
Workgroup: Independent Submission

Internet-Draft:

draft-ideskog-assisted-token-04

Published: 5 January 2021

Intended Status: Informational

Expires: 9 July 2021

Authors: J. Ideskog

Curity AB

T. Spencer

Curity AB

OAuth 2.0 Assisted Token

Abstract

This document extends the OAuth 2.0 framework to include an

additional authorization flow for single page applications called

the assisted token flow. It enables OAuth clients written in

scripting languages, like JavaScript, to request user authorization

using a simplified method compared to other flows. Communication

does not rely on redirection of the user agent, but instead

leverages HTML's iframe element, child windows, and the postMessage

interface. This communication is done using an additional endpoint,

the assisted token endpoint.

To contribute to this draft, please feel free to create a pull

request from the original source available at https://github.com/

curityio/rfc or email the authors.

This note is to be removed before publishing as an RFC.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 July 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/curityio/rfc/
https://github.com/curityio/rfc/
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. Terminology

3. Assisted Token Endpoint

3.1. Access Token Scope

3.2. Cross-Origin Support

4. Protocol

4.1. Assisted Token Request

4.2. Assisted Token Response

4.3. Error Response

5. Client Metadata

6. Authorization Server Metadata

7. IANA Considerations

7.1. OAuth URI Registration

7.1.1. Registry Contents

7.2. OAuth Parameters

7.2.1. Registry Contents

7.3. OAuth 2.0 Authorization Server Metadata

7.3.1. Registry Contents

8. Security Considerations

8.1. Framing

8.2. Handle Tokens

8.3. Warning Against Untrusted Scripts

8.4. Origin of Event and Authorization Server

8.5. Token Storage

8.6. Visibility of User Agent's Address Bar

9. Privacy Considerations

10. Normative References

11. Informative References

Appendix A. Acknowledgements

Appendix B. Document History

Authors' Addresses

1. Introduction

The OAuth 2.0 protocol flow for Single-page Applications (SPA)

defined in this memo, often referred to as the assisted token flow,

provides clients written in scripting languages, like JavaScript,

with a simplified integration (compared to the implicit or

authorization code flow) and ensures that end users are not

redirected away from the current page in order to obtain

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

authorization from the resource owner. The communication between the

client and the authorization server takes place within an HTML

iframe element or child window that is only displayed when

interactive user interaction is required; this is the case when

authentication and/or authorization are necessary. To communicate

the result from this iframe or child window to the client

application, HTML's postMessage interface is used instead of the

redirection endpoint defined in Section 3.1.2 of [RFC6749]. This

difference is important for many SPAs which take time to reload and

may not be able to recreate the same state prior to the user being

redirected to the authorization server.

Another goal of the assisted token flow is to simplify integration

of the client with the authorization server. Though [RFC6749]

resulted in a much simpler integration for client applications

compared to its predecessor, [RFC5849], developers still struggle

with the many inputs required to perform the various OAuth flows.

For this reason, the assisted token flow introduces a new endpoint

called the assisted token endpoint rather than extending and reusing

the token endpoint defined in Section 3.2 of [RFC6749]. As a result,

client developers do not need to specify a response_type parameter

in the authorization request. This coupled with the use of HTML's

postMessage interface for communication between the client and the

authorization server means that the redirect_uri and state

parameters are also unnecessary. Consequently, client developers

only need to provide a client_id, create a dynamic iframe or open a

child window, and handle the postMessage that is fired by the

authorization server in order to implement OAuth.

This interaction is shown in Figure 1.

Figure 1: Assisted Token Flow

¶

¶

¶

+----------------------------+ +---------------+

| Client | | Authorization |

| +--------------------------+ | Server |

| | +-----------+ | |

| |--(A)-------->| |--(B)-- Client ------>| |

| | | | Identifier | |

| | | Hidden | | |

| | | iframe |<-(C)-- HTML with ----| |

| |<-(D)- Token -| | postMessage | |

| | or | | including | |

| | error +-----------+ access token | |

| +--------------------------+ or error | |

| | | |

+----------------------------+ +---------------+

https://rfc-editor.org/rfc/rfc6749#section-3.1.2
https://rfc-editor.org/rfc/rfc6749#section-3.2

(A)

(B)

(C)

(D)

The assisted token flow illustrated in Figure 1 includes the

following steps:

The client creates a hidden iframe element using a scripting

language like JavaScript. The src attribute of this iframe is

the URL of the assisted token endpoint of the authorization

server.

