
SIPCORE Working Group I.B.C. Baz Castillo

Internet-Draft J.L.M. Luis Millan

Intended status: Standards Track XtraTelecom S.A.

Expires: May 27, 2012 V.P. Pascual

Acme Packet

November 24, 2011

The WebSocket Protocol as a Transport for the Session Initiation

Protocol (SIP)

draft-ibc-sipcore-sip-websocket-00

Abstract

This document specifies a WebSocket Sub-Protocol for a new transport in

SIP (Session Initiation Protocol). The WebSocket protocol enables two-

way realtime communication between clients and servers.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on May 27, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

*

*

3. The WebSocket Protocol

4. The WebSocket SIP Sub-Protocol

5. SIP WebSocket Transport

5.1. Via Transport Parameter

5.2. SIP URI Transport Parameter

5.3. Sending Responses

6. Outbound and GRUU Usage

7. Locating a SIP Server

8. WebSocket Client Usage

8.1. WebSocket Disconnection

9. WebSocket Server Usage

9.1. SIP Proxy Considerations

10. Connection Keep Alive

11. Authentication

12. Examples

12.1. Registration

12.2. INVITE dialog through a proxy

13. Security Considerations

13.1. Secure WebSocket Connection

13.2. WebSocket Topology Hiding

14. IANA Considerations

14.1. Registration of the WebSocket SIP Sub-Protocol

14.2. Registration of new Via transports

14.3. Registration of new SIP URI transport

14.4. Registration of new NAPTR service field values

15. Acknowledgements

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

16. References

16.1. Normative References

16.2. Informative References

Authors' Addresses

1. Introduction

This specification defines a new WebSocket Sub-Protocol for

transporting SIP messages between a WebSocket client and server, a new

transport for the SIP protocol and procedures for SIP servers when

bridging WebSocket and other SIP transports.

This specification is focused on integrating the SIP protocol within

client applications running a WebSocket stack. Other aspects such as

the usage of WebSocket as a transport between SIP servers are not fully

covered by this specification.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. The WebSocket Protocol

WebSocket protocol [I-D.ietf-hybi-thewebsocketprotocol] is a transport

layer on top of TCP in which both client and server exchange message

units in both directions. The protocol defines a connection handshake,

WebSocket Sub-Protocol and extensions negotiation, a frame format for

sending application and control data, a masking mechanism, and status

codes for indicating disconnection causes.

The WebSocket connection handshake is based on HTTP [RFC2616] protocol

by means of a specific HTTP GET request sent by the client, typically a

web browser, which is answered by the server (if the negotiation

succeeded) with HTTP 101 status code. This handshake procedure is

designed to reuse the existing HTTP infrastructure. During the

connection handshake, client and server agree in the application

protocol to use on top of the WebSocket transport. Such application

protocol (also known as the "WebSocket Sub-Protocol") defines the

format and semantics of the messages exchanged between both endpoints.

The WebSocket Sub-Protocol to be used is up to the application

developer. It may be a custom protocol or a standarized one (as the

WebSocket SIP Sub-Protocol proposed in this document). Once the HTTP

101 response is processed both client and server reuse the existing TCP

connection for sending application messages and control frames to each

other in a persistent way.

WebSocket defines message units as application data exchange for

communication endpoints, becoming a message boundary transport layer.

*

*

*

*

These messages can contain UTF-8 text or binary data, and can be

splitted into various WebSocket text/binary frames. However, the

WebSocket API [WS-API] for web browsers just includes JavaScript

callbacks that are invoked upon receipt of an entire message,

regardless it has been received in a single or multiple WebSocket

frames.

4. The WebSocket SIP Sub-Protocol

The term WebSocket Sub-Protocol refers to the application-level

protocol layered over a WebSocket connection. This document specifies

the WebSocket SIP Sub-Protocol for carrying SIP requests and responses

through a WebSocket connection.

The WebSocket client and server need to agree on this protocol during

the WebSocket handshake procedure as defined in section 1.3 of [I-

D.ietf-hybi-thewebsocketprotocol]. The client MUST include the value

"sip" in the Sec-WebSocket-Protocol header in its handshake request.

