISP encapsulated received packets dropped due to header
problems or data length field problem. The fifth counter expresses the
total number of packets correctly decapsulated and handed back to the
IP layer.

The remaining three (3) counters concern packet received by the
OpenLISP module which have a mapping for both source and destination
EID and thus need to be encapsulated. The first of these three counters
expresses the total packets received for encapsulation by the OpenLISP
module. The second counter gives the number of packet dropped due to
error conditions. The last counter gives the total number of LISP
encapsulated packets that have been correctly sent.

For further information on the mapstat utility please refer to
Appendix A.3 (mapstat)

5. Sysctl API TOC

OpenLISP offer the possibility to mapping distribution system in the
user space to obtain a complete dump of the map tables through sequence
of mapping messages. This is done by using a sysctl system call in the
CTL_NET level. For details on the general sysctl API and its levels, in
the FreeBSD systems, please refer to sysctl(3) man page. With OpenLISP
is possible to use AF_MAP as second level and NET_MAPTBL_DUMP as fifth
level. The sequence of messages returned by the system call is the same
described in Section 4 (Mapping Sockets API).

An example of sysctl usage to obtain a map tables' dump is the
following:

#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <net/if.h>
#include <sys/sysctl.h>
#include <net/maptables.h>

int mib[6];
size_t spaceneeded;
char * buffer;

mib[®] = CTL_NET;
mib[1] = PF_MAP;

mib[2] = 0O;
mib[3] = 0;
mib[4] = NET_MAPTBL_DUMP;
mib[5] = 0O;

if (sysctl(mib, 6, NULL, &spaceneeded, NULL, @) < 0)
/* code for error handling */

if ((buffer = malloc(needed)) == NULL)
/* code for error handling */

if (sysctl(mib, 6, buffer, &needed, NULL, Q) < 0)

/* code for error handling */

At the end of this code, the memory buffer referenced by the "buffer"
pointer will contain a contiguous sequence of mapping messages, all of
them starting with the map_msghdr{} data structure, thus it can be
easily parsed.

6. LISP and OpenLISP issues TOC

In this section, we briefly discuss several of the protocol/
implementations issues/status related to OpenLISP and LISP.

6.1. Multicast TOC

OpenLISP has no support for multicast. Future release of OpenLISP may
introduce support for it.

6.2. OpenLISP and LISP variants TOC

OpenLISP does not implement any EID filtering policy, while adopting a
fallback strategy for encapsulation. This means that packets for which
there is no mapping available are handed back to the IP layer for
"traditional" processing. If the original packet has a non-routable
destination address it will be dropped, otherwise, if a route is
available, it will be forwarded. This means that OpenLISP is able, with
the correct mappings to support all variants of LISP described in
[I-D.farinacci-1isp] (Farinacci, D., Fuller, V., Oran, D., and D.
Meyer, “lLocator/ID Separation Protocol (LISP),” April 2008.).

6.3. OpenLISP as TE-ITR/TE-ETR TOC

The lack of EID filtering policies in OpenLISP allows it to be used as
also as TE-ITR/TE-ETR. The correct functioning is just a matter of
putting the correct mappings in the map tables. Nevertheless, note that
recursive encapsulation cannot be done on the same machine. In order to
avoid inner loops (see Section 3.2 (Outgoing Packets)), each packet
once encapsulated is tagged and never checked again for further
encapsulation.

6.4. OpenLISP and nonce TOC

The original proposal of LISP includes a "nonce" value to be included
in every LISP encapsulated packet. Formal definition is:

LISP Nonce: 1is a 32-bit value that is randomly generated by an ITR.
It is used to test route-returnability when an ETR echoes back
the nonce in a Map-Reply message.

In the current OpenLISP implementation, the nonce is generated and put
in the LISP header, but its value is never checked on reception of a
LISP encapsulated packet. This is because the current release of
OpenLISP does not support Map-Reply packets. Nevertheless, this let us
think that marking every packet with a nonce is not strictly necessary,
rather it introduces useless overhead. Moreover, the random generation
of the nonce can be also expensive in terms of encapsulation operation
performances.

In order to reduce the overhead it would be desirable to avoid putting
the nonce in normal LISP encapsulated packets. Nonce can be introduced
in packets that really need the value present, which are easy to
recognize.

Indeed, a Map-Reply message is sent only in two cases:
1 To reply to an explicit Map-Request message.