The query string of the src attribute on the iframe includes,

at a minimum, the client identifier.

If the user is already logged in and has granted consent to

the client, the authorization server immediately returns an

HTML document that includes a script that is executing; this

fires an event which is communicated to the client using an

HTML window.postMessage.

The client handles this event -- the payload of which is

either an access token or an error; the client then closes the

dynamic iframe without revealing it to the user.

If the resource owner has not authenticated or has not authorized

the client, then interaction between the resource owner and the

authorization server is required to obtain these. In such a case,

the HTML in step (C) of Figure 1 will include an error indicating

that user involvement is required. This will be handled by the

client in step (D) and login and/or consent will commence. This

process is illustrated in Figure 2.

Figure 2: Assisted Token Login and/or Consent Flow

The flow shown in Figure 2 includes the following steps:

¶

¶

¶

¶

¶

¶

+----------------------------+ +---------------+

| Client | | Authorization |

| +--------------------------+ | Server |

| | +-----------+ Client | |

| |--(E)-------->| |--(F)-- Identifier -->| |

| | | Visible | | |

| | | iframe |--(G)-- User -------->| |

| | | or child | authenticates | |

| |<-(I)- Token -| window | | |

| | | |<-(H)-- HTML with ----| |

| | +-----------+ postMessage | |

| +--------------------------+ including | |

| | access token | |

+----------------------------+ +---------------+

¶

(E)

(F)

(G)

(H)

(I)

Handle Token

The client creates a visible iframe or pops open a child

window after receiving an indication from the authorization

server that user interaction is required. As in the previous

flow, the src attribute value of this iframe or the input to

the open method of the user agents's window object is the URL

of the authorization server's assisted token endpoint.

The query string of this URL includes, at a minimum, the

client identifier.

The authorization server prompts the resource owner to

authenticate and/or authorize the client.

The authorization server returns an HTML document that

includes a script that is executed; this fires an event which

is communicated to the client using an HTML

window.postMessage.

The client handles this event -- the payload of which is an

access token; the client then closes the iframe or child

window that it previously opened to facilitate user

interaction.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

An opaque token that refers to internal data of the authorization

server (e.g., the user ID, scope of the token, etc.) as described

in Section 3.1 of [RFC6819].

All other terms used in this document are as defined in [RFC6749].

Unless otherwise noted, all the protocol parameter names and values

are case sensitive.

3. Assisted Token Endpoint

The means through which the client obtains the location of the

assisted token endpoint is either by using the authorization

server's metadata as set forth in Section 6, the service

documentation, or some other method that is beyond the scope of this

specification.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6819#section-3.1

The endpoint URI MAY include an application/x-www-form-urlencoded

formatted (per Appendix B of [RFC6749]) query component (see

Section 3.4 of [RFC3986]), which MUST be retained when adding

additional query parameters. The endpoint URI MUST NOT include a

fragment component.

Since requests to the assisted token endpoint result in the

transmission of clear-text credentials (in the HTTP request and

response), the authorization server MUST require the use of TLS as

described in Section 1.6 of [RFC6749] when sending requests to the

assisted token endpoint.

The client MUST use the HTTP GET method when making access token

requests to this endpoint.

Parameters sent without a value MAY be treated as if they were

omitted from the request. The authorization server MUST ignore

unrecognized request parameters. Request and response parameters

MUST NOT be included more than once.

After completing its interaction with the resource owner, the

authorization server will fire an event using the HTML postMessage

interface. This message MUST NOT be posted to all origins, denoted

by *. Instead, the authorization server MUST post this message only

to the client's allowed origin(s) previously established with the

authorization server during the client registration process.