The 101 reply from the WebSocket server MUST contain "sip" in its own

Sec-WebSocket-Protocol header.

 GET / HTTP/1.1

 Host: sip-ws.example.com

 Upgrade: websocket

 Connection: Upgrade

 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

 Origin: http://www.example.com

 Sec-WebSocket-Protocol: sip

 Sec-WebSocket-Version: 13

Below is an example of the WebSocket handshake in which the client

requests SIP Sub-Protocol support from the server:

 HTTP/1.1 101 Switching Protocols

 Upgrade: websocket

 Connection: Upgrade

 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

 Sec-WebSocket-Protocol: sip

The handshake response from the server supporting the WebSocket SIP

Sub-Protocol would look like:

Once the negotiation is done, the WebSocket connection is established

with SIP as the WebSocket Sub-Protocol. The WebSocket messages to be

transmitted over this connection MUST conform to the established

signaling protocol.

WebSocket messages are carried on top of WebSocket UTF-8 text frames or

binary frames. SIP protocol [RFC3261] allows both text and binary

bodies in SIP messages. Therefore a client and server implementing the

WebSocket SIP Sub-Protocol MUST accept both WebSocket text and binary

frames.

Each SIP message MUST be carried within a single WebSocket message and

MUST be a complete SIP message, so a Content-Length header field is not

mandatory. Sending more than one SIP message within a single WebSocket

message is not allowed, neither sending an incomplete SIP message.

This makes parsing of SIP messages easier on client side

(typically web-based applications with an strict and simple API

for receiving WebSocket messages). There is no need to establish

boundaries (using Content-Length headers) between different

messages. Same advantage is present in other message-based SIP

transports as UDP or SCTP [RFC4168].

5. SIP WebSocket Transport

WebSocket [I-D.ietf-hybi-thewebsocketprotocol] is a reliable protocol

and therefore the WebSocket sub-protocol for a SIP transport defined by

this document is also a reliable transport. Thus, client and server

transactions using WebSocket transport MUST follow the procedures and

timer values for reliable transports as defined in [RFC3261].

5.1. Via Transport Parameter

Via header fields carry the transport protocol identifier. This

document defines the value "WS" to be used for requests over plain

WebSocket protocol and "WSS" for requests over secure WebSocket

protocol (in which the WebSocket connection is established on top of

TLS [RFC5246] over TCP transport).

 transport = "UDP" / "TCP" / "TLS" / "SCTP" / "WS" / "WSS"

 / other-transport

The updated augmented BNF (Backus-Naur Form) [RFC5234] for this

parameter is the following:

5.2. SIP URI Transport Parameter

This document defines the value "ws" as the transport parameter value

for a SIP URI [RFC3986] to be contacted using WebSocket protocol as

transport.

 transport-param = "transport="

 ("udp" / "tcp" / "sctp" / "tls" / "sctp"

 / "ws"

 / other-transport)

The updated augmented BNF (Backus-Naur Form) [RFC5234] for this

parameter is the following:

*

5.3. Sending Responses

The SIP server transport uses the value of the top Via header field in

order to determine where to send a response. If the "sent-protocol" is

"WS" or "WSS" the response MUST be sent using the existing WebSocket

connection to the source of the original request, if that connection is

still open. This requires the server transport to maintain an

association between server transactions and transport connections. If

that connection is no longer open, the server MUST NOT attempt to open

a WebSocket connection to the Via "sent-by"/"received"/"rport".

This is due to the nature of the WebSocket protocol in which just

the WebSocket client can establish a connection with the

WebSocket server. A WebSocket client does not listen for incoming

connections.

6. Outbound and GRUU Usage

WebSocket requires the client to open a TCP connection with the server

and perform the WebSocket handshake. A WebSocket client does not listen

for incoming connections so it can only receive SIP requests from the

WebSocket server it is connected to. WebSocket clients may use either

public or private addressing but it is expected that many of them will

run the latter. Unfortunately, some implementations may not have the

ability to discover the local transport address which the WebSocket

connection is originated from (e.g. a JavaScript stack within a web

browser).