2 In the case of the gleaning mechanism, to reply to a Data-Probe
packet.

In the first case, messages are generated in the user space using as
port number the IANA reserved value 4342. In this case, it is easy to
recognize LISP signaling packets (Map-Request and Map-Reply) since they
use destination port 4342, and thus nonce value can be handled.

In the second case, the Data-Probe should contain the nonce value in
order to provide the value that needs to be returned by the subsequent
Data-Reply. Data-Probe packets use destination port 4341, the same as
normal LISP encapsulated data packets. However, Data-Probe packets are
easily recognizable by the fact that the inner IP header and outer IP
header contain the same destination address. Thus nonce can be
correctly handled.

To summarize, the suggestion here is to avoid in general the nonce in
normal LISP encapsulated packets, while use it in Data-Probe, Map-
Request, and Map-Reply packets, which are easy to recognize. This means
to split the packets' format in two main types: with and without nonce.
This would allow reducing overhead in both terms of bandwidth and
efficiency in the encap/decap operations.

6.5. OpenLISP and RLOC order TOC

The LISP specification clearly state that RLOCs are ordered by
priority, however, it does not clarify what happens in the case of
multiple RLOCs having the same priority value. The ordering of RLOC is
very important since it is used in the reachability bits.

OpenLISP uses the simple approach of considering the IP address of
RLOCs (in network byte order) as an integer value and puts smaller
values before bigger ones. When RLOCs belong to different address
family, i.e., IPv4 and IPv6, IPv4 (AF_INET) address family is given
priority. Since in OpenLISP duplicated RLOCs for the same EID-Prefix
are not allowed this gives a strict ordering to the list of RLOCs.

6.6. LISP Source port and statefull firewall TOC

During our tests with OpenLISP, we observed packet losses on high load
traffic on a network protected by an IPFW statefull firewall. These
packet losses were caused by the utilization of random UDP source ports
for LISP packets. In [I-D.farinacci-lisp] (Farinacci, D., Fuller, V.,

Oran, D., and D. Meyer, “Locator/ID Separation Protocol (LISP),”
April 2008.), Section 5.3, there is the following statement:

UDP Header: contains a random source port allocated by the ITR when
encapsulating a packet. The destination port MUST be set to the
well-known IANA assigned port value 4341.

This can be interpreted in two ways:

*In each packet we put a random source port number. This has
proved not to work well with the "keep-state" directive of IPFW.
Loss of packets has been observed on high load traffic on a
network protected by an IPFW statefull firewall. On statefull
firewall, a state is kept for each flow, which is identified by
source and destination IP addresses and source and destination
port number. In presence of many different flows (due to random
source port selection), the number of cached tuples (Source IP,
Destination IP, Source Port, Source Destination, Protocol) can
fill the firewall cache and block any new flow for a period of at
least the time an entry remains in the firewall state. The random
selection of UDP source ports caused a kind of DoS attack against
the state maintained by the statefull firewall.

*For the first packet to a certain RLOC we select a port number
and use it as long as the mapping is valid. This is not much
meaningful, since LISP never uses the source port for a reply or
something else, thus this state is wasteful.

For the above reasons, in OpenLISP, the LISPDATA (4341) port number is
used for source port for all LISP encapsulated packets.

6.7. ICMP TOC

In LISP, it is not possible to find the actual source of a packet
responsible of an ICMP if it occurs during the transit (i.e., when the
packet is encapsulated in a LISP message).

The problem comes from the encapsulation. The returned ICMP message has
sufficient space only to include the outer header, thus the one
containing RLOCs as source and destination addresses. In this way it is
not possible to forward the packet to the source of the original
packet, since it is not possible to retrieve the original source EID.
Even performing a lookup on the LISP database, using the source RLOC as
search key, the result will be an EID-Prefix, not sufficient to forward
the packet.

A solution would be to increase the size of ICMP messages in order to
include the inner header of the LISP encapsulated packet. This would
allow to retrieve the correct information in order to forward the

packet. Note, however, that before forwarding the ICMP packet needs to
be cleaned from LISP specific information, since end-system are
supposed to be unaware of being behind a LISP router. On the one hand,
this proposition seems to be the efficient, but needs to modify ICMP
and thus non-LISP routers. On the other hand, many routers that do not
generate ICMP messages, or rate limit them, in the DFZ, thus reducing
the real effectiveness of the solution.

For the above mentioned reasons, OpenLISP does not implement any
technique that allows the router to make a link between the LISP packet
header the packet source in order to "translate" and re-route ICMP
packets.

