
SIPCORE Working Group I. Baz Castillo
Internet-Draft J. Millan Villegas
Intended status: Standards Track Consultant
Expires: October 18, 2012 V. Pascual
 Acme Packet
 April 16, 2012

The WebSocket Protocol as a Transport for the Session Initiation
Protocol (SIP)

draft-ibc-sipcore-sip-websocket-02

Abstract

 The WebSocket protocol enables two-way realtime communication between
 clients and servers. This document specifies a new WebSocket sub-
 protocol as a reliable transport mechanism between SIP (Session
 Initiation Protocol) entities and enables usage of the SIP protocol
 in new scenarios.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 18, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Baz Castillo, et al. Expires October 18, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft WebSocket as a Transport for SIP April 2012

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
2.1. Definitions . 3

3. The WebSocket Protocol . 3
4. The WebSocket SIP Sub-Protocol 4
4.1. Handshake . 4
4.2. SIP encoding . 5

5. SIP WebSocket Transport 5
5.1. General . 5
5.2. Updates to RFC 3261 6
5.2.1. Via Transport Parameter 6
5.2.2. SIP URI Transport Parameter 6
5.2.3. Sending Responses 6

5.3. Locating a SIP Server 7
6. Connection Keep Alive . 7
7. Authentication . 8
8. Examples . 8
8.1. Registration . 8
8.2. INVITE dialog through a proxy 10

9. Security Considerations 13
9.1. Secure WebSocket Connection 14
9.2. Usage of SIPS Scheme 14

10. IANA Considerations . 14
10.1. Registration of the WebSocket SIP Sub-Protocol 14
10.2. Registration of new Via transports 14
10.3. Registration of new SIP URI transport 14
10.4. Registration of new NAPTR service field values 15

11. Acknowledgements . 15
12. References . 15
12.1. Normative References 15
12.2. Informative References 16

Appendix A. Implementation Guidelines 17
A.1. SIP WebSocket Client Considerations 18
A.2. SIP WebSocket Server Considerations 18

Appendix B. HTTP Topology Hiding 18
 Authors' Addresses . 19

https://datatracker.ietf.org/doc/html/rfc3261

Baz Castillo, et al. Expires October 18, 2012 [Page 2]

Internet-Draft WebSocket as a Transport for SIP April 2012

1. Introduction

 The WebSocket [RFC6455] protocol enables messages exchange between
 clients and servers on top of a persistent TCP connection (optionally
 secured with TLS [RFC5246]). The initial protocol handshake makes
 use of HTTP [RFC2616] semantics, allowing the WebSocket protocol to
 reuse existing HTTP infrastructure.

 Modern web browsers include a WebSocket client stack complying with
 The WebSocket API [WS-API] as specified by the W3C. It is expected
 that other client applications (those running in personal computers
 and devices such as smartphones) will also run a WebSocket client
 stack. The specification in this document enables usage of the SIP
 protocol in those new scenarios.

 This specification defines a new WebSocket sub-protocol (section 1.9
 in [RFC6455]) for transporting SIP messages between a WebSocket
 client and server, a new reliable and message boundary transport for
 the SIP protocol, new DNS NAPTR [RFC3403] service values and
 procedures for SIP entities implementing the WebSocket transport.
 Media transport is out of the scope of this document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2.1. Definitions

 SIP WebSocket Client: A SIP entity capable of opening outbound
 connections with WebSocket servers and speaking the WebSocket
 SIP Sub-Protocol as defined by this document.

 SIP WebSocket Server: A SIP entity capable of listening for inbound
 connections from WebSocket clients and speaking the WebSocket
 SIP Sub-Protocol as defined by this document.

3. The WebSocket Protocol

 This section is non-normative.

 WebSocket protocol [RFC6455] is a transport layer on top of TCP
 (optionally secured with TLS [RFC5246]) in which both client and
 server exchange message units in both directions. The protocol
 defines a connection handshake, WebSocket sub-protocol and extensions

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6455#section-1.9
https://datatracker.ietf.org/doc/html/rfc6455#section-1.9
https://datatracker.ietf.org/doc/html/rfc3403
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc5246

Baz Castillo, et al. Expires October 18, 2012 [Page 3]

Internet-Draft WebSocket as a Transport for SIP April 2012

 negotiation, a frame format for sending application and control data,
 a masking mechanism, and status codes for indicating disconnection
 causes.

