
OAuth Working Group J. Ideskog
Internet-Draft T. Spencer
Intended status: Standards Track Curity AB
Expires: September 19, 2018 March 18, 2018

OAuth 2.0 Assisted Token
draft-ideskog-assisted-token-00

Abstract

 The OAuth 2.0 authorization flow for Single Page Applications (SPAs),
 often referred to as the assisted token flow, enables OAuth clients
 to request user authorization written in scripting languages, like
 JavaScript, with a simplified integration compared to the implicit
 grant type flow. Communication does not rely on redirection of the
 user agent, but instead leverages HTML's iframe element, child
 windows, and the postMessage interface. This communication is done
 using an additional endpoint, the assisted token endpoint, which this
 document defines.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 19, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Ideskog & Spencer Expires September 19, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Assisted Token March 2018

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 5
3. Assisted Token Endpoint 5
3.1. Access Token Scope 6
3.2. Cross-Origin Support 7

4. Protocol . 7
4.1. Assisted Token Request 7
4.2. Assisted Token Response 8
4.3. Error Response . 8

5. Client Metadata . 10
6. Authorization Server Metadata 10
7. IANA Considerations . 10
7.1. OAuth URI Registration 10
7.1.1. Registry Contents 11

7.2. OAuth 2.0 Authorization Server Metadata 11
7.2.1. Registry Contents 11

8. Security Considerations 11
8.1. Framing . 11
8.2. Handle Tokens . 12
8.3. Warning Against Untrusted Scripts 12
8.4. Origin of Event and Authorization Server 13
8.5. Token Storage . 13
8.6. Visibility of User Agent's Address Bar 14

9. Privacy Considerations 14
10. References . 14
10.1. Normative References 14
10.2. Informative References 15

Appendix A. Acknowledgements 16
Appendix B. Document History 16

 Authors' Addresses . 16

1. Introduction

 This OAuth 2.0 protocol flow for Single-page Applications (SPA),
 often referred to as the assisted token flow, provides clients
 written in scripting languages, like JavaScript, with a simplified
 integration (compared to the implicit grant type flow) and ensures
 that end users are not redirected away from the current page in order
 to obtain authorization from the resource owner. The communication
 between the client and the authorization server takes place within an
 HTML iframe element or child window that is only displayed when

Ideskog & Spencer Expires September 19, 2018 [Page 2]

Internet-Draft Assisted Token March 2018

 interactive user interaction is required; this is the case when
 authentication and/or authorization are necessary. To communicate
 the result from this iframe or child window to the client
 application, HTML's postMessage interface is used instead of the
 redirection endpoint defined in Section 3.1.2 of
 The OAuth 2.0 Authorization Framework. This difference is important
 for many SPAs which take time to reload and may not be able to
 recreate the same state prior to the user being redirected to the
 authorization server.

 Another goal of the assisted token flow is to simplify integration of
 the client with the authorization server. Though [RFC6749] resulted
 in a much simpler integration for client applications compared to its
 predecessor, [RFC5849], developers still struggle with the many
 inputs required to perform the various OAuth flows. For this reason,
 the assisted token flow introduces a new endpoint called the assisted
 token endpoint rather than extending and reusing the token endpoint
 defined in Section 3.2 of [RFC6749]. As a result, client developers
 do not need to specify a response_type parameter in the authorization
 request. This coupled with the use of HTML's postMessage interface
 for communication between the client and the authorization server
 means that the redirect_uri and state parameters are also
 unnecessary. Consequently, client developers only need to provide a
 client_id, create a dynamic iframe or open a child window, and handle
 the postMessage that is fired by the authorization server in order to
 implement OAuth.

 This interaction is shown in Figure 1.