The general ICMP problem in LISP can however be the pretext of a more
philosophical discussion. Indeed, as LISP is a tunneling technique
based on the separation of ID and locator space, is it required to send
information about what happens between the RLOCs to the client running
behind a LISP router? In principle the answer is no, since end-systems
do not need to be aware of the routing infrastructure (i.e., the RLOC
space). In this case LISP has to handle ICMP in a different way that
needs to be explored.

6.8. MTU Management TOC

In the present section we describe how OpenLISP deals with the MTU
issue inside the local domain, and how this approach can be easily
extended to solve the issue on an Internet scale, without modifying
existing ICMP massages.

6.8.1. OpenLISP local MTU Management TOC

During preliminary tests, we observed that the MTU issue is at the
origin of many problems. OpenLISP does not (and will not) implement the
fragmentation mechanism proposed in Sec. 5.4 of [I-D.farinacci-lisp]
(Farinacci, D., Fuller, V., Oran, D., and D. Meyer, “Locator/ID
Separation Protocol (LISP),” April 2008.). The reason is because the
proposed method sounds very primitive and does not appear to be
efficient. The original LISP specification is based on an architectural
constant used by the XTR to limit the MTU of LISP encapsulated packets.
OpenLISP uses a more advanced solution, based on the real MTU of the
local RLOCs present on the xTR, as described below.

Currently OpenLISP manages the MTU issue in the following manner. As
described in Section 2 (Map Tables) for each local mapping, OpenLISP
discovers the RLOCs that are local interfaces and copies the MTU
associated to the interface to the RLOC entry. When a packet needs to
be encapsulated the first step is to calculate the final packet size

and compare it to the MTU contained in the source RLOC used. If the
size exceeds the MTU the action taken depends on the origin of the
packet. If the packet has been locally generated through a socket in
the user space, the write operation on the socket will return an
EMSGSIZE error. If the packet has been originated elsewhere, an ICMP
Too Big message is sent back to the source address of the original
packet. Note that this can be done since the size check is done before
actually encapsulating the packet.

6.8.2. OpenLISP Extended MTU Management TOC

The way OpenLISP manages MTU solves the problem only for the local
domain and the first hop after the ITR. It does not yet solve the issue
of having an ICMP Too Big message generated in the middle of the LISP
tunnel. A possible solution could be the enlargement of the ICMP Too
Big message, as described in Section 6.7 (ICMP).

Another possible solution is to start using the mtu field in the
rloc_mtx structure also for non-local mappings. In the current OpenLISP
implementation, the mtu field for RLOCs of non-local mapping are set to
zero (@), which means to ignore it. If an ICMP Too Big Message 1is
triggered in the middle of a LISP tunnel, it will normally reach the
ITR that has performed the encapsulation and its content is sufficient
to retrieve the destination RLOC toward which the packet was sent. This
in turns allows setting a MTU on the RLOC of the mapping entry
containing it. This would allow perform a check on the subsequent
packets before encapsulating them, and if necessary, to send an ICMP
Too Big message back to the real source of the packet.

From an architectural perspective, the proposed approach is very
simple. Nevertheless, a limitation can be found in the fact that the
approach suffers from some delay. Indeed, for an ICMP Too Big message
to reach the original packet source, two large packets are needed. The
first packet will trigger an ICMP message in the LISP tunnel, thus
updating the ITR. Only the second packet will trigger an ICMP message
from the ITR to the source, making the latter shrink its path MTU.
However, this solution still needs to be carefully explored, since a
burst of large packets must not have the results of generating a burst
of ICMP messages reducing too much the MTU size on the ITR. A simple
rate limitation approach can help in alleviating this problem.

A second limitation of this approach can be found in the fact that in
order to rapidly update the mapping when an ICMP Too Big message 1is
received from a LISP tunnel, an RLOC-based lookup should be performed.
In the current state of OpenLISP, this is not possible, since the
mapping tables are radix trees using EIDs as key. On the other hand,
RLOC-based lookup will not be that common (compared to the number of
EID-based lookups), the trade-off between lookup efficiency and data
structure complexity needs to be further explored.

Note, finally, that MTU discovery between RLOCs can be also performed
using proposals like [I-D.templin-seal] (Templin, F., “The Subnetwork
Encapsulation and Adaptation Layer (SEAL),” August 2008.) or
[I-D.van-beijnum-multi-mtu] (Beijnum, I., “Extensions for Multi-MTU
Subnets,” February 2008.), and adapting them in order to put the
correct value in the mtu field associated to RLOCs in the OpenLISP
implementation. Such an adaptation is out of the scope of OpenLISP,
even if worth to be explored.