 The WebSocket connection handshake is based on HTTP [RFC2616]
 protocol by means of a specific HTTP GET method with Upgrade request
 sent by the client which is answered by the server (if the
 negotiation succeeded) with HTTP 101 status code. Once the handshake
 is done the connection upgrades from HTTP to the WebSocket protocol.
 This handshake procedure is designed to reuse the existing HTTP
 infrastructure. During the connection handshake, client and server
 agree in the application protocol to use on top of the WebSocket
 transport. Such application protocol (also known as the "WebSocket
 sub-protocol") defines the format and semantics of the messages
 exchanged between both endpoints. It may be a custom protocol or a
 standarized one (as the WebSocket SIP Sub-Protocol proposed in this
 document). Once the HTTP 101 response is processed both client and
 server reuse the underlying TCP connection for sending WebSocket
 messages and control frames to each other in a persistent way.

 WebSocket defines message units as application data exchange for
 communication endpoints, becoming a message boundary transport layer.
 These messages can contain UTF-8 text or binary data, and can be
 split into various WebSocket text/binary frames.

 However, the WebSocket API [WS-API] for web browsers just includes
 callbacks that are invoked upon receipt of an entire message,
 regardless of whether it was received in a single or multiple
 WebSocket frames.

4. The WebSocket SIP Sub-Protocol

 The term WebSocket sub-protocol refers to the application-level
 protocol layered on top of a WebSocket connection. This document
 specifies the WebSocket SIP Sub-Protocol for carrying SIP requests
 and responses through a WebSocket connection.

4.1. Handshake

 The SIP WebSocket Client and SIP WebSocket Server need to agree on
 the WebSocket SIP Sub-Protocol during the WebSocket handshake
 procedure as defined in section 1.3 of [RFC6455]. The client MUST
 include the value "sip" in the Sec-WebSocket-Protocol header in its
 handshake request. The 101 reply from the server MUST contain "sip"
 in its corresponding Sec-WebSocket-Protocol header.

 Below is an example of the WebSocket handshake in which the client

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6455#section-1.3

Baz Castillo, et al. Expires October 18, 2012 [Page 4]

Internet-Draft WebSocket as a Transport for SIP April 2012

 requests the WebSocket SIP Sub-Protocol support from the server:

 GET / HTTP/1.1
 Host: sip-ws.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Origin: http://www.example.com
 Sec-WebSocket-Protocol: sip
 Sec-WebSocket-Version: 13

 The handshake response from the server supporting the WebSocket SIP
 Sub-Protocol would look as follows:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: sip

 Once the negotiation is done, the WebSocket connection is established
 with SIP as the WebSocket sub-protocol. The WebSocket messages to be
 transmitted over this connection MUST conform to the established
 application protocol.

4.2. SIP encoding

 WebSocket messages are carried on top of WebSocket UTF-8 text frames
 or binary frames. The SIP protocol [RFC3261] allows both text and
 binary bodies in SIP messages. Therefore SIP WebSocket Clients and
 SIP WebSocket Servers MUST accept both WebSocket text and binary
 frames.

5. SIP WebSocket Transport

5.1. General

 WebSocket [RFC6455] is a reliable protocol and therefore the
 WebSocket sub-protocol for a SIP transport defined by this document
 is also a reliable transport. Thus, client and server transactions
 using WebSocket transport MUST follow the procedures and timer values
 for reliable transports as defined in [RFC3261].

 Each complete SIP message MUST be carried within a single WebSocket
 message, and a WebSocket message MUST NOT contain more than one SIP
 message. Therefore the usage of the Content-Length header field is
 optional.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc3261

Baz Castillo, et al. Expires October 18, 2012 [Page 5]

Internet-Draft WebSocket as a Transport for SIP April 2012

 This makes parsing of SIP messages easier on client side
 (typically web-based applications with an strict and simple API
 for receiving WebSocket messages). There is no need to establish
 boundaries (using Content-Length headers) between different
 messages. Same advantage is present in other message-based SIP
 transports such as UDP or SCTP [RFC4168].

5.2. Updates to RFC 3261

5.2.1. Via Transport Parameter

 Via header fields carry the transport protocol identifier. This
 document defines the value "WS" to be used for requests over plain
 WebSocket protocol and "WSS" for requests over secure WebSocket
 protocol (in which the WebSocket connection is established using TLS
 [RFC5246] with TCP transport).