3.1. Access Token Scope

Like the authorization and token endpoints, the assisted token

endpoint allows the client to specify the scope of the access

request using the scope request parameter. In turn, the

authorization server uses the scope response parameter to inform the

client of the scope of the access token issued. Unlike the typical

behavior of those endpoints, however, access tokens issued by the

authorization server using the assisted token endpoint MUST use the

client's pre-configured scope or the authorization server's pre-

defined default if none have been configured for the client.

If the client did not include a scope request parameter or if the

issued access token scope is different from the one requested by the

client, the authorization server MUST include the scope response

parameter to inform the client of the actual scope granted. Even

when the scope of the issued access token is the same as the one

requested by the client, the authorization server SHOULD include the

scope response parameter.

The format, constraints, and grammar of the scope parameter value is

as defined in Section 3.3 of [RFC6749].

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6749#appendix-B
https://rfc-editor.org/rfc/rfc3986#section-3.4
https://rfc-editor.org/rfc/rfc6749#section-1.6
https://rfc-editor.org/rfc/rfc6749#section-3.3

client_id

for_origin

prompt

none

consent

The authorization server SHOULD NOT return an error if a scope has

not been pre-configured for the client; only if the authorization

server does not have a pre-defined default scope.

3.2. Cross-Origin Support

The assisted token endpoint MAY support CORS as defined in [W3C.WD-

cors-20120403].

4. Protocol

4.1. Assisted Token Request

The assisted token request is an HTTP GET request constructed by the

client with the following parameters provided on the query string:

REQUIRED. The client identifier as described in Section 2.2 of

[RFC6749].

OPTIONAL. The origin of the client in case multiple allowed

origins are configured with the authorization server and support

for user agents that do not support [CSP-2] but only X-Frame-

Options (as defined in [RFC7034]). See Section 8.1 for details.

OPTIONAL. Space delimited, case sensitive list of [ASCII] string

values that can be used to determine the login state of the

resource owner at the authorization server. The defined values

are:

The authorization server MUST NOT display any authentication

or consent user interface pages. An error is returned if the

user is not already authenticated or if the client has not

received consent (either explicitly by the resource owner or

by the authorization server's configuration of the client) or

if the authorization server cannot fulfill other conditions

for processing. This can be used as a method to probing for

existing authentication and/or consent.

The authorization server SHOULD prompt the user for consent

before returning information to the client. If it cannot

obtain consent, it MUST return an error.

Other values may be provided in this list; the authorization

server MUST ignore them without producing an error if it cannot

understand them.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6749#section-2.2

scope

access_token

expires_in

scope

sub

token_type

error

invalid_request

OPTIONAL. The scope of the access request as described in Section

3.1.

4.2. Assisted Token Response

The response from the assisted token endpoint is an HTML document

that executes a script which invokes the HTML postMessage interface

to send a message to either the parent window (in the case shown in

Figure 1) or the opener (in the case illustrated in Figure 2). The

origin that this event is posted to is that of the client. The

contents of this message is a JSON object with the following fields:

REQUIRED. The access token issued by the authorization server.

RECOMMENDED. The lifetime in seconds of the access token.

REQUIRED. The scope of the access token as described in Section

3.1.

RECOMMENDED. A locally unique and never reassigned identifier

within the authorization server for the user, which is intended

to be consumed by the client. The sub value is a case sensitive

string.

REQUIRED. The type of the token issued as described in

Section 7.1 of [RFC6749]. Value is case insensitive.

This JSON object MAY contain additional fields. If the client does

not understand or recognize such additional fields, it MUST ignore

them.

4.3. Error Response

As with a successful response, an error is returned to the client

using an the HTML postMessage interface. Such an error is returned

whenever the resource owner denies the access request or whenever

the request fails for reasons other than the origin of the client

being disallowed to frame the assisted token endpoint. The error

message includes a JSON object with the following fields:

REQUIRED. A single [ASCII] error code from the following:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6749#section-7.1

unauthorized_client

access_denied

consent_required

interaction_required

unsupported_response_type

invalid_scope

server_error

temporarily_unavailable

error_description

The request is missing a required parameter, includes an

invalid parameter value, includes a parameter more than once,

or is otherwise malformed.

The client is not authorized to request an access token using

this method.