Therefore clients and servers implementing SIP over the WebSocket

transport MUST implement the Outbound mechanism [RFC5626], being this

the most suitable solution for SIP clients behind Network Address

Translation (NAT) using reliable transports for contacting SIP servers.

A client implementing SIP over the WebSocket transport SHOULD also

implement GRUU [RFC5627]. The registrar responsible for the

registration of SIP clients using the WebSocket transport SHOULD

implement GRUU as well.

If a REFER request is sent to a SIP User Agent indicating the

Contact URI of a WebSocket client as the target in the Refer-To

header field, such a URI will be reachable by the SIP UA just in

the case it is a globally routable URI obtained from a SIP

registrar implementing GRUU.

Both Outbound and GRUU require the client to indicate a Uniform

Resource Name (URN) in the "+sip.instance" parameter of the Contact

header during the registration. The client device is responsible for

getting such a constant and unique value.

In the case of web browsers it is hard to get a URN value from

the browser itself. This specification suggests that value is

*

*

*

generated according to [RFC5626] section 4.1 by the web

application running in the browser the first time it loads the

web page, and then it is stored as a Cookie [RFC6265] within the

browser data and loaded every time the same web page is visited.

The application developer could choose any other mechanism which

accomplishes the requirements of a URN.

7. Locating a SIP Server

SIP entities follow normal SIP procedures in [RFC3263] to discover a

SIP server. This specification defines the NAPTR service value

"SIP+D2W" for servers that support plain WebSocket transport and

"SIPS+D2W" for servers that support secure WebSocket transport.

A SIP entity using the WebSocket transport SHOULD perform procedures in

[RFC3263] for the given WebSocket URI it will connect to. If the

WebSocket URI has "wss" schema the SIP entity MUST only consider

"SIPS+D2W" resource records. If the WebSocket URI does not contain a

domain in the host part or does include a port, the SIP entity MUST

follow procedures in [I-D.ietf-hybi-thewebsocketprotocol] section 3

instead.

Unfortunately the JavaScript stack running in web browsers cannot

perform DNS NAPTR/SRV queries, neither the WebSocket stack

running in web browsers can do it. Thus, a WebSocket URI given

within a web application needs to have a numeric network address

or a hostname with associated DNS A/AAAA resource record(s) in

its host part.

8. WebSocket Client Usage

The WebSocket connection MUST be established in order to allow the

client application to send and receive SIP requests.

Based on local policy, this might occur once the JavaScript SIP

application has been downloaded from the web server, or when the

SIP user using the web browser application registers itself to a

SIP registrar (assuming that SIP requests cannot be sent or

received before then).

In case the client application decides to close the WebSocket

connection (for example when performing "logout" in a web application)

it is recommended to remove the existing SIP registration binding (if

present) by means of a REGISTER with expiration value of 0 and the

associated "+sip.instance" Contact header parameter as per [RFC5626].

8.1. WebSocket Disconnection

In some circumstances the WebSocket connection could be terminated by

the WebSocket server (for example when the server is restarted). If the

client application wants to become reachable again it SHOULD reconnect

*

*

to the WebSocket server and perform a new SIP registration with same

"+sip.instance" and "reg-id" Contact header parameters (as stated in

[RFC5626]).

9. WebSocket Server Usage

How a SIP server authorizes WebSocket connection attemps from clients

is out of the scope of this specification. However some informational

guidelines are provided in Section 11. Once the WebSocket SIP Sub-

Protocol is agreed, both client and server can send SIP messages to

each other.

9.1. SIP Proxy Considerations

When a SIP proxy bridges WebSocket and any other SIP transport

(including WebSocket transport) it MUST perform Loose Routing as

specified in [RFC3261]. Otherwise in-dialog requests would fail since

WebSocket clients cannot contact destinations other than their

WebSocket server, and non-WebSocket SIP entities cannot establish a

connection to WebSocket clients. It is also recommended that SIP proxy

implementations use double Record-Route techniques (as specified in

[RFC5658]).