 The updated RFC 3261 augmented BNF (Backus-Naur Form) [RFC5234] for
 this parameter reads as follows:

 transport = "UDP" / "TCP" / "TLS" / "SCTP" / "TLS-SCTP"
 / "WS" / "WSS"
 / other-transport

5.2.2. SIP URI Transport Parameter

 This document defines the value "ws" as the transport parameter value
 for a SIP URI [RFC3986] to be contacted using WebSocket protocol as
 transport.

 The updated RFC 3261 augmented BNF (Backus-Naur Form) for this
 parameter reads as follows:

 transport-param = "transport="
 ("udp" / "tcp" / "sctp" / "tls" / "ws"
 / other-transport)

5.2.3. Sending Responses

 This specification updates the section 18.2.2 "Sending Responses" in
 [RFC3261] by adding the following:

 o If the Via "sent-protocol" is "WS" or "WSS" the response MUST be
 sent using the existing WebSocket connection to the source of the
 original request that created the transaction, if that connection
 is still open. If that connection is no longer open, the server
 SHOULD NOT attempt to open a WebSocket connection for sending the
 response.

https://datatracker.ietf.org/doc/html/rfc4168
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Baz Castillo, et al. Expires October 18, 2012 [Page 6]

Internet-Draft WebSocket as a Transport for SIP April 2012

 This is due to the nature of the WebSocket protocol in which just
 the WebSocket client can establish a connection with the WebSocket
 server. Typically a WebSocket client does not listen for inbound
 connections and WebSocket servers do not open outbound
 connections.

5.3. Locating a SIP Server

RFC 3263 [RFC3263] specifies the procedures which should be followed
 by SIP entities for locating SIP servers. This specification defines
 the NAPTR service value "SIP+D2W" for SIP WebSocket Servers that
 support plain WebSocket transport and "SIPS+D2W" for SIP WebSocket
 Servers that support secure WebSocket transport.

 Unfortunately neither JavaScript stacks nor WebSocket stacks
 running in current web browsers are capable of performing DNS
 NAPTR/SRV queries.

 In the absence of an explicit port and DNS SRV resource records, the
 default port for a SIP URI with "ws" transport parameter is 80 in
 case of SIP scheme and 443 in case of SIPS scheme.

6. Connection Keep Alive

 This section is non-normative.

 It is RECOMMENDED that the SIP WebSocket Client or Server keeps the
 WebSocket connection open by sending periodic WebSocket Ping frames
 as described in [RFC6455] section 5.5.2.

 Note however that The WebSocket API [WS-API] does not provide a
 mechanism for web applications running in a web browser to decide
 whether or not to send periodic WebSocket Ping frames to the
 server. The usage of such a keep alive feature is a decision of
 each web browser vendor and may depend on the web browser
 configuration.

 Any future WebSocket protocol extension providing a keep alive
 mechanism could also be used.

 The SIP stack in the SIP WebSocket Client MAY also use Network
 Address Translation (NAT) keep-alive mechanisms defined for SIP
 connection-oriented transports, such as the CRLF Keep-Alive Technique
 mechanism described in [RFC5626] section 3.5.1 or [RFC6223].

 Implementing these techniques would involve sending a WebSocket
 message to the SIP WebSocket Server whose content is a double

https://datatracker.ietf.org/doc/html/rfc3263
https://datatracker.ietf.org/doc/html/rfc3263
https://datatracker.ietf.org/doc/html/rfc6455#section-5.5.2
https://datatracker.ietf.org/doc/html/rfc5626#section-3.5.1
https://datatracker.ietf.org/doc/html/rfc6223

Baz Castillo, et al. Expires October 18, 2012 [Page 7]

Internet-Draft WebSocket as a Transport for SIP April 2012

 CRLF, and expecting a WebSocket message from the server containing
 a single CRLF as response.

7. Authentication

 This section is non-normative.

 Prior to sending SIP requests, the SIP WebSocket Client connects to
 the SIP WebSocket Server and performs the connection handshake. As
 described in Section 3 the handshake procedure involves a HTTP GET
 request replied with HTTP 101 status code by the server.