The resource owner or authorization server denied the request.

The client includes a prompt value of consent, but consent by

the resource owner was required.

The client included a prompt value of none, but either the

user needed to authenticate or consent to the client's access

or some other requirement of the authorization server

prevented it from providing access without some form of user

interaction.

The authorization server does not support obtaining an access

token using this method.

The requested scope is invalid, unknown, or malformed.

The authorization server encountered an unexpected condition

that prevented it from fulfilling the request. (This error

code is needed because a 500 Internal Server Error HTTP status

code cannot be returned to the client directly in the child

frame.)

The authorization server is currently unable to handle the

request due to a temporary overloading or maintenance of the

server. (This error code is needed because a 503 Service

Unavailable HTTP status code cannot be returned to the client

directly in the child frame.)

Values for the error parameter MUST NOT include characters

outside the set %x20-21 / %x23-5B / %x5D-7E.

OPTIONAL. Human-readable [ASCII] text providing additional

information, used to assist the client developer in understanding

the error that occurred. Values for the error_description

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

error_uri

allowed_origins

assisted_token_endpoint

grant_types_supported

parameter MUST NOT include characters outside the set %x20-21 /

%x23-5B / %x5D-7E.

OPTIONAL. A URI identifying a human-readable web page with

information about the error, used to provide the client developer

with additional information about the error. Values for the

error_uri parameter MUST conform to the URI-reference syntax and

thus MUST NOT include characters outside the set %x21 / %x23-5B /

%x5D-7E.

5. Client Metadata

The authorization server MAY allow dynamic clients to request the

use of the assisted token flow when registering. Such a client may

indicate that it will interact with the authorization server using

the assisted token flow by including the string element

urn:ietf:params:oauth:grant-type:assisted_token in the array

associated with the grant_types metadata field sent to the client

registration endpoint (as defined in Section 3 of [RFC7591]). If the

authorization server allows the client to register with this grant

type, the grant_types included in the response MUST include the

value urn:ietf:params:oauth:grant-type:assisted_token. The inclusion

of this value in the grant_types field is done despite the fact that

the client will not use this grant type at the token endpoint but

rather the assisted token endpoint (see Section 3).

The following client metadata field is defined by this

specification. It MAY be included in a registration request, as set

forth in Section 2 of [RFC7591].

Array of origin strings for use in sending messages from the

authorization server to the client using the HTML's postMessage

interface.

6. Authorization Server Metadata

Support for the assisted token flow SHOULD be declared in the

authorization server's metadata (as defined in [RFC8414]) with the

following metadata:

RECOMMENDED. URL of the authorization server's assisted token

endpoint defined in Section 3.

RECOMMENDED. A JSON array specified in Section 2 of [RFC8414]

which should contain the value urn:ietf:params:oauth:grant-

type:assisted_token as defined in Section 5.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7591#section-3
https://rfc-editor.org/rfc/rfc7591#section-2
https://rfc-editor.org/rfc/rfc8414#section-2

7. IANA Considerations

7.1. OAuth URI Registration

This specification registers the following values in the IANA "OAuth

URI" registry [IANA.OAuth.Parameters] established by [RFC6755].

7.1.1. Registry Contents

URN: urn:ietf:params:oauth:grant-type:assisted_token

Common Name: Assisted token flow grant type for OAuth 2.0

Change controller: IESG

Specification Document: Section 5 of [[this specification]]

7.2. OAuth Parameters

This specification registers the following values in the IANA "OAuth

Parameter" registry [IANA.OAuth.Parameters] established by

[RFC6749].

7.2.1. Registry Contents

for_origin

Parameter usage location: authorization request

Change controller: IESG

Specification Document: Section 4 of [[this specification]]

7.3. OAuth 2.0 Authorization Server Metadata

This specification registers the following values in the IANA "OAuth

2.0 Authorization Server Metadata" registry [IANA.OAuth.Parameters]

established by [RFC8414].

7.3.1. Registry Contents

Metadata name: assisted_token_endpoint

Metadata Description: The Assisted Token Endpoint.