7. Conclusion TOC

The present memo describes the overall architecture and the
implementation status of OpenLISP, an implementation of the LISP
proposal in the FreeBSD 0S. OpenLISP provides support for encap/decap
operations and EID-to-RLOC mappings storage in the kernel space.
OpenLISP is freely available at http://inl.info.ucl.ac.be.

OpenLISP can work as both a router and end-host, thus providing a wide
range of test scenarios. We think that the mapping sockets introduced
by OpenLISP is a great tool for easy development of Mapping
Distribution Protocols in the user space. People working in this area
can contact authors. We believe that a complete working system composed
by OpenLISP and a mapping distribution protocol would provide very
helpful insights, leading to important improvements for both OpenLISP
and the mapping distribution protocol.

8. Acknowledgements TOC
The work described in the present memo has been partially supported by

the European Commission within the IST AGAVE Project and a Cisco URP
grant.

9. IANA Considerations TOC

This memo includes no request to IANA.

10. Security Considerations TOC

The present memo does not introduce any new security issue that is not
already mentioned in [I-D.farinacci-1lisp] (Farinacci, D., Fuller, V.,

Oran, D., and D. Meyer, “Locator/ID Separation Protocol (LISP),”

April 2008.) and [I-D.bagnulo-lisp-threat] (Bagnulo, M., “Preliminary
LISP Threat Analysis,” July 2007.). Nevertheless, we discuss hereafter
some issues related to the reachability bits.

10.1. Reachability bits DoS TOC

An attacker can deactivate a particular RLOC on a mapping of an ITR
with a single packet using the reachability bits. If the reachability
bit of a RLOC is set to one, the RLOC is reachable, otherwise it is
unreachable.

Since reachability information on specific RLOCs can be modified by the
reachability bits in the LISP header carried by data packets and not a
control protocol, it is possible for an attacker to make a DoS on a EID
by sending a single packet for that EID where all the reachability bits
are at set to zero. To succeed the attack, it is not required to have a
bi-directional flow, the only constraint is to build a LISP packet, for
an EID mapping present in the ITR, with as source EID the one that is
meant to be made unreachable and a correctly formed LISP header having
reachability bits all set to zero. Once the packet has been received,
all RLOCs will be set to unreachable, and the ITR will not be able to
reach the EID used as source, until another packet (not spoofed) will
set again the RLOCs to a reachable state.

To tackle this issue two solutions are available:

*Keep the reachability bits semantic, but add a confirmation phase
to be sure the RLOC must be deactivated. When a reachability bit
has changed compared to the mapping present in the cache, a Map-
Request should be sent in order to obtain the new mapping with
the correct reachabilty information. In OpenLISP, this can be
easily implemented, since for any reachability change, a message
is sent through the mapping sockets in order to inform the
mapping distribution system, which in turn will perform the
request.

*Change the reachability bits semantic to become a version number.
Instead of carrying reachability information for each RLOC, the
bits contain the version number of the mapping. If the version
number changes for an EID, a mapping request is sent.

The two solutions are not "bulletproof", however, they can help in
removing, or at least reducing, DoS attacks. Nevertheless, a control on
the rate of Map-Request is needed in order to avoid DoS attacks on the
mapping system. The solution based on version number is more DoS-proof
as the attacker must be able to know the version number to launch the
attack. If the version number is not near the real version number, the
message can be considered as invalid.

[FreeBSD]
[I-D.bagnulo-
lisp-threat]

[I-
D.farinacci-
lisp]

[I-D.iab-raws-
report]

[I-D.irtf-rrg-
design-goals]

[I-D.templin-
seal]

[I-D.van-
beijnum-multi-
mtu]

[NetProg]

[TCPIP]