 +----------------------------+ +---------------+
Client		Authorization		
+--------------------------+	Server			
	+-----------+			
	--(A)-------->		--(B)-- Client ------>	
			Identifier	
		Hidden		
		iframe	<-(C)-- HTML with ----	
	<-(D)- Token -		postMessage	
	or		including	
	error +-----------+ access token			
+--------------------------+ or error				
 +----------------------------+ +---------------+

 Figure 1: Assisted Token Flow

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc5849
https://datatracker.ietf.org/doc/html/rfc6749#section-3.2

Ideskog & Spencer Expires September 19, 2018 [Page 3]

Internet-Draft Assisted Token March 2018

 The assisted token flow illustrated in Figure 1 includes the
 following steps:

 (A) The client creates a hidden iframe element using a scripting
 language like JavaScript. The src attribute of this iframe is the
 URL of the assisted token endpoint of the authorization server.

 (B) The query string of the src attribute on the iframe includes,
 at a minimum, the client identifier.

 (C) If the user is already logged in and has granted consent to
 the client, the authorization server immediately returns an HTML
 document that includes a script that is executing; this fires an
 event which is communicated to the client using an HTML
 window.postMessage.

 (D) The client handles this event -- the payload of which is
 either an access token or an error; the client then closes the
 dynamic iframe without revealing it to the user.

 If the resource owner has not authenticated or has not authorized the
 client, then interaction between the resource owner and the
 authorization server is required to obtain these. In such a case,
 the HTML in step (C) of Figure 1 will include an error indicating
 that user involvement is required. This will be handled by the
 client in step (D) and login and/or consent will commence. This
 process is illustrated in Figure 2.

 +----------------------------+ +---------------+
Client		Authorization		
+--------------------------+	Server			
	+-----------+ Client			
	--(E)-------->		--(F)-- Identifier -->	
		Visible		
		iframe	--(G)-- User -------->	
		or child	authenticates	
	<-(I)- Token -	window		
			<-(H)-- HTML with ----	
	+-----------+ postMessage			
+--------------------------+ including				
	access token			
 +----------------------------+ +---------------+

 Figure 2: Assisted Token Login and/or Consent Flow

 The flow shown in Figure 2 includes the following steps:

Ideskog & Spencer Expires September 19, 2018 [Page 4]

Internet-Draft Assisted Token March 2018

 (E) The client creates a _visible_ iframe or pops open a child
 window after receiving an indication from the authorization server
 that user interaction is required. As in the previous flow, the
 src attribute value of this iframe or the input to the open method
 of the user agents's window object is the URL of the authorization
 server's assisted token endpoint.

 (F) The query string of this URL includes, at a minimum, the
 client identifier.

 (G) The authorization server prompts the resource owner to
 authenticate and/or authorize the client.

 (H) The authorization server returns an HTML document that
 includes a script that is executed; this fires an event which is
 communicated to the client using an HTML window.postMessage.

 (I) The client handles this event -- the payload of which is an
 access token; the client then closes the iframe or child window
 that it previously opened to facilitate user interaction.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in Key words for use in
 RFCs to Indicate Requirement Levels [RFC2119].

 Handle Token
 An opaque token that refers to internal data of the authorization
 server (e.g., the user ID, scope of the token, etc.) as described
 in Section 3.1 of [RFC6819].

 All other terms used in this document are as defined in [RFC6749].
 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

3. Assisted Token Endpoint

 The means through which the client obtains the location of the
 assisted token endpoint is either by using the authorization server's
 metadata as set forth in Section 6, the service documentation, or
 some other method that is beyond the scope of this specification.

 The endpoint URI MAY include an "application/x-www-form-urlencoded"
 formatted (per Appendix B of [RFC6749]) query component (Section 3.4
 of [RFC3986]), which MUST be retained when adding additional query
 parameters. The endpoint URI MUST NOT include a fragment component.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6819#section-3.1
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749#appendix-B
https://datatracker.ietf.org/doc/html/rfc3986#section-3.4
https://datatracker.ietf.org/doc/html/rfc3986#section-3.4

Ideskog & Spencer Expires September 19, 2018 [Page 5]

Internet-Draft Assisted Token March 2018

 Since requests to the assisted token endpoint result in the
 transmission of clear-text credentials (in the HTTP request and
 response), the authorization server MUST require the use of TLS as
 described in Section 1.6 of [RFC6749] when sending requests to the
 assisted token endpoint.

 The client MUST use the HTTP "GET" method when making access token
 requests to this endpoint.