In the same way, if the SIP proxy implementing the WebSocket server

behaves as an outbound proxy for REGISTER requests, it MUST add a Path

header field as described in [RFC3327]. Otherwise the WebSocket client

would never receive incoming requests from the SIP registrar server

after the lookup procedures in the SIP location service.

10. Connection Keep Alive

It is recommended that the WebSocket client or server keeps the

WebSocket connection open by sending periodic WebSocket Ping frames as

described in [I-D.ietf-hybi-thewebsocketprotocol] section 5.5.2. The

decision for a WebSocket endpoint to maintain, or not, the connection

over time is out of scope of this document.

The client application MAY also use Network Address Translation (NAT)

keep-alive mechanisms defined for the SIP protocol, such as the CRLF

Keep-Alive Technique mechanism described in [RFC5626] section 3.5.1.

Therefore, a SIP server implementing the WebSocket transport MUST

support the CRLF Keep-Alive Technique.

11. Authentication

Prior to sending SIP requests, the WebSocket client implementing the

SIP protocol connects to the WebSocket server and performs the

connection handshake. As described in Section 3 the handshake procedure

involves an HTTP GET request replied with HTTP 101 status code by the

server.

In order to authorize the WebSocket connection the server MAY inspect

the Cookie [RFC6265] header in the HTTP GET request (if present). In

case of web applications the value of such a Cookie is typically

provided by the web server once the user has authenticated itself

against the web application by following any of the multiple existing

mechanisms. As an alternative method, the WebSocket server could

request Digest [RFC2617] authentication by replying a HTTP 401 status

code. The WebSocket protocol [I-D.ietf-hybi-thewebsocketprotocol]

covers this usage in section 4.1:

If the status code received from the server is not 101, the

client handles the response per HTTP [RFC2616] procedures, in

particular the client might perform authentication if it receives

401 status code.

Regardless the WebSocket server requires authentication during the

WebSocket handshake or not, authentication MAY be requested at SIP

protocol level. Therefore a SIP client using the WebSocket transport

MUST implement Digest [RFC2617] authentication as stated in [RFC3261].

12. Examples

12.1. Registration

Alice (SIP WSS) proxy.atlanta.com

| |

|REGISTER F1 |

|---------------------------->|

|200 OK F2 |

|<----------------------------|

| |

Alice loads a web page using her web browser and retrieves a JavaScript

code implementing the WebSocket SIP Sub-Protocol defined in this

document. The JavaScript code obtained from the web server establishes

a secure WebSocket connection with a SIP proxy/registrar at

proxy.atlanta.com. Upon WebSocket connection, Alice constructs and

sends a SIP REGISTER by requesting Outbound and GRUU support. Since the

JavaScript stack in a browser has no way to determine the local address

from which the WebSocket connection is made, this implementation uses

anonymous.invalid in Via sent-by for every SIP requests and

anonymous.invalid as URI hostpart in the Contact header of the initial

REGISTER request.

Message details (authentication and SDP bodies are omitted for

simplicity):

*

F1 REGISTER Alice -> proxy.atlanta.com (transport WSS)

REGISTER sip:proxy.atlanta.com SIP/2.0

Via: SIP/2.0/WSS anonymous.invalid;branch=z9hG4bKasudf

From: sip:alice@atlanta.com;tag=65bnmj.34asd

To: sip:alice@atlanta.com

Call-ID: aiuy7k9njasd

CSeq: 1 REGISTER

Max-Forwards: 70

Supported: path, outbound, gruu

Route: <sip:proxy.atlanta.com:443;transport=ws;lr>

Contact: <sip:alice@anonymous.invalid;transport=ws>

 ;reg-id=1

 ;+sip.instance="<urn:uuid:f81-7dec-14a06cf1>"

F2 200 OK proxy.atlanta.com -> Alice (transport WSS)