11. Informative References

TOC
The FreeBSD Project, “FreeBSD, the power to serve.”
Bagnulo, M., “Preliminary LISP Threat Analysis,”
draft-bagnulo-lisp-threat-01 (work in progress),
July 2007 (TXT).
Farinacci, D., Fuller, V., Oran, D., and D. Meyer,
“Locator/ID Separation Protocol (LISP),” draft-
farinacci-1lisp-07 (work in progress), April 2008
(TXT).
Meyer, D., “Report from the IAB Workshop on Routing
and Addressing,” draft-iab-raws-report-02 (work in
progress), April 2007 (TXT).
Li, T., “Design Goals for Scalable Internet
Routing,” draft-irtf-rrg-design-goals-01 (work in
progress), July 2007 (TXT).
Templin, F., “The Subnetwork Encapsulation and
Adaptation Layer (SEAL),” draft-templin-seal-23
(work in progress), August 2008 (TXT).
Beijnum, I., “Extensions for Multi-MTU Subnets,”
draft-van-beijnum-multi-mtu-02 (work in progress),
February 2008 (TXT).
Stevens, W., Fenner, B., and A. Rudoff, “UNIX
Network Programming, The Sockets Networking API.,”
Addison-Wesley Professional Computing Series Volume
1 - Third Edition, 2004.
Wright, G. and W. Stevens, “TCP/IP Illustrated
Volume 2, The Implementation.,” Addison-Wesley
Professional Computing Series, 1995.

Appendix A. Man Pages TOC

The following sections contain the manpages that can be obtained on a
FreeBSD system once OpenLISP has been completely installed.

A.1. map(1) TOC

http://www.freebsd.org
http://www.ietf.org/internet-drafts/draft-bagnulo-lisp-threat-01.txt
http://www.ietf.org/internet-drafts/draft-bagnulo-lisp-threat-01.txt
http://www.ietf.org/internet-drafts/draft-farinacci-lisp-07.txt
http://www.ietf.org/internet-drafts/draft-farinacci-lisp-07.txt
http://www.ietf.org/internet-drafts/draft-iab-raws-report-02.txt
http://www.ietf.org/internet-drafts/draft-iab-raws-report-02.txt
http://www.ietf.org/internet-drafts/draft-iab-raws-report-02.txt
http://www.ietf.org/internet-drafts/draft-irtf-rrg-design-goals-01.txt
http://www.ietf.org/internet-drafts/draft-irtf-rrg-design-goals-01.txt
http://www.ietf.org/internet-drafts/draft-irtf-rrg-design-goals-01.txt
http://www.ietf.org/internet-drafts/draft-templin-seal-23.txt
http://www.ietf.org/internet-drafts/draft-templin-seal-23.txt
http://www.ietf.org/internet-drafts/draft-templin-seal-23.txt
http://www.ietf.org/internet-drafts/draft-van-beijnum-multi-mtu-02.txt
http://www.ietf.org/internet-drafts/draft-van-beijnum-multi-mtu-02.txt

MAP(1) BSD General Commands Manual MAP(1)

NAME

map -- manually manipulate the LISP mappings
SYNOPSIS

map [-dngtv] command [[modifiers] args]
DESCRIPTION

The map utility is used to manually manipulate the network mapping
tables (both cache and database). Only the super-user may modify
the mapping tables. It normally is not needed, as a system mapping
table management daemon, such as LISP-ALT, should tend to this
task.

The map utility supports a limited number of general options, but
a rich command language, enabling the user to specify any
arbitrary request that could be delivered via the programmatic
interface discussed in map(4).

The following options are available:

-d Run in debug-only mode, i.e., do not actually modify
the routing table.

-n Bypass attempts to print host and network names
symbolically when reporting actions. (The process of
translating between symbolic names and numerical
equivalents can be quite time consuming, and may require
correct operation of the network; thus it may be
expedient to forget this, especially when attempting to
repair networking operations).

Y (verbose) Print additional details.
-q Suppress all output from the add, change, and delete
commands.

The map utility provides five commands:

add Add a mapping.

delete Delete a specific mapping.

get Lookup and display the mapping for an EID.

monitor Continuously report any changes to the mapping
information base, mapping lookup misses, etc.

flush Remove all mappings. This includes mappings from both

the cache and the database.

The monitor command has the syntax:
map [-n] monitor
The flush command has the syntax:
map [-n] flush
The other commands have the following syntax:

map [-n] command [-local] [-inet | -inet6] EID
[-inet | -inet6] RLOC [Priority [Weight [Rechability]]]

where EID is the address of the EID-Prefix (it can be also a full
address), -local indicates if the mapping should be treated as
part of the local mapping database or as part of the cache.
Default is cache. The keyword -inet and -inet6 are not optional,
they must be used before any address (both EID and RLOC).

These keywords indicate if the following address should be
treated as an IPv4 or IPv6 address/prefix. RLOC is the address of
the RLOC argument. Likewise the EID, it must be preceded by

-inet or -inet6 keyword in order to indicate the address family.
The EID must be specified in the net/bits format. For example,
-inet 128.32 is interpreted as -inet 128.0.0.32; -inet 128.32.130
is interpreted as -inet 128.32.0.130; and -inet 192.168.64/20 is
interpreted as the network prefix 192.168.64.0 with netmask
255.255.240.0.