 In order to authorize the WebSocket connection, the SIP WebSocket
 Server MAY inspect the Cookie [RFC6265] header in the HTTP GET
 request (if present). In case of web applications the value of such
 a Cookie is usually provided by the web server once the user has
 authenticated itself with the web server by following any of the
 multiple existing mechanisms. As an alternative method, the SIP
 WebSocket Server could request HTTP authentication by replying with a
 HTTP 401 status code. The WebSocket protocol [RFC6455] covers this
 usage in section 4.1:

 If the status code received from the server is not 101, the client
 handles the response per HTTP [RFC2616] procedures, in particular
 the client might perform authentication if it receives 401 status
 code.

 Regardless whether the SIP WebSocket Server requires authentication
 during the WebSocket handshake or not, authentication MAY be
 requested at SIP protocol level. Therefore it is RECOMMENDED for a
 SIP WebSocket Client to implement HTTP Digest [RFC2617]
 authentication as stated in [RFC3261].

8. Examples

8.1. Registration

 Alice (SIP WSS) proxy.atlanta.com
 | |
 |REGISTER F1 |
 |---------------------------->|
 |200 OK F2 |
 |<----------------------------|
 | |

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3261

Baz Castillo, et al. Expires October 18, 2012 [Page 8]

Internet-Draft WebSocket as a Transport for SIP April 2012

 Alice loads a web page using her web browser and retrieves a
 JavaScript code implementing the WebSocket SIP Sub-Protocol defined
 in this document. The JavaScript code (a SIP WebSocket Client)
 establishes a secure WebSocket connection with a SIP proxy/registrar
 (a SIP WebSocket Server) at proxy.atlanta.com. Upon WebSocket
 connection, Alice constructs and sends a SIP REGISTER by requesting
 Outbound and GRUU support. Since the JavaScript stack in a browser
 has no way to determine the local address from which the WebSocket
 connection is made, this implementation uses a random ".invalid"
 domain name for the Via sent-by and for the URI hostpart in the
 Contact header (see Appendix A.1).

 Message details (authentication and SDP bodies are omitted for
 simplicity):

 F1 REGISTER Alice -> proxy.atlanta.com (transport WSS)

 REGISTER sip:proxy.atlanta.com SIP/2.0
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKasudf
 From: sip:alice@atlanta.com;tag=65bnmj.34asd
 To: sip:alice@atlanta.com
 Call-ID: aiuy7k9njasd
 CSeq: 1 REGISTER
 Max-Forwards: 70
 Supported: path, outbound, gruu
 Contact: <sip:alice@df7jal23ls0d.invalid;transport=ws>
 ;reg-id=1
 ;+sip.instance="<urn:uuid:f81-7dec-14a06cf1>"

 F2 200 OK proxy.atlanta.com -> Alice (transport WSS)

 SIP/2.0 200 OK
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKasudf
 From: sip:alice@atlanta.com;tag=65bnmj.34asd
 To: sip:alice@atlanta.com;tag=12isjljn8
 Call-ID: aiuy7k9njasd
 CSeq: 1 REGISTER
 Supported: outbound, gruu
 Contact: <sip:alice@df7jal23ls0d.invalid;transport=ws>
 ;reg-id=1
 ;+sip.instance="<urn:uuid:f81-7dec-14a06cf1>"
 ;pub-gruu="sip:alice@atlanta.com;gr=urn:uuid:f81-7dec-14a06cf1"
 ;temp-gruu="sip:87ash54=3dd.98a@atlanta.com;gr"
 ;expires=3600

Baz Castillo, et al. Expires October 18, 2012 [Page 9]

Internet-Draft WebSocket as a Transport for SIP April 2012

8.2. INVITE dialog through a proxy

 Alice (SIP WSS) proxy.atlanta.com (SIP UDP) Bob
INVITE F1	
---------------------------->	
100 Trying F2	
<----------------------------	
	INVITE F3
	---------------------------->
	200 OK F4
	<----------------------------
200 OK F5	
<----------------------------	
ACK F6	
---------------------------->	
	ACK F7
	---------------------------->
Both Way RTP Media	
<===>	
	BYE F8
	<----------------------------
BYE F9	
<----------------------------	
200 OK F10	
---------------------------->	
	200 OK F11
	---------------------------->

 In the same scenario Alice places a call to Bob's AoR. The WebSocket
 SIP server at proxy.atlanta.com acts as a SIP proxy routing the
 INVITE to the UDP location of Bob, who answers the call and
 terminates it later.