SIP/2.0 200 OK

Via: SIP/2.0/WSS anonymous.invalid;branch=z9hG4bKasudf

From: sip:alice@atlanta.com;tag=65bnmj.34asd

To: sip:alice@atlanta.com;tag=12isjljn8

Call-ID: aiuy7k9njasd

CSeq: 1 REGISTER

Supported: outbound, gruu

Contact: <sip:alice@anonymous.invalid;transport=ws>

 ;reg-id=1

 ;+sip.instance="<urn:uuid:f81-7dec-14a06cf1>"

 ;pub-gruu="sip:alice@atlanta.com;gr=urn:uuid:f81-7dec-14a06cf1"

 ;temp-gruu="sip:87ash54=3dd.98a@atlanta.com;gr"

 ;expires=3600

12.2. INVITE dialog through a proxy

Alice (SIP WSS) proxy.atlanta.com (SIP UDP) Bob

| | |

|INVITE F1 | |

|---------------------------->| |

|100 Trying F2 | |

|<----------------------------| |

| |INVITE F3 |

| |---------------------------->|

| |200 OK F4 |

| |<----------------------------|

|200 OK F5 | |

|<----------------------------| |

| | |

|ACK F6 | |

|---------------------------->| |

| |ACK F7 |

| |---------------------------->|

| | |

| Both Way RTP Media |

|<===>|

| | |

| |BYE F8 |

| |<----------------------------|

|BYE F9 | |

|<----------------------------| |

|200 OK F10 | |

|---------------------------->| |

| |200 OK F11 |

| |---------------------------->|

| | |

In the same scenario Alice places a call to Bob's AoR by using the

public GRUU retrieved from the registrar as Contact URI of the INVITE.

The WebSocket SIP server at proxy.atlanta.com acts as a SIP proxy

routing the INVITE to the UDP location of Bob, who answers the call and

terminates it later.

Message details (authentication and SDP bodies are omitted for

simplicity):

F1 INVITE Alice -> proxy.atlanta.com (transport WSS)

INVITE sip:bob@atlanta.com SIP/2.0

Via: SIP/2.0/WSS anonymous.invalid;branch=z9hG4bK56sdasks

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:bob@atlanta.com

Call-ID: asidkj3ss

CSeq: 1 INVITE

Max-Forwards: 70

Supported: path, outbound, gruu

Route: <sip:proxy.atlanta.com:443;transport=ws;lr>

Contact: <sip:alice@atlanta.com

 ;gr=urn:uuid:f81-7dec-14a06cf1;ob>"

Content-Type: application/sdp

F2 100 Trying proxy.atlanta.com -> Alice (transport WSS)

SIP/2.0 100 Trying

Via: SIP/2.0/WSS anonymous.invalid;branch=z9hG4bK56sdasks

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:bob@atlanta.com

Call-ID: asidkj3ss

CSeq: 1 INVITE

F3 INVITE proxy.atlanta.com -> Bob (transport UDP)

INVITE sip:bob@203.0.113.22:5060 SIP/2.0

Via: SIP/2.0/UDP proxy.atlanta.com;branch=z9hG4bKhjhjqw32c

Via: SIP/2.0/WSS anonymous.invalid;branch=z9hG4bK56sdasks

Record-Route: <sip:proxy.atlanta.com;transport=udp;lr>,

 <sip:h7kjh12s@proxy.atlanta.com:443;transport=ws;lr>

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:bob@atlanta.com

Call-ID: asidkj3ss

CSeq: 1 INVITE

Max-Forwards: 69

Supported: path, outbound, gruu

Contact: <sip:alice@atlanta.com

 ;gr=urn:uuid:f81-7dec-14a06cf1;ob>"

Content-Type: application/sdp

F4 200 OK Bob -> proxy.atlanta.com (transport UDP)

SIP/2.0 200 OK

Via: SIP/2.0/UDP proxy.atlanta.com;branch=z9hG4bKhjhjqw32c

Via: SIP/2.0/WSS anonymous.invalid;branch=z9hG4bK56sdasks

Record-Route: <sip:proxy.atlanta.com;transport=udp;lr>,

 <sip:h7kjh12s@proxy.atlanta.com:443;transport=ws;lr>

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:bob@atlanta.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 INVITE