 Parameters sent without a value MAY be treated as if they were
 omitted from the request. The authorization server MUST ignore
 unrecognized request parameters. Request and response parameters
 MUST NOT be included more than once.

 After completing its interaction with the resource owner, the
 authorization server will fire an event using the HTML postMessage
 interface. This message MUST NOT be posted to all origins, denoted
 by "*". Instead, the authorization server MUST post this message
 only to the client's allowed origin(s) previously established with
 the authorization server during the client registration process.

3.1. Access Token Scope

 Like the authorization and token endpoints, the assisted token
 endpoint allows the client to specify the scope of the access request
 using the "scope" request parameter. In turn, the authorization
 server uses the "scope" response parameter to inform the client of
 the scope of the access token issued. Unlike the typical behavior of
 those endpoints, however, access tokens issued by the authorization
 server using the assisted token endpoint MUST use the client's pre-
 configured scope or the authorization server's pre-defined default if
 none have been configured for the client.

 If the client did not include a "scope" request parameter or if the
 issued access token scope is different from the one requested by the
 client, the authorization server MUST include the "scope" response
 parameter to inform the client of the actual scope granted. Even
 when the scope of the issued access token is the same as the one
 requested by the client, the authorization server SHOULD include the
 "scope" response parameter.

 The format, constraints, and grammar of the scope parameter value is
 as defined in Section 3.3 of [RFC6749].

 The authorization server SHOULD NOT return an error if a scope has
 not been pre-configured for the client; only if the authorization
 server does not have a pre-defined default scope.

https://datatracker.ietf.org/doc/html/rfc6749#section-1.6
https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Ideskog & Spencer Expires September 19, 2018 [Page 6]

Internet-Draft Assisted Token March 2018

3.2. Cross-Origin Support

 The assisted token endpoint MAY support CORS [W3C.WD-cors-20120403].

4. Protocol

4.1. Assisted Token Request

 The assisted token request is an HTTP GET request constructed by the
 client with the following parameters provided on the query string:

 client_id REQUIRED. The client identifier as described in
Section 2.2 of [RFC6749].

 for_origin OPTIONAL. The origin of the client in case multiple
 allowed origins are configured with the authorization server
 and support for user agents that do not support [CSP-2] but
 only X-Frame-Options [RFC7034]. See Section Section 8.1 for
 details.

 prompt OPTIONAL. Space delimited, case sensitive list of ASCII
 [USASCII] string values that can be used to determine the
 login state of the resource owner at the authorization
 server. The defined values are:

 none The authorization server MUST NOT display any
 authentication or consent user interface pages. An
 error is returned if the user is not already
 authenticated or if the client has not received
 consent (either explicitly by the resource owner or
 by the authorization server's configuration of the
 client) or if the authorization server cannot fulfill
 other conditions for processing. This can be used as
 a method to probing for existing authentication and/
 or consent.

 consent The authorization server SHOULD prompt the user for
 consent before returning information to the client.
 If it cannot obtain consent, it MUST return an error.

 Other values may be provided in this list; the authorization
 server MUST ignore them without producing an error if it
 cannot understand them.

 scope OPTIONAL. The scope of the access request as described in
Section 3.1.

https://datatracker.ietf.org/doc/html/rfc6749#section-2.2
https://datatracker.ietf.org/doc/html/rfc7034

Ideskog & Spencer Expires September 19, 2018 [Page 7]

Internet-Draft Assisted Token March 2018

4.2. Assisted Token Response

 The response from the assisted token endpoint is an HTML document
 that executes a script which invokes the HTML postMessage interface
 to send a message to either the parent window (in the case shown in
 Figure 1) or the opener (in the case illustrated in Figure 2). The
 origin that this event is posted to is that of the client. The
 contents of this message is a JSON object with the following fields:

 access_token REQUIRED. The access token issued by the authorization
 server.

 expires_in RECOMMENDED. The lifetime in seconds of the access
 token.

 scope REQUIRED. The scope of the access token as described in
Section 3.1.

 sub RECOMMENDED. A locally unique and never reassigned
 identifier within the authorization server for the user,
 which is intended to be consumed by the client. The sub
 value is a case sensitive string.

 token_type REQUIRED. The type of the token issued as described in
Section 7.1 of [RFC6749]. Value is case insensitive.