 Message details (authentication and SDP bodies are omitted for
 simplicity):

 F1 INVITE Alice -> proxy.atlanta.com (transport WSS)

 INVITE sip:bob@atlanta.com SIP/2.0
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 From: sip:alice@atlanta.com;tag=asdyka899

Baz Castillo, et al. Expires October 18, 2012 [Page 10]

Internet-Draft WebSocket as a Transport for SIP April 2012

 To: sip:bob@atlanta.com
 Call-ID: asidkj3ss
 CSeq: 1 INVITE
 Max-Forwards: 70
 Supported: path, outbound, gruu
 Route: <sip:proxy.atlanta.com:443;transport=ws;lr>
 Contact: <sip:alice@atlanta.com
 ;gr=urn:uuid:f81-7dec-14a06cf1;ob>"
 Content-Type: application/sdp

 F2 100 Trying proxy.atlanta.com -> Alice (transport WSS)

 SIP/2.0 100 Trying
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 From: sip:alice@atlanta.com;tag=asdyka899
 To: sip:bob@atlanta.com
 Call-ID: asidkj3ss
 CSeq: 1 INVITE

 F3 INVITE proxy.atlanta.com -> Bob (transport UDP)

 INVITE sip:bob@203.0.113.22:5060 SIP/2.0
 Via: SIP/2.0/UDP proxy.atlanta.com;branch=z9hG4bKhjhjqw32c
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 Record-Route: <sip:proxy.atlanta.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.atlanta.com:443;transport=ws;lr>
 From: sip:alice@atlanta.com;tag=asdyka899
 To: sip:bob@atlanta.com
 Call-ID: asidkj3ss
 CSeq: 1 INVITE
 Max-Forwards: 69
 Supported: path, outbound, gruu
 Contact: <sip:alice@atlanta.com
 ;gr=urn:uuid:f81-7dec-14a06cf1;ob>"
 Content-Type: application/sdp

 F4 200 OK Bob -> proxy.atlanta.com (transport UDP)

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP proxy.atlanta.com;branch=z9hG4bKhjhjqw32c
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 Record-Route: <sip:proxy.atlanta.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.atlanta.com:443;transport=ws;lr>
 From: sip:alice@atlanta.com;tag=asdyka899
 To: sip:bob@atlanta.com;tag=bmqkjhsd

Baz Castillo, et al. Expires October 18, 2012 [Page 11]

Internet-Draft WebSocket as a Transport for SIP April 2012

 Call-ID: asidkj3ss
 CSeq: 1 INVITE
 Max-Forwards: 69
 Contact: <sip:bob@203.0.113.22:5060;transport=udp>
 Content-Type: application/sdp

 F5 200 OK proxy.atlanta.com -> Alice (transport WSS)

 SIP/2.0 200 OK
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 Record-Route: <sip:proxy.atlanta.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.atlanta.com:443;transport=ws;lr>
 From: sip:alice@atlanta.com;tag=asdyka899
 To: sip:bob@atlanta.com;tag=bmqkjhsd
 Call-ID: asidkj3ss
 CSeq: 1 INVITE
 Max-Forwards: 69
 Contact: <sip:bob@203.0.113.22:5060;transport=udp>
 Content-Type: application/sdp

 F6 ACK Alice -> proxy.atlanta.com (transport WSS)

 ACK sip:bob@203.0.113.22:5060;transport=udp SIP/2.0
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKhgqqp090
 Route: <sip:h7kjh12s@proxy.atlanta.com:443;transport=ws;lr>,
 <sip:proxy.atlanta.com;transport=udp;lr>,
 From: sip:alice@atlanta.com;tag=asdyka899
 To: sip:bob@atlanta.com;tag=bmqkjhsd
 Call-ID: asidkj3ss
 CSeq: 1 ACK
 Max-Forwards: 70

 F7 ACK proxy.atlanta.com -> Bob (transport UDP)