The values Priority, Weight, and Reachability are optional to
declare.
If not declared, the following default values are set:
Priority 255 (Not usable)
Weight 100
Reachability

0 (not reachable)

It is not mandatory to declare all of them, but when declaring
one, all the previous must be also declared. This means that to
declare a weight the priority must also be declared; and to set
the reachability to 1 (reachable) both priority and weight must be
declared.

Mappings have associated flags that influence operation. These
flags may be set (or sometimes cleared) by indicating the
following corresponding modifiers:

-static MAPF_STATIC - manually added mapping (default)
-nostatic ~MAPF_STATIC - pretend mapping added by kernel or
daemon

All symbolic names specified for an EID or RLOC are looked up first
as a host name using gethostbyname(3). If this lookup fails,
getnetbyname(3) is then used to interpret the name as that of a
network.

The map utility uses a mapping socket and the message types
MAPM_ADD, MAPM_DELETE, MAPM_GET, and MAPM_CHANGE. The flush
command is performed using the sysctl(3) interface. As such, only
the super-user may modify the mapping tables.

EXAMPLES
The command to add a mapping, in the LISP database, for EID
1.1.0.0/16, having RLOC 2.2.2.2 and Priority 1, Weight 100, and
marked as Reachable, is:

map add -local -inet 1.1.0.0/16 -inet 2.2.2.2 1 100 1
The command to delete the same mapping is:
map delete -inet 1.1.0.0

To add in the cache a mapping having several RLOCs, the command
is:

map add -inet 1.1.0.0/16 -inet 2.2.2.2 1 100 1 -inet 3.3.3.3
2 100 1

-inet 4.4.4.4 3 100 -inet 5.5.5.5

The above command associate to the EID-Prefix 1.1.0.0/16 the
following RLOCs and related Priority, Weight, and Reachability

values:

RLOC Priority Weight Reachability
2.2.2.2 1 100 Reachable
3.3.3.3 2 100 Reachable
4.4.4.4 3 100 Unreachable
5.5.5.5 255 100 Unreachable

EXIT STATUS
The map utility exits ©@ on success, and >0 if an error occurs.

SEE ALSO
netintro(4), map(4), mapstat(1),

L. Iannone and 0. Bonaventure, OpenLISP Implementation Report,
draft-iannone-openlisp-implementation-01.txt.

D. Farinacci, V. Fuller, D. Oran, and D. Meyer, Locator/ID
Separation protocol (LISP), draft-farinacci-lisp-07.txt.

NOTE
Please send any bug report or code contribution to the authors
of OpenLISP.

AUTHORS
Luigi Iannone <luigi.iannone@uclouvain.be>

HISTORY
The map utility appeared in FreeBSD 7.0.

BSD July 15, 2008 BSD

A.2. map(4) T0C

MAP(4) BSD Kernel Interfaces Manual MAP(4)

NAME
map -- kernel LISP mapping cache and database

SYNOPSIS
#include <sys/types.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/maptable.h>

int
socket (PF_MAP, SOCK_RAW, int family);

DESCRIPTION
OpenLISP provides some mapping facilities into the kernel of
FreeBSD. The kernel maintains a mapping information database,
which is used in selecting the appropriate RLOCs when
transmitting/forwarding packets.

A user process (or possibly multiple co-operating processes)
maintains this database by sending messages over a special kind
of socket. Mapping table changes may only be carried out by the
super user.

The operating system may spontaneously emit mapping messages in
response to external events, such as receipt of a packet for
which no mapping is available. The message types are described
in greater detail below.

When handling a packet, the kernel will attempt to find the most
specific EID mappings matching the source and the destination
addresses. If there is more then one RLOC in the mapping the
actual RLOC used for encapsulation is chosen following the

rules described in (LISP). Note, however, that for local
mappings, i.e., mappings that are part of the database, the flag
"i" must be set in order for the RLOC to be used. This is to
avoid to emit packets with a source address that does not belong
to the machine. If no mapping is found, for both source and
destination EIDs, packet is handed back to normal IP operation,
which may lead to sending the packet, if the EID is routable and
a route is available in the IP routing table.

One opens the channel for passing mapping control messages by
using the socket call. There can be more than one routing socket
open per system.

Messages are formed by a header followed by a number of sockaddrs

(of variable length depending on the address family) and RLOC
metrics data structure.