4.3. Error Response

 As with a successful response, an error is returned to the client
 using an the HTML postMessage interface. Such an error is returned
 whenever the resource owner denies the access request or whenever the
 request fails for reasons other than the origin of the client being
 disallowed to frame the assisted token endpoint. The error message
 includes a JSON object with the following fields:

 error REQUIRED. A single ASCII [USASCII] error code from the
 following:

 invalid_request The request is missing a required parameter,
 includes an invalid parameter value, includes a
 parameter more than once, or is otherwise malformed.

 unauthorized_client The client is not authorized to request
 an access token using this method.

 access_denied The resource owner or authorization server
 denied the request.

https://datatracker.ietf.org/doc/html/rfc6749#section-7.1

Ideskog & Spencer Expires September 19, 2018 [Page 8]

Internet-Draft Assisted Token March 2018

 consent_required The client includes a prompt value of
 consent, but consent by the resource owner was
 required.

 interaction_required The client included a prompt value of
 none, but either the user needed to authenticate or
 consent to the client's access or some other
 requirement of the authorization server prevented it
 from providing access without some form of user
 interaction.

 unsupported_response_type The authorization server does not
 support obtaining an access token using this method.

 invalid_scope The requested scope is invalid, unknown, or
 malformed.

 server_error The authorization server encountered an
 unexpected condition that prevented it from
 fulfilling the request. (This error code is needed
 because a 500 Internal Server Error HTTP status code
 cannot be returned to the client directly in the
 child frame.)

 temporarily_unavailable The authorization server is
 currently unable to handle the request due to a
 temporary overloading or maintenance of the server.
 (This error code is needed because a 503 Service
 Unavailable HTTP status code cannot be returned to
 the client directly in the child frame.)

 Values for the "error" parameter MUST NOT include characters
 outside the set %x20-21 / %x23-5B / %x5D-7E.

 error_description OPTIONAL. Human-readable ASCII [USASCII] text
 providing additional information, used to assist the client
 developer in understanding the error that occurred. Values
 for the "error_description" parameter MUST NOT include
 characters outside the set %x20-21 / %x23-5B / %x5D-7E.

 error_uri OPTIONAL. A URI identifying a human-readable web page
 with information about the error, used to provide the client
 developer with additional information about the error.
 Values for the "error_uri" parameter MUST conform to the URI-
 reference syntax and thus MUST NOT include characters outside
 the set %x21 / %x23-5B / %x5D-7E.

Ideskog & Spencer Expires September 19, 2018 [Page 9]

Internet-Draft Assisted Token March 2018

5. Client Metadata

 The authorization server MAY allow dynamic clients to request the use
 of the assisted token flow when registering. Such a client may
 indicate that it will interact with the authorization server using
 the assisted token flow by including the string element
 "urn:ietf:params:oauth:grant-type:assisted_token" in the array
 associated with the "grant_types" metadata field sent to the client
 registration endpoint (as defined in Section 3. of [RFC7591]). If
 the authorization server allows the client to register with this
 grant type, the "grant_types" included in the response MUST include
 the value "urn:ietf:params:oauth:grant-type:assisted_token". The
 inclusion of this value in the "grant_types" field is done despite
 the fact that the client will not use this grant type at the token
 endpoint but rather the assisted token endpoint (Section 3).

 The following client metadata field is defined by this specification.
 It MAY be included in a registration request, as set forth in

Section 2. of [RFC7591].

 allowed_origins
 Array of origin strings for use in sending messages from the
 authorization server to the client using the HTML's postMessage
 interface.

6. Authorization Server Metadata

 Support for the assisted token flow MUST be declared in the OAuth 2.0
 Authorization Server Metadata [I-D.ietf-oauth-discovery] with the
 following metadata:

 assisted_token_endpoint
 REQUIRED. URL of the authorization server's assisted token
 endpoint defined in Section 3.

 grant_types_supported
 REQUIRED. A JSON array specified in Section 2. of
 [I-D.ietf-oauth-discovery] which should contain the value
 "urn:ietf:params:oauth:grant-type:assisted_token" as defined in

Section 5.