 ACK sip:bob@203.0.113.22:5060;transport=udp SIP/2.0
 Via: SIP/2.0/UDP proxy.atlanta.com;branch=z9hG4bKhwpoc80zzx
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKhgqqp090
 From: sip:alice@atlanta.com;tag=asdyka899
 To: sip:bob@atlanta.com;tag=bmqkjhsd
 Call-ID: asidkj3ss
 CSeq: 1 ACK
 Max-Forwards: 69

 F8 BYE Bob -> proxy.atlanta.com (transport UDP)

Baz Castillo, et al. Expires October 18, 2012 [Page 12]

Internet-Draft WebSocket as a Transport for SIP April 2012

 BYE sip:alice@atlanta.com;gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 Route: <sip:proxy.atlanta.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.atlanta.com:443;transport=ws;lr>
 From: sip:bob@atlanta.com;tag=bmqkjhsd
 To: sip:alice@atlanta.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE
 Max-Forwards: 70

 F9 BYE proxy.atlanta.com -> Alice (transport WSS)

 BYE sip:alice@atlanta.com;gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0
 Via: SIP/2.0/WSS proxy.atlanta.com:443;branch=z9hG4bKmma01m3r5
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 From: sip:bob@atlanta.com;tag=bmqkjhsd
 To: sip:alice@atlanta.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE
 Max-Forwards: 69

 F10 200 OK Alice -> proxy.atlanta.com (transport WSS)

 SIP/2.0 200 OK
 Via: SIP/2.0/WSS proxy.atlanta.com:443;branch=z9hG4bKmma01m3r5
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 From: sip:bob@atlanta.com;tag=bmqkjhsd
 To: sip:alice@atlanta.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE

 F11 200 OK proxy.atlanta.com -> Bob (transport UDP)

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 From: sip:bob@atlanta.com;tag=bmqkjhsd
 To: sip:alice@atlanta.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE

9. Security Considerations

Baz Castillo, et al. Expires October 18, 2012 [Page 13]

Internet-Draft WebSocket as a Transport for SIP April 2012

9.1. Secure WebSocket Connection

 It is recommended to protect the privacy of the SIP traffic through
 the WebSocket communication by using a secure WebSocket connection
 (tunneled over TLS [RFC5246]).

9.2. Usage of SIPS Scheme

 SIPS scheme within a SIP request dictates that the entire request
 path to the target be secured. If such a path includes a WebSocket
 node it MUST be a secure WebSocket connection.

10. IANA Considerations

10.1. Registration of the WebSocket SIP Sub-Protocol

 This specification requests IANA to create the WebSocket SIP Sub-
 Protocol in the registry of WebSocket sub-protocols with the
 following data:

 Subprotocol Identifier: sip

 Subprotocol Common Name: WebSocket Transport for SIP (Session
 Initiation Protocol)

 Subprotocol Definition: TBD, it should point to this document

10.2. Registration of new Via transports

 This specification registers two new transport identifiers for Via
 headers:

 WS: MUST be used when constructing a SIP request to be sent over a
 plain WebSocket connection.

 WSS: MUST be used when constructing a SIP request to be sent over a
 secure WebSocket connection.

10.3. Registration of new SIP URI transport

 This specification registers a new value for the "transport"
 parameter in a SIP URI:

 ws: Identifies a SIP URI to be contacted using a WebSocket
 connection.

https://datatracker.ietf.org/doc/html/rfc5246

Baz Castillo, et al. Expires October 18, 2012 [Page 14]

Internet-Draft WebSocket as a Transport for SIP April 2012

10.4. Registration of new NAPTR service field values

 This document defines two new NAPTR service field values (SIP+D2W and
 SIPS+D2W) and requests IANA to register these values under the
 "Registry for the SIP SRV Resource Record Services Field". The
 resulting entries are as follows:

 Services Field Protocol Reference
 -------------------- -------- ---------
 SIP+D2W WS TBD: this document
 SIPS+D2W WSS TBD: this document

11. Acknowledgements

 Special thanks to the following people who participated in
 discussions on the SIPCORE and RTCWEB WG mailing lists and
 contributed ideas and/or provided detailed reviews (the list is
 likely to be incomplete): Hadriel Kaplan, Paul Kyzivat, Adam Roach,
 Ranjit Avasarala, Xavier Marjou, Kevin P. Fleming.

 Special thanks also to Alan Johnston, Christer Holmberg and Salvatore
 Loreto for their reviews.