Any messages sent to the kernel are returned, and copies are sent
to all interested listeners. The kernel will provide the process
ID for the sender, and the sender may use an additional sequence
field to distinguish between outstanding messages.

However, message replies may be lost when kernel buffers are
exhausted.

The kernel may reject certain messages, and will indicate this by
filling in the map_errno field. The OpenLISP code returns the
following error codes if new mappings cannot be installed:

ENOBUFS: If insufficient resources were available to install a new
mapping.

EEXIST: If the EID-Prefix already exist in the mapping table.

EINVAL: This error code can be returned in two cases. The first
case is when the list of RLOC provided for a mapping
contains replicated addresses. The second case is when a
"local" mapping is provided without any RLOC (address)
belonging to the system.

A process may avoid the expense of reading replies to its own
messages by issuing a setsockopt(2) call indicating that the
SO_USELOOPBACK option at the SOL_SOCKET level is to be turned off.
A process may ignore all messages from the mapping socket by doing
a shutdown(2) system call for further input.

If a mapping is in use when it is deleted, the entry will be
marked down and removed from the mapping table, but the resources
associated with it will not be reclaimed until all references to
it are released. User processes can obtain information about the
mapping entry for a specific EID by using a MAP_GET message.

Messages include:

#define MAPM_ADD 0x1 /* Add Map */

#define MAPM_DELETE 0x2 /* Delete Map */

#define MAPM_CHANGE 0x3 /* Change Metrics or flags */
#define MAPM_GET Ox4 /* Report Metrics */

#define MAPM_MISS 0x5 /* Lookup Failed */

#define MAPM_BADREACH 0Ox6 /* Reachability Block Problem */
#define MAPM_REACH ox7 /* Reachability Block Changed */

A message header consists of the following:

struct map_msghdr {

u_short map_msglen; /* to skip over non-understood
messages */

u_char map_version; /* future binary compatibility */

u_char map_type; /* message type */

int map_flags; /* flags, incl. kern & message,
e.g. DONE */

int map_addrs; /* bitmask identifying sockaddrs
in msg */

int map_rloc_count; /* Number of rlocs appended to
the msg */

pid_t map_pid; /* identify sender */

int map_seq; /* for sender to identify action

*/
int map_errno; /* why failed */

3
The "~ “int map_flags'' is as defined as:

#define MAPF_UP Ox1 /* mapping usable */

#define MAPF_LOCAL 0x2 /* Mapping is local
* This means that it should be
* considered
* as part of the LISP Database

*/
#define MAPF_STATIC 0x4 /* manually added */
#define MAPF_DONE 0x8 /* message confirmed */

Specifiers for which addresses are present in the messages are:

#define MAPA_EID 0x1 /* EID sockaddr present */
#define MAPA_EIDMASK 0x2 /* netmask sockaddr present */
#define MAPA_RLOC Ox4 /* Locator present */

If MAPA_RLOC is set, it means that there are "int map_rloc_count"
pairs of "struct sockaddr" and "struct rloc_mtx" present.

The "~ “struct rloc_mtx'' is as defined as:

struct rloc_mtx { /* Metrics associated to the RLOC

* Usefull for messages mapping
* sockets.
*/

u_int8_t priority; /* Each RLOC has a priority.
*/

u_int8_t weight; /* Each locator has a weight.
*/

u_inti16_t flags; /* Flags concerning specific RLOC.

*/

u_int32_t mtu; /* MTU for the specific RLOC.
*/
1

The "““u_int16_t flags'' is as defined as:

#define RLOCF_REACH Ox01 /* RLOC Reachable. */

#define RLOCF_LIF 0x02 /* RLOC is a local interface.
* This is only valid for local
* mappings.
*/

A good example of how top use mapping sockets can be found in
/usr/src/sbin/map/map.c.

SEE Also
map(1), mapstat(1).

L. Iannone and 0. Bonaventure, OpenLISP Implementation Report,
draft-iannone-openlisp-implementation-00.txt.

D. Farinacci, V. Fuller, D. Oran, and D. Meyer, Locator/ID
Separation protocol (LISP), draft-farinacci-lisp-07.txt.

NOTE
The MAPM_CHANGE message is not yet implemented.

Please send any bug report or code contribution to the authors of
OpenLISP.

AUTHORS
Luigi Iannone <luigi.iannone@uclouvain.be>

HISTORY
A PF_MAP protocol family has been introduced with OpenLISP on
FreeBSD 7.0.