Max-Forwards: 69

Contact: <sip:bob@203.0.113.22:5060;transport=udp>

Content-Type: application/sdp

F5 200 OK proxy.atlanta.com -> Alice (transport WSS)

SIP/2.0 200 OK

Via: SIP/2.0/WSS anonymous.invalid;branch=z9hG4bK56sdasks

Record-Route: <sip:proxy.atlanta.com;transport=udp;lr>,

 <sip:h7kjh12s@proxy.atlanta.com:443;transport=ws;lr>

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:bob@atlanta.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 INVITE

Max-Forwards: 69

Contact: <sip:bob@203.0.113.22:5060;transport=udp>

Content-Type: application/sdp

F6 ACK Alice -> proxy.atlanta.com (transport WSS)

ACK sip:bob@203.0.113.22:5060;transport=udp SIP/2.0

Via: SIP/2.0/WSS anonymous.invalid;branch=z9hG4bKhgqqp090

Route: <sip:h7kjh12s@proxy.atlanta.com:443;transport=ws;lr>,

 <sip:proxy.atlanta.com;transport=udp;lr>,

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:bob@atlanta.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 ACK

Max-Forwards: 70

F7 ACK proxy.atlanta.com -> Bob (transport UDP)

ACK sip:bob@203.0.113.22:5060;transport=udp SIP/2.0

Via: SIP/2.0/UDP proxy.atlanta.com;branch=z9hG4bKhwpoc80zzx

Via: SIP/2.0/WSS anonymous.invalid;branch=z9hG4bKhgqqp090

From: sip:alice@atlanta.com;tag=asdyka899

To: sip:bob@atlanta.com;tag=bmqkjhsd

Call-ID: asidkj3ss

CSeq: 1 ACK

Max-Forwards: 69

F8 BYE Bob -> proxy.atlanta.com (transport UDP)

BYE sip:alice@atlanta.com;gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0

Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001

Route: <sip:proxy.atlanta.com;transport=udp;lr>,

 <sip:h7kjh12s@proxy.atlanta.com:443;transport=ws;lr>

From: sip:bob@atlanta.com;tag=bmqkjhsd

To: sip:alice@atlanta.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

Max-Forwards: 70

F9 BYE proxy.atlanta.com -> Alice (transport WSS)

BYE sip:alice@atlanta.com;gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0

Via: SIP/2.0/WSS proxy.atlanta.com:443;branch=z9hG4bKmma01m3r5

Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001

From: sip:bob@atlanta.com;tag=bmqkjhsd

To: sip:alice@atlanta.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

Max-Forwards: 69

F10 200 OK Alice -> proxy.atlanta.com (transport WSS)

SIP/2.0 200 OK

Via: SIP/2.0/WSS proxy.atlanta.com:443;branch=z9hG4bKmma01m3r5

Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001

From: sip:bob@atlanta.com;tag=bmqkjhsd

To: sip:alice@atlanta.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

F11 200 OK proxy.atlanta.com -> Bob (transport UDP)

SIP/2.0 200 OK

Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001

From: sip:bob@atlanta.com;tag=bmqkjhsd

To: sip:alice@atlanta.com;tag=asdyka899

Call-ID: asidkj3ss

CSeq: 1201 BYE

13. Security Considerations

13.1. Secure WebSocket Connection

It is recommended to protect the privacy of the SIP traffic through the

WebSocket communication by using a secure WebSocket connection

(tunneled over TLS [RFC5246]). For this, the client application MUST be

provided with a secure "wss" WebSocket URI.

13.2. WebSocket Topology Hiding

RFC 3261 [RFC3261] section 18.2.1 "Receiving Requests" states the

following:

When the server transport receives a request over any transport,

it MUST examine the value of the "sent-by" parameter in the top

Via header field value. If the host portion of the "sent-by"

parameter contains a domain name, or if it contains an IP address

that differs from the packet source address, the server MUST add

a "received" parameter to that Via header field value. This

parameter MUST contain the source address from which the packet

was received.