7. IANA Considerations

7.1. OAuth URI Registration

 This specification registers the following values in the IANA "OAuth
 URI" registry [IANA.OAuth.Parameters] established by [RFC6755].

https://datatracker.ietf.org/doc/html/rfc7591#section-3
https://datatracker.ietf.org/doc/html/rfc7591#section-2
https://datatracker.ietf.org/doc/html/rfc6755

Ideskog & Spencer Expires September 19, 2018 [Page 10]

Internet-Draft Assisted Token March 2018

7.1.1. Registry Contents

 o URN: urn:ietf:params:oauth:grant-type:assisted_token
 o Common Name: Assisted token flow grant type for OAuth 2.0
 o Change controller: IESG
 o Specification Document:Section 5of [[this specification]]

7.2. OAuth 2.0 Authorization Server Metadata

 This specification registers the following values in the IANA "OAuth
 2.0 Authorization Server Metadata" registry [IANA.OAuth.Parameters]
 established by [I-D.ietf-oauth-discovery].

7.2.1. Registry Contents

 o Metadata name: assisted_token_endpoint
 o Metadata Description: The Assisted Token Endpoint.
 o Change controller: IESG
 o Specification Document: Section 6 of [[this specification]]

8. Security Considerations

 In addition to all the security considerations discussed in OAuth 2.0
 [RFC6819], the following security considerations SHOULD be taken into
 account.

8.1. Framing

 Due to the use of an iframe to host the assisted token endpoint, the
 authorization server MUST take precautions to ensure that only
 trusted origins are allowed to frame it. The authorization server
 MUST prevent any origin from framing the assisted token endpoint
 except ones that an administrator has explicitly allowed. It may do
 this in any manner that is available to the application.

 One such mechanism that MAY be deployed is Content Security Policy
 [CSP-2]. This protocol SHOULD be used on the assisted token endpoint
 (and, if applicable, other endpoints used to authenticated the user
 in a specific deployment) to prevent framing from unauthorized
 origins. Using CSP allows the authorization server to specify
 multiple origins in a single response header field and to constrain
 these using flexible patterns (see [CSP-2] for details). This
 standard provides a robust mechanism for protecting against click-
 jacking when combining policies that restrict "child-src" with the
 sources of scripts that are allowed to execute by using "script-src"
 policies.

https://datatracker.ietf.org/doc/html/rfc6819

Ideskog & Spencer Expires September 19, 2018 [Page 11]

Internet-Draft Assisted Token March 2018

 Because some user agents do not support [CSP-2], this technique
 SHOULD be combined with others. In particular, the authorization
 server SHOULD return an "X-Frame-Options" response header on the
 assisted token endpoint (and, if applicable, other endpoints used to
 authenticate the user in a specific deployment). As defined in
 [RFC7034], this header will cause user agents that support it (but
 not CSP) to block framing from any origin that is not specified in
 this header's value. Because this header's value can only include
 one origin, the framer should use the "for_origin" parameter (as
 specified in Section 4.1) to include its own origin.

 Some user agents do not support X-Frame-Options [RFC7034] nor
 [CSP-2]. Therefore, the authorization server SHOULD include a frame-
 busting script like that shown in Figure 7 of [FRAME-BUSTING]. Such
 a script would use JavaScript to break out of any unauthorized origin
 that is framing the assisted token endpoint. The authorization
 server MAY simply break out of all frames in case X-Frame-Options
 [RFC7034] and [CSP-2] are unsupported by the user agent, though this
 would render the assisted token flow non-functional. The choice of
 whether or not this drastic countermeasure should be employed depends
 on the user agents being targetted in a certain deployment.

8.2. Handle Tokens

 Because the client applications that use the assisted token flow are
 written in scripting languages like JavaScript and are hosted in Web
 pages, users may keep such applications open in their user agents for
 a prolonged period of time. During such period, the token issued to
 the client may expire or be revoked. To ensure that such expired
 tokens left remnant in the user agent are benign, a Handle Token
 SHOULD always be issued by the assisted token endpoint. This ensures
 that no identity data is exposed (even when the token is not yet
 expired) and that a revoked token does not increase risks.