 Special thanks to Saul Ibarra Corretge for his contribution and
 suggestions.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3263] Rosenberg, J. and H. Schulzrinne, "Session Initiation
 Protocol (SIP): Locating SIP Servers", RFC 3263,
 June 2002.

 [RFC3403] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
 Part Three: The Domain Name System (DNS) Database",

RFC 3403, October 2002.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3263
https://datatracker.ietf.org/doc/html/rfc3403

Baz Castillo, et al. Expires October 18, 2012 [Page 15]

Internet-Draft WebSocket as a Transport for SIP April 2012

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

12.2. Informative References

 [RFC2606] Eastlake, D. and A. Panitz, "Reserved Top Level DNS
 Names", BCP 32, RFC 2606, June 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC3327] Willis, D. and B. Hoeneisen, "Session Initiation Protocol
 (SIP) Extension Header Field for Registering Non-Adjacent
 Contacts", RFC 3327, December 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4168] Rosenberg, J., Schulzrinne, H., and G. Camarillo, "The
 Stream Control Transmission Protocol (SCTP) as a Transport
 for the Session Initiation Protocol (SIP)", RFC 4168,
 October 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5626] Jennings, C., Mahy, R., and F. Audet, "Managing Client-
 Initiated Connections in the Session Initiation Protocol
 (SIP)", RFC 5626, October 2009.

 [RFC5627] Rosenberg, J., "Obtaining and Using Globally Routable User
 Agent URIs (GRUUs) in the Session Initiation Protocol
 (SIP)", RFC 5627, October 2009.

 [RFC6223] Holmberg, C., "Indication of Support for Keep-Alive",
RFC 6223, April 2011.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/bcp32
https://datatracker.ietf.org/doc/html/rfc2606
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4168
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5626
https://datatracker.ietf.org/doc/html/rfc5627
https://datatracker.ietf.org/doc/html/rfc6223
https://datatracker.ietf.org/doc/html/rfc6265

Baz Castillo, et al. Expires October 18, 2012 [Page 16]

Internet-Draft WebSocket as a Transport for SIP April 2012

 April 2011.

 [WS-API] Hickson, I., "The Web Sockets API", April 2012.

Appendix A. Implementation Guidelines

 This section is non-normative.

 Let us assume a scenario in which the users access with their web
 browsers (probably behind NAT) to an intranet, perform web login by
 entering their user identifier and credentials, and retrieve a
 JavaScript code (along with the HTML code itself) implementing a SIP
 WebSocket Client.

 Such a SIP stack connects to a given SIP WebSocket Server (an
 outbound SIP proxy which also implements classic SIP transports such
 as UDP and TCP). The HTTP GET request sent by the web browser for
 the WebSocket handshake includes a Cookie [RFC6265] header with the
 value previously retrieved after the successful web login procedure.
 The Cookie value is then inspected by the WebSocket server for
 authorizing the connection. Once the WebSocket connection is
 established, the SIP WebSocket Client performs a SIP registration and
 common SIP stuf begins. The SIP registrar server is located behind
 the SIP outbound proxy.

 This scenario is quite similar to the one in which SIP UAs behind NAT
 connect to an outbound proxy and need to reuse the same TCP
 connection for incoming requests. In both cases, the SIP clients are
 just reachable through the outbound proxy they are connected to.

 Outbound [RFC5626] seems an appropriate solution for this scenario.
 Therefore these SIP WebSocket Clients and the SIP registrar implement
 both Outbound and Path [RFC3327], and the SIP outbound proxy becomes
 an Outbound Edge Proxy (as defined in [RFC5626] section 3.4).

 SIP WebSocket Clients in this scenario receive incoming SIP requests
 via the SIP WebSocket Server they are connected to. Therefore, in
 some call transfer cases the usage of GRUU [RFC5627] (which should be
 implemented in both the SIP WebSocket Clients and SIP registrar) is
 valuable.

 If a REFER request is sent to a thirdy SIP user agent indicating
 the Contact URI of a SIP WebSocket Client as the target in the
 Refer-To header field, such a URI will be reachable by the thirdy
 SIP UA just in the case it is a globally routable URI. GRUU
 (Globally Routable User Agent URI) is a solution for those
 scenarios, and would enforce the incoming request from the thirdy

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc5626
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc5626#section-3.4
https://datatracker.ietf.org/doc/html/rfc5627

Baz Castillo, et al. Expires October 18, 2012 [Page 17]

Internet-Draft WebSocket as a Transport for SIP April 2012

 SIP user agent to reach the SIP registrar which would route the
 request via the Outbound Edge Proxy.