BSD July 15, 2008 BSD

A.3. mapstat TOC

MAPSTAT(1) BSD General Commands Manual MAPSTAT(1)

NAME
mapstat -- Modification of the netstat(1) utility to show
LISP-related network status

DESCRIPTION
The mapstat command symbolically displays the contents of various
network-related data structures. It is a modification of the
existing netstat command, thus it basically offers the same
identical features and can be used in the same identical way.
Please refer to netstat(l1) for more information on the normal
use of netstat.

What mapstat introduces is that fact that it can show LISP-related
network status. Where applies, mapstat accepts also the word
"lisp" as protocol. Try the following command as an example:

mapstat -sf inet -p lisp
The mapstat adds the new following option:

-X Displays the content of mapping tables. The mapping table
display indicates the available mappings and their status.

Each mapping consists of an EID, flags related to the whole
mapping, references, and the list of RLOC. For each RLOC there is
the address, its priority, its weight, and the flags related to
that specific RLOC. It also shows the available MTU (Maximum
Transmission Unit) for the specific RLOC, and the number of times
that the RLOC has been selected for packet encapsulation.

The flags field shows a collection of information about the
mapping or the RLOC stored as binary choices. The individual flags

are the listed hereafter.

General flags

u The mapping entry is "up" and usable.

L The mapping entry "local", i.e., it is part of the lisp
mapping database as defined in the original LISP
proposal.

S The mapping entry is "static", i.e., it has been

manually added.

RLOC specific flags

R The specific RLOC is reachable.

i The specific RLOC is a local interface. This flag can
be set only for mappings that are part of the database,
i.e., have the flag "L" set.

SEE ALSO
netstat(1), map(1), map(4)

NOTE
Please send any bug report or code contribution to the authors of
OpenLISP.

AUTHORS
Luigi TIannone <luigi.iannone@uclouvain.be>

HISTORY

The mapstat utility appeared in FreeBSD 7.0.

BUGS
The code is still exprimental. Some combinations of the -X option
with other native options of netstat may not work or produce
unexpected results.

BSD July 15, 2008 BSD

Authors' Addresses
TOC

Luigi Iannone
UCLouvain, Belgium
Place St. Barbe 2
Louvain la Neuve, B-1348
Belgium
Email: luigi.iannone@uclouvain.be
URI: http://inl.info.ucl.ac.be

Damien Saucez
UCLouvain, Belgium
Place St. Barbe 2
Louvain la Neuve, B-1348
Belgium
Email: damien.saucez@uclouvain.be
URI: http://inl.info.ucl.ac.be

Olivier Bonaventure
UCLouvain, Belgium

mailto:luigi.iannone@uclouvain.be
http://inl.info.ucl.ac.be
mailto:damien.saucez@uclouvain.be
http://inl.info.ucl.ac.be

Place St. Barbe 2
Louvain la Neuve, B-1348
Belgium
Email: Olivier.Bonaventure@uclouvain.be
URI: http://inl.info.ucl.ac.be

Full Copyright Statement
TOC

Copyright © The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

mailto:Olivier.Bonaventure@uclouvain.be
http://inl.info.ucl.ac.be
http://www.ietf.org/ipr
http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	OpenLISP Implementation Reportdraft-iannone-openlisp-implementation-01
	Status of this Memo
	Abstract
	Table of Contents
	1. Introduction
	1.1. Terms Definition
	2. Map Tables
	3. Protocol Stack Modifications
	3.1. Incoming Packets
	3.2. Outgoing Packets
	3.3. Implementation Status
	4. Mapping Sockets API
	4.1. An example of mapping sockets usage
	5. Sysctl API
	6. LISP and OpenLISP issues
	6.1. Multicast
	6.2. OpenLISP and LISP variants
	6.3. OpenLISP as TE-ITR/TE-ETR
	6.4. OpenLISP and nonce
	6.5. OpenLISP and RLOC order
	6.6. LISP Source port and statefull firewall
	6.7. ICMP
	6.8. MTU Management
	6.8.1. OpenLISP local MTU Management
	6.8.2. OpenLISP Extended MTU Management
	7. Conclusion
	8. Acknowledgements
	9. IANA Considerations
	10. Security Considerations
	10.1. Reachability bits DoS
	11. Informative References
	Appendix A. Man Pages
	A.1. map(1)
	A.2. map(4)
	A.3. mapstat
	Authors' Addresses
	Full Copyright Statement
	Intellectual Property