8.3. Warning Against Untrusted Scripts

 As admitted in Section 8 of [RFC6454], preventing exfiltration of
 cookies, tokens, and other such credentials in web browsers has
 historically proven difficult to implement. Instead, the same-origin
 policy has emerged as the cornerstone of security for such user
 agents. Using this security model, it is not possible to prevent
 access to a token issued to a client if that client includes
 nefarious scripts from untrustworthy sources that have access to the
 Document Object Model (DOM) where the token is stored. For this
 reason, the authorization server MUST warn client application
 developers who interact with the assisted token endpoint _not_ to use
 untrusted scripts in their applications. This warning SHOULD at

https://datatracker.ietf.org/doc/html/rfc7034
https://datatracker.ietf.org/doc/html/rfc7034
https://datatracker.ietf.org/doc/html/rfc7034
https://datatracker.ietf.org/doc/html/rfc6454#section-8

Ideskog & Spencer Expires September 19, 2018 [Page 12]

Internet-Draft Assisted Token March 2018

 least be conveyed through the documentation but MAY also be provided
 through other mechanisms.

8.4. Origin of Event and Authorization Server

 As described in Section 4.1, the authorization server will return an
 access token to the client using HTML's postMessage interface. The
 receiver of this message is provided with an event object that
 contains an origin property. A client application MUST compare this
 with that of the authorization server before consuming the message.
 Otherwise, it runs the risk of processing messages posted from
 untrusted origins. An example of a proper message handler is shown
 in the following non-normative, JavaScript listing:

 <script type="text/javascript">
 window.addEventListener("message", function(evt) {
 if (evt.origin !== "https://oauth-server.example.com")
 return; // Ignore event from untrusted source

 ...
 });
 </script>

 Figure 3: Comparing the origin of the postMessage event with that of
 the authorization server

8.5. Token Storage

 Most client applications that use the assisted token flow will
 maintain the access token issued by the authorization server in a
 persisted state; this will commonly be an HTTP cookie or local
 storage. This is necessary, for instance, to create a pleasing user
 experience when a user navigates away from the application in their
 web browser and then returns. To ensure that the token is stored
 safely, the authorization server MAY provide application developers
 with guidance in the accompanying documentation on how to safely
 persist tokens. The authorization server MAY also provide script
 libraries that perform this action according to best common
 practices. The authorization server MAY also store the token in an
 HTTP cookie in its own DNS domain (rather than that of the client)
 using the assisted token endpoint's path. In some cases, this would
 elevate any storage requirements from the client application
 developer. Besides simplifying the programming model for developers,
 this technique allows the authorization server to check the validity
 of the token and determine if the token has expired or if the
 associated grant has been revoked in subsequent requests to the
 assisted token endpoint; this will be possible because the requests

Ideskog & Spencer Expires September 19, 2018 [Page 13]

Internet-Draft Assisted Token March 2018

 will include the token in the HTTP Cookie request header. In such
 cases, the authorization server can take the appropriate action, such
 as authenticating the user anew or request consent, before issuing a
 new token. If the token is stored by the application, however, this
 kind of verification cannot be performed by the authorization server
 without an explicit request to validate a stored token.

8.6. Visibility of User Agent's Address Bar

 When the authorization server and client are provided by separate
 parties, it is important that the resource owner is able to
 distinguish the two. The only safe way of doing so is by examination
 of the user agent's address bar where the validity of the certificate
 and location can be made. In such situations, whenever user
 interaction is required, the client SHOULD open the assisted token
 endpoint in a new browser window rather than a hidden iframe. The
 authorization serer MAY take any measures deemed appropriate in a
 deployment to ensure that the client has not framed the user's manual
 interaction; however, the necessity for interactive user
 authentication and/or consent SHOULD be possible for the client to
 determine in a hidden iframe.