Change controller: IESG

Specification Document: Section 6 of [[this specification]]

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

https://www.iana.org/assignments/oauth-parameters/#uri
https://www.iana.org/assignments/oauth-parameters/#uri
https://www.iana.org/assignments/oauth-parameters/#parameters
https://www.iana.org/assignments/oauth-parameters/#parameters
https://www.iana.org/assignments/oauth-parameters/#authorization-server-metadata
https://www.iana.org/assignments/oauth-parameters/#authorization-server-metadata

8. Security Considerations

In addition to all the security considerations discussed in

[RFC6819], the following security considerations SHOULD be taken

into account.

8.1. Framing

Due to the use of an iframe to host the assisted token endpoint, the

authorization server MUST take precautions to ensure that only

trusted origins are allowed to frame it. The authorization server

MUST prevent any origin from framing the assisted token endpoint

except ones that an administrator has explicitly allowed. It may do

this in any manner that is available to the application.

One such mechanism that MAY be deployed is Content Security Policy

[CSP-2]. This protocol SHOULD be used on the assisted token endpoint

(and, if applicable, other endpoints used to authenticated the user

in a specific deployment) to prevent framing from unauthorized

origins. Using CSP allows the authorization server to specify

multiple origins in a single response header field and to constrain

these using flexible patterns (see [CSP-2] for details). This

standard provides a robust mechanism for protecting against click-

jacking by using policies that restrict the origin of frames (using

frame-ancestors) together with those that restrict the sources of

scripts allowed to execute on an HTML page (by using script-src). A

non-normative example of such a policy is shown in the following

listing:

HTTP/1.1 200 OK

Content-Security-Policy: frame-ancestors https://a.example.org:8000

Content-Security-Policy: script-src 'self'

X-Frame-Options: ALLOW-FROM https://a.example.org:8000

...

Figure 3: Example CSP that will help protect against click-jacking

Because some user agents do not support [CSP-2], this technique

SHOULD be combined with others. In particular, the authorization

server SHOULD return an X-Frame-Options response header on the

assisted token endpoint (and, if applicable, other endpoints used to

authenticate the user in a specific deployment). As defined in

[RFC7034], this header will cause user agents that support it (but

not CSP) to block framing from any origin that is not specified in

this header's value. Because this header's value can only include

one origin, the framer should use the for_origin parameter (as

specified in Section 4.1) to include its own origin.

¶

¶

¶

¶

Some user agents do not support [RFC7034] nor [CSP-2]. Therefore,

the authorization server SHOULD include a frame-busting script like

that shown in Figure 7 of [FRAME-BUSTING]. Such a script would use

JavaScript to break out of any unauthorized origin that is framing

the assisted token endpoint. The authorization server MAY simply

break out of all frames in case [RFC7034] and [CSP-2] are

unsupported by the user agent, though this would render the assisted

token flow non-functional. The choice of whether or not this drastic

countermeasure should be employed depends on the user agents being

targetted in a certain deployment.

8.2. Handle Tokens

Because the client applications that use the assisted token flow are

written in scripting languages like JavaScript and are hosted in Web

pages, users may keep such applications open in their user agents

for a prolonged period of time. During such period, the token issued

to the client may expire or be revoked. To ensure that such expired

tokens left remnant in the user agent are benign, a Handle Token

SHOULD always be issued by the assisted token endpoint. This ensures

that no identity data is exposed (even when the token is not yet

expired) and that a revoked token does not increase risks.

8.3. Warning Against Untrusted Scripts

As admitted in Section 8 of [RFC6454], preventing exfiltration of

cookies, tokens, and other such credentials in web browsers has

historically proven difficult to implement. Instead, the same-origin

policy has emerged as the cornerstone of security for such user

agents. Using this security model, it is not possible to prevent

access to a token issued to a client if that client includes

nefarious scripts from untrustworthy sources that have access to the

Document Object Model (DOM) where the token is stored. For this

reason, the authorization server MUST warn client application

developers who interact with the assisted token endpoint not to use

untrusted scripts in their applications. This warning SHOULD at

least be conveyed through the documentation but MAY also be provided

through other mechanisms.