The requirement of adding the "received" parameter does not fit well

into WebSocket protocol nature. The WebSocket handshake connection

reuses existing HTTP infrastructure in which there could be certain

number of HTTP proxies and/or TCP load balancers between the client and

the WebSocket server, so the source IP the server would write into the

Via "received" parameter would be the IP of the HTTP/TCP intermediary

in front of it. This would reveal sensitive information about the

internal topology of the provider network to the WebSocket client.

Thus, given the fact that SIP responses can only be sent over the

existing WebSocket connection, the meaning of the Via "received"

parameter added by the server is of little use. Therefore, in order to

allow hiding possible sensitive information about the provider

infrastructure, this specification relaxes the requirement in RFC 3261

[RFC3261] section 18.2.1 "Receiving Requests" by stating that a

WebSocket server receiving a SIP request from a WebSocket client MAY

choose not to add the Via "received" parameter nor honor the Via

"rport" [RFC3581] parameter. A SIP client implementing the WebSocket

transport MUST be ready to receive SIP responses in which the topmost

Via header field does not contain the "received" and "rport"

parameters.

*

Subprotocol Identifier:

Subprotocol Common Name:

Subprotocol Definition:

WS:

WSS:

ws:

14. IANA Considerations

14.1. Registration of the WebSocket SIP Sub-Protocol

This specification requests IANA to create the WebSocket SIP Sub-

Protocol in the registry of WebSocket sub-protocols with the following

data:

sip

SIP over WebSocket

TBD, it should point to this document

14.2. Registration of new Via transports

This specification registers two new transport identifiers for Via

headers:

MUST be used when constructing a SIP request to be sent over a

plain WebSocket connection.

MUST be used when constructing a SIP request to be sent over a

secure WebSocket connection (tunneled over TLS [RFC5246]).

14.3. Registration of new SIP URI transport

This specification registers a new value for the "transport" parameter

in a SIP URI:

Identifies a SIP URI to be contacted using a WebSocket connection.

14.4. Registration of new NAPTR service field values

 Services Field Protocol Reference

 -------------------- -------- ---------

 SIP+D2W WS TBD: this document

 SIPS+D2W WSS TBD: this document

This document defines two new NAPTR service field values (SIP+D2W and

SIPS+D2W) and requests IANA to register these values under the

"Registry for the SIP SRV Resource Record Services Field". The

resulting entries are as follows:

15. Acknowledgements

Special thanks to the following people who participated in discussions

on the SIPCORE and RTCWEB WG mailing lists and contributed ideas and/or

provided detailed reviews (the list is likely to be incomplete):

Hadriel Kaplan, Paul Kyzivat, Ranjit Avasarala.

Special thanks also to Saul Ibarra Corretgé for his detailed review and

provided suggestions.

16. References

16.1. Normative References

[RFC2119]

Bradner, S., "Key words for use in RFCs

to Indicate Requirement Levels", BCP 14,

RFC 2119, March 1997.

[RFC2617]

Franks, J., Hallam-Baker, P.M.,

Hostetler, J.L., Lawrence, S.D., Leach,

P.J., Luotonen, A. and L. Stewart, "HTTP

Authentication: Basic and Digest Access

Authentication", RFC 2617, June 1999.

[RFC5234]

Crocker, D. and P. Overell, "Augmented

BNF for Syntax Specifications: ABNF", STD

68, RFC 5234, January 2008.

[RFC3261]

Rosenberg, J., Schulzrinne, H.,

Camarillo, G., Johnston, A., Peterson,

J., Sparks, R., Handley, M. and E.

Schooler, "SIP: Session Initiation

Protocol", RFC 3261, June 2002.

[RFC3263]

Rosenberg, J. and H. Schulzrinne,

"Session Initiation Protocol (SIP):

Locating SIP Servers", RFC 3263, June

2002.

[RFC5626]

Jennings, C., Mahy, R. and F. Audet,

"Managing Client-Initiated Connections in

the Session Initiation Protocol (SIP)",

RFC 5626, October 2009.