9. Privacy Considerations

 In some deployments, the assisted token endpoint may be served from a
 distinct domain from that of the client. In such cases, the client
 will be a third-party domain, and the resource owner's user agent may
 prevent the authorization server from storing any third-party
 cookies. If the authorization server requires state to be persisted
 when performing the assisted token flow, it SHOULD provide a privacy-
 preserving mechanism to store and retrieve its state even when the
 assisted token endpoint is hosted on a distinct domain from that of
 the client. The technical details of how to accomplish this are
 implementation specific, and are beyond the scope of this
 specification. If the authorization server does not support clients
 that are hosted from a third-party domain, it MUST indicate this to
 the client through some mechanism (e.g., its associated
 documentation).

10. References

10.1. Normative References

 [I-D.ietf-oauth-discovery]
 Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0
 Authorization Server Metadata", draft-ietf-oauth-

discovery-10 (work in progress), November 2017.

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery-10
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-discovery-10

Ideskog & Spencer Expires September 19, 2018 [Page 14]

Internet-Draft Assisted Token March 2018

 [IANA.OAuth.Parameters]
 IANA, "OAuth Parameters",
 <http://www.iana.org/assignments/oauth-parameters>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [USASCII] American National Standards Institute, "Coded Character
 Set -- 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

10.2. Informative References

 [CSP-2] West, M., Barth, A., and D. Veditz, "Content Security
 Policy Level 2", July 2015, <https://www.w3.org/TR/CSP2>.

 [FRAME-BUSTING]
 Rydstedt, G., Bursztein, E., Boneh, D., and C. Jackson,
 "Busting frame busting: a study of clickjacking
 vulnerabilities at popular sites", July 2010,
 <http://seclab.stanford.edu/websec/framebusting/>.

 [RFC5849] Hammer-Lahav, E., Ed., "The OAuth 1.0 Protocol", RFC 5849,
 DOI 10.17487/RFC5849, April 2010,
 <https://www.rfc-editor.org/info/rfc5849>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

http://www.iana.org/assignments/oauth-parameters
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc7591
https://www.rfc-editor.org/info/rfc7591
https://www.w3.org/TR/CSP2
http://seclab.stanford.edu/websec/framebusting/
https://datatracker.ietf.org/doc/html/rfc5849
https://www.rfc-editor.org/info/rfc5849
https://datatracker.ietf.org/doc/html/rfc6454
https://www.rfc-editor.org/info/rfc6454

Ideskog & Spencer Expires September 19, 2018 [Page 15]

Internet-Draft Assisted Token March 2018

 [RFC6755] Campbell, B. and H. Tschofenig, "An IETF URN Sub-Namespace
 for OAuth", RFC 6755, DOI 10.17487/RFC6755, October 2012,
 <https://www.rfc-editor.org/info/rfc6755>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7034] Ross, D. and T. Gondrom, "HTTP Header Field X-Frame-
 Options", RFC 7034, DOI 10.17487/RFC7034, October 2013,
 <https://www.rfc-editor.org/info/rfc7034>.

 [W3C.WD-cors-20120403]
 Kesteren, A., "Cross-Origin Resource Sharing", World Wide
 Web Consortium LastCall WD-cors-20120403, April 2012,
 <http://www.w3.org/TR/2012/WD-cors-20120403>.

Appendix A. Acknowledgements

 The following individuals contributed ideas, feedback, and wording to
 this specification:

 Mark Dobrinic, Karl McGuinness

Appendix B. Document History

 [[to be removed by the RFC editor before publication as an RFC]]

 -00

 o Initial draft.

Authors' Addresses

 Jacob Ideskog
 Curity AB

 Email: jacob@curity.io

 Travis Spencer
 Curity AB

 Email: travis@curity.io
 URI: http://travisspencer.com/

https://datatracker.ietf.org/doc/html/rfc6755
https://www.rfc-editor.org/info/rfc6755
https://datatracker.ietf.org/doc/html/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc7034
https://www.rfc-editor.org/info/rfc7034
http://www.w3.org/TR/2012/WD-cors-20120403
http://travisspencer.com/

Ideskog & Spencer Expires September 19, 2018 [Page 16]