8.4. Origin of Event and Authorization Server

As described in Section 4.1, the authorization server will return an

access token to the client using HTML's postMessage interface. The

receiver of this message is provided with an event object that

contains an origin property. A client application MUST compare this

with that of the authorization server before consuming the message.

Otherwise, it runs the risk of processing messages posted from

untrusted origins. An example of a proper message handler is shown

in the following non-normative, JavaScript listing:

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc6454#section-8

<script type="text/javascript">

 window.addEventListener("message", function(evt) {

 if (evt.origin !== "https://oauth-server.example.com")

 return; // Ignore event from untrusted source

 ...

 });

</script>

Figure 4: Comparing the origin of the postMessage event with that of

the authorization server

8.5. Token Storage

Most client applications that use the assisted token flow will

maintain the access token issued by the authorization server in a

persisted state; this will commonly be an HTTP cookie or local

storage. This is necessary, for instance, to create a pleasing user

experience when a user navigates away from the application in their

web browser and then returns. To ensure that the token is stored

safely, the authorization server MAY provide application developers

with guidance in the accompanying documentation on how to safely

persist tokens. The authorization server MAY also provide script

libraries that perform this action according to best common

practices. The authorization server MAY also store the token in an

HTTP cookie in its own DNS domain (rather than that of the client)

using the assisted token endpoint's path. In some cases, this would

elevate any storage requirements from the client application

developer. Besides simplifying the programming model for developers,

this technique allows the authorization server to check the validity

of the token and determine if the token has expired or if the

associated grant has been revoked in subsequent requests to the

assisted token endpoint; this will be possible because the requests

will include the token in the HTTP Cookie request header. In such

cases, the authorization server can take the appropriate action,

such as authenticating the user anew or request consent, before

issuing a new token. If the token is stored by the application,

however, this kind of verification cannot be performed by the

authorization server without an explicit request to validate a

stored token.

8.6. Visibility of User Agent's Address Bar

When the authorization server and client are provided by separate

parties, it is important that the resource owner is able to

distinguish the two. The only safe way of doing so is by examination

of the user agent's address bar where the validity of the

certificate and location can be made. In such situations, whenever

¶

[ASCII]

[IANA.OAuth.Parameters]

[RFC2119]

[RFC3986]

[RFC6749]

[RFC7591]

user interaction is required, the client SHOULD open the assisted

token endpoint in a new browser window rather than a hidden iframe.

The authorization serer MAY take any measures deemed appropriate in

a deployment to ensure that the client has not framed the user's

manual interaction; however, the necessity for interactive user

authentication and/or consent SHOULD be possible for the client to

determine in a hidden iframe.

9. Privacy Considerations

In some deployments, the assisted token endpoint may be served from

a distinct domain from that of the client. In such cases, the client

will be a third-party domain, and the resource owner's user agent

may prevent the authorization server from storing any third-party

cookies. If the authorization server requires state to be persisted

when performing the assisted token flow, it SHOULD provide a

privacy-preserving mechanism to store and retrieve its state even

when the assisted token endpoint is hosted on a distinct domain from

that of the client. The technical details of how to accomplish this

are implementation specific, and are beyond the scope of this

specification. If the authorization server does not support clients

that are hosted from a third-party domain, it MUST indicate this to

the client through some mechanism (e.g., its associated

documentation).

10. Normative References

American National Standards Institute, "Coded Character

Set -- 7-bit American Standard Code for Information

Interchange", ANSI X3.4, 1986.

IANA, "OAuth Parameters", <http://

www.iana.org/assignments/oauth-parameters>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Richer, J., Ed., Jones, M., Bradley, J., Machulak, M.,

and P. Hunt, "OAuth 2.0 Dynamic Client Registration

¶

¶

http://www.iana.org/assignments/oauth-parameters
http://www.iana.org/assignments/oauth-parameters
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749

[RFC8174]

[RFC8414]

[CSP-2]

[FRAME-BUSTING]

[RFC5849]

[RFC6454]

[RFC6755]

[RFC6819]

[RFC7034]

[W3C.WD-cors-20120403]

Protocol", RFC 7591, DOI 10.17487/RFC7591, July 2015,

<https://www.rfc-editor.org/info/rfc7591>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0

Authorization Server Metadata", RFC 8414, DOI 10.17487/

RFC8414, June 2018, <https://www.rfc-editor.org/info/

rfc8414>.