A.1. SIP WebSocket Client Considerations

 The JavaScript stack in web browsers does not have the ability to
 discover the local transport address which the WebSocket connection
 is originated from. Therefore the SIP WebSocket Client creates a
 domain consisting of a random token followed by .invalid top domain
 name, as stated in [RFC2606], and uses it within the Via and Contact
 header.

 The Contact URI provided by the SIP clients requesting Outbound
 support is not later used for routing purposes, thus it is safe to
 set a random domain in the Contact URI hostpart.

 Both Outbound and GRUU specifications require the SIP client to
 indicate a Uniform Resource Name (URN) in the "+sip.instance"
 parameter of the Contact header during the registration. The client
 device is responsible for getting such a constant and unique value.

 In the case of web browsers it is hard to get a URN value from the
 browser itself. This scenario suggests that value is generated
 according to [RFC5626] section 4.1 by the web application running
 in the browser the first time it loads the JavaScript SIP stack
 code, and then it is stored as a Cookie within the browser.

A.2. SIP WebSocket Server Considerations

 The SIP WebSocket Server in this scenario behaves as a SIP Outbound
 Edge Proxy, which involves support for Outbound [RFC5626] and Path
 [RFC3327].

 The proxy performs Loose Routing and remains in dialogs path as
 specified in [RFC3261]. Otherwise in-dialog requests would fail
 since SIP WebSocket Clients make use of their SIP WebSocket Server in
 order to send and receive SIP requests and responses.

Appendix B. HTTP Topology Hiding

 This section is non-normative.

RFC 3261 [RFC3261] section 18.2.1 "Receiving Requests" states the
 following:

 When the server transport receives a request over any transport,
 it MUST examine the value of the "sent-by" parameter in the top

https://datatracker.ietf.org/doc/html/rfc2606
https://datatracker.ietf.org/doc/html/rfc5626#section-4.1
https://datatracker.ietf.org/doc/html/rfc5626
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261#section-18.2.1

Baz Castillo, et al. Expires October 18, 2012 [Page 18]

Internet-Draft WebSocket as a Transport for SIP April 2012

 Via header field value. If the host portion of the "sent-by"
 parameter contains a domain name, or if it contains an IP address
 that differs from the packet source address, the server MUST add a
 "received" parameter to that Via header field value. This
 parameter MUST contain the source address from which the packet
 was received.

 The requirement of adding the "received" parameter does not fit well
 into WebSocket protocol nature. The WebSocket handshake connection
 reuses existing HTTP infrastructure in which there could be certain
 number of HTTP proxies and/or TCP load balancers between the SIP
 WebSocket Client and Server, so the source IP the server would write
 into the Via "received" parameter would be the IP of the HTTP/TCP
 intermediary in front of it. This could reveal sensitive information
 about the internal topology of the provider network to the client.

 Thus, given the fact that SIP responses can only be sent over the
 existing WebSocket connection, the meaning of the Via "received"
 parameter added by the SIP WebSocket Server is of little use.
 Therefore, in order to allow hiding possible sensitive information
 about the provider infrastructure, the implementer could decide not
 to satisfy the requirement in RFC 3261 [RFC3261] section 18.2.1
 "Receiving Requests" and not add the "received" parameter to the Via
 header.

 However, keep in mind that this would involve a violation of the
RFC 3261.

Authors' Addresses

 Inaki Baz Castillo
 Consultant
 Barakaldo, Basque Country
 Spain

 Email: ibc@aliax.net

 Jose Luis Millan Villegas
 Consultant
 Bilbao, Basque Country
 Spain

 Email: jmillan@aliax.net

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261#section-18.2.1
https://datatracker.ietf.org/doc/html/rfc3261

Baz Castillo, et al. Expires October 18, 2012 [Page 19]

Internet-Draft WebSocket as a Transport for SIP April 2012

 Victor Pascual
 Acme Packet
 Anabel Segura 10
 Madrid, Madrid 28108
 Spain

 Email: vpascual@acmepacket.com

Baz Castillo, et al. Expires October 18, 2012 [Page 20]