[RFC5627]

Rosenberg, J., "Obtaining and Using

Globally Routable User Agent URIs (GRUUs)

in the Session Initiation Protocol

(SIP)", RFC 5627, October 2009.

[I-D.ietf-hybi-

thewebsocketprotocol]

Fette, I and A Melnikov, "The WebSocket

protocol", Internet-Draft draft-ietf-

hybi-thewebsocketprotocol-17, September

2011.

16.2. Informative References

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

[RFC4168]

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3263
http://tools.ietf.org/html/rfc3263
http://tools.ietf.org/html/rfc5626
http://tools.ietf.org/html/rfc5626
http://tools.ietf.org/html/rfc5627
http://tools.ietf.org/html/rfc5627
http://tools.ietf.org/html/rfc5627
http://tools.ietf.org/html/rfc5627
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

Rosenberg, J., Schulzrinne, H. and G. Camarillo, "The

Stream Control Transmission Protocol (SCTP) as a

Transport for the Session Initiation Protocol (SIP)",

RFC 4168, October 2005.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer

Security (TLS) Protocol Version 1.2", RFC 5246, August

2008.

[RFC3327]

Willis, D. and B. Hoeneisen, "Session Initiation

Protocol (SIP) Extension Header Field for Registering

Non-Adjacent Contacts", RFC 3327, December 2002.

[RFC3581]

Rosenberg, J. and H. Schulzrinne, "An Extension to the

Session Initiation Protocol (SIP) for Symmetric

Response Routing", RFC 3581, August 2003.

[RFC5658]

Froment, T., Lebel, C. and B. Bonnaerens, "Addressing

Record-Route Issues in the Session Initiation Protocol

(SIP)", RFC 5658, October 2009.

[RFC6265]
Barth, A., "HTTP State Management Mechanism", RFC 6265,

April 2011.

[WS-API] Hickson, I., "The Web Sockets API", September 2010.

Authors' Addresses

Inaki Baz Castillo Baz Castillo XtraTelecom S.A. Barakaldo, Basque

Country Spain EMail: ibc@aliax.net

Jose Luis Millan Luis Millan XtraTelecom S.A.

Bilbao, Basque Country Spain EMail: jmillan@aliax.net

Victor Pascual Pascual Acme Packet Anabel Segura 10 Madrid, Madrid

28108 Spain EMail: vpascual@acmepacket.com

http://tools.ietf.org/html/rfc4168
http://tools.ietf.org/html/rfc4168
http://tools.ietf.org/html/rfc4168
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc3327
http://tools.ietf.org/html/rfc3327
http://tools.ietf.org/html/rfc3327
http://tools.ietf.org/html/rfc3581
http://tools.ietf.org/html/rfc3581
http://tools.ietf.org/html/rfc3581
http://tools.ietf.org/html/rfc5658
http://tools.ietf.org/html/rfc5658
http://tools.ietf.org/html/rfc5658
http://tools.ietf.org/html/rfc6265
mailto:ibc@aliax.net
mailto:jmillan@aliax.net
mailto:vpascual@acmepacket.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. The WebSocket Protocol
	4. The WebSocket SIP Sub-Protocol
	5. SIP WebSocket Transport
	5.1. Via Transport Parameter
	5.2. SIP URI Transport Parameter
	5.3. Sending Responses
	6. Outbound and GRUU Usage
	7. Locating a SIP Server
	8. WebSocket Client Usage
	8.1. WebSocket Disconnection
	9. WebSocket Server Usage
	9.1. SIP Proxy Considerations
	10. Connection Keep Alive
	11. Authentication
	12. Examples
	12.1. Registration
	12.2. INVITE dialog through a proxy
	13. Security Considerations
	13.1. Secure WebSocket Connection
	13.2. WebSocket Topology Hiding
	14. IANA Considerations
	14.1. Registration of the WebSocket SIP Sub-Protocol
	14.2. Registration of new Via transports
	14.3. Registration of new SIP URI transport
	14.4. Registration of new NAPTR service field values
	15. Acknowledgements
	16. References
	16.1. Normative References
	16.2. Informative References
	Authors' Addresses