11. Informative References

West, M., Barth, A., and D. Veditz, "Content Security

Policy Level 2", July 2015, <https://www.w3.org/TR/CSP2>.

Rydstedt, G., Bursztein, E., Boneh, D., and C.

Jackson, "Busting frame busting: a study of clickjacking

vulnerabilities at popular sites", July 2010, <http://

seclab.stanford.edu/websec/framebusting/framebust.pdf>.

Hammer-Lahav, E., Ed., "The OAuth 1.0 Protocol", RFC

5849, DOI 10.17487/RFC5849, April 2010, <https://www.rfc-

editor.org/info/rfc5849>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/info/rfc6454>.

Campbell, B. and H. Tschofenig, "An IETF URN Sub-

Namespace for OAuth", RFC 6755, DOI 10.17487/RFC6755,

October 2012, <https://www.rfc-editor.org/info/rfc6755>.

Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth

2.0 Threat Model and Security Considerations", RFC 6819,

DOI 10.17487/RFC6819, January 2013, <https://www.rfc-

editor.org/info/rfc6819>.

Ross, D. and T. Gondrom, "HTTP Header Field X-Frame-

Options", RFC 7034, DOI 10.17487/RFC7034, October 2013,

<https://www.rfc-editor.org/info/rfc7034>.

Kesteren, A., "Cross-Origin Resource

Sharing", World Wide Web Consortium LastCall WD-

cors-20120403, 3 April 2012, <http://www.w3.org/TR/2012/

WD-cors-20120403>.

https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.w3.org/TR/CSP2
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
https://www.rfc-editor.org/info/rfc5849
https://www.rfc-editor.org/info/rfc5849
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6755
https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc7034
http://www.w3.org/TR/2012/WD-cors-20120403
http://www.w3.org/TR/2012/WD-cors-20120403

Appendix A. Acknowledgements

The following individuals contributed ideas, feedback, and wording

to this specification:

Mark Dobrinic, Karl McGuinness, Renato Athaydes, Daniel Lindau

Appendix B. Document History

[[to be removed by the RFC editor before publication as an RFC]]

This section is to be removed before publishing as an RFC.

-04

Updated IANA references to use the "short version" without file

extension or extra path information.

Updated repository reference.

-03

Updated repository links.

-02

Updated section 8.1 with regards to the CSP headers.

Updated authorization server metadata in section 6.

Updated IANA Considerations section 7.

-01

Updated to v. 3 XML format

-00

Initial draft.

Authors' Addresses

Jacob Ideskog

Curity AB

Email: jacob@curity.io

Travis Spencer

Curity AB

Email: travis@curity.io

¶

¶

¶

¶

¶

*

¶

* ¶

¶

* ¶

¶

* ¶

* ¶

* ¶

¶

* ¶

¶

* ¶

mailto:jacob@curity.io
mailto:travis@curity.io

	OAuth 2.0 Assisted Token
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Assisted Token Endpoint
	3.1. Access Token Scope
	3.2. Cross-Origin Support

	4. Protocol
	4.1. Assisted Token Request
	4.2. Assisted Token Response
	4.3. Error Response

	5. Client Metadata
	6. Authorization Server Metadata
	7. IANA Considerations
	7.1. OAuth URI Registration
	7.1.1. Registry Contents

	7.2. OAuth Parameters
	7.2.1. Registry Contents

	7.3. OAuth 2.0 Authorization Server Metadata
	7.3.1. Registry Contents

	8. Security Considerations
	8.1. Framing
	8.2. Handle Tokens
	8.3. Warning Against Untrusted Scripts
	8.4. Origin of Event and Authorization Server
	8.5. Token Storage
	8.6. Visibility of User Agent's Address Bar

	9. Privacy Considerations
	10. Normative References
	11. Informative References
	Appendix A. Acknowledgements
	Appendix B. Document History
	Authors' Addresses

