
6Lo Working Group K. Lynn, Ed.
Internet-Draft Consultant
Intended status: Standards Track J. Martocci
Expires: January 5, 2015 Johnson Controls
 C. Neilson
 Delta Controls
 S. Donaldson
 Honeywell
 July 4, 2014

Transmission of IPv6 over MS/TP Networks
draft-ietf-6lo-6lobac-00

Abstract

 Master-Slave/Token-Passing (MS/TP) is a contention-free access method
 for the RS-485 physical layer, which is used extensively in building
 automation networks. This specification defines the frame format for
 transmission of IPv6 packets and the method of forming link-local and
 statelessly autoconfigured IPv6 addresses on MS/TP networks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Lynn, et al. Expires January 5, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft IPv6 over MS/TP July 2014

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. MS/TP Mode for IPv6 . 6
3. Addressing Modes . 6
4. Maximum Transmission Unit (MTU) 6
5. LoBAC Adaptation Layer 7
6. Stateless Address Autoconfiguration 9
7. IPv6 Link Local Address 10
8. Unicast Address Mapping 10
9. Multicast Address Mapping 11
10. Header Compression . 11
11. IANA Considerations . 11
12. Security Considerations 12
13. Acknowledgments . 12
14. References . 12
Appendix A. Abstract MAC Interface 14
Appendix B. Consistent Overhead Byte Stuffing [COBS] 16
Appendix C. Encoded CRC-32K [CRC32K] 20

 Authors' Addresses . 22

1. Introduction

 Master-Slave/Token-Passing (MS/TP) is a contention-free access method
 for the RS-485 [TIA-485-A] physical layer, which is used extensively
 in building automation networks. This specification defines the
 frame format for transmission of IPv6 [RFC2460] packets and the
 method of forming link-local and statelessly autoconfigured IPv6
 addresses on MS/TP networks. The general approach is to adapt
 elements of the 6LoWPAN [RFC4944] specification to constrained wired
 networks.

 An MS/TP device is typically based on a low-cost microcontroller with
 limited processing power and memory. Together with low data rates
 and a small address space, these constraints are similar to those
 faced in 6LoWPAN networks and suggest some elements of that solution
 might be leveraged. MS/TP differs significantly from 6LoWPAN in at
 least three respects: a) MS/TP devices typically have a continuous
 source of power, b) all MS/TP devices on a segment can communicate
 directly so there are no hidden node or mesh routing issues, and c)
 recent changes to MS/TP will support payloads of up to 1501 octets,
 eliminating the need for link-layer fragmentation and reassembly.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4944

Lynn, et al. Expires January 5, 2015 [Page 2]

Internet-Draft IPv6 over MS/TP July 2014

 The following sections provide a brief overview of MS/TP, then
 describe how to form IPv6 addresses and encapsulate IPv6 packets in
 MS/TP frames. This document also specifies a header compression
 mechanism, based on [RFC6282], that is RECOMMENDED in order to make
 IPv6 practical on low speed MS/TP networks.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Abbreviations Used

 ASHRAE: American Society of Heating, Refrigerating, and Air-
 Conditioning Engineers (http://www.ashrae.org)

 BACnet: An ISO/ANSI/ASHRAE Standard Data Communication Protocol
 for Building Automation and Control Networks

 CRC: Cyclic Redundancy Check

 MAC: Medium Access Control

 MTU: Maximum Transmission Unit

 MSDU: MAC Service Data Unit (MAC client data)

 UART: Universal Asynchronous Transmitter/Receiver

1.3. MS/TP Overview

 This section provides a brief overview of MS/TP, which is specified
 in ANSI/ASHRAE 135-2012 (BACnet) Clause 9 [Clause9] and included
 herein by reference. BACnet [Clause9] also covers physical layer
 deployment options.

 MS/TP is designed to enable multidrop networks over shielded twisted
 pair wiring. It can support a data rate of 115,200 baud on segments
 up to 1000 meters in length, or segments up to 1200 meters in length
 at lower baud rates. An MS/TP link requires only a UART, an RS-485
 [TIA-485-A] transceiver with a driver that can be disabled, and a 5ms
 resolution timer. These features make MS/TP a cost-effective field
 bus for the most numerous and least expensive devices in a building
 automation network.

 The differential signaling used by [TIA-485-A] requires a contention-
 free MAC. MS/TP uses a token to control access to a multidrop bus.

https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ashrae.org

Lynn, et al. Expires January 5, 2015 [Page 3]

Internet-Draft IPv6 over MS/TP July 2014

 A master node may initiate the transmission of a data frame when it
 holds the token. After sending at most a configured maximum number
 of data frames, a master node passes the token to the next master
 node (as determined by node address). Slave nodes transmit only when
 polled and SHALL NOT be considered part of this specification.

 MS/TP COBS-encoded* frames have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x55 | 0xFF | Frame Type* | DA |
 +-+
 | SA | Length (MS octet first) | Header CRC |
 +-+
 . .
 . Encoded Data* (2 - 1512 octets) .
 . .
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Encoded CRC-32K* (5 octets) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 | | optional 0xFF |
 +-+

 Figure 1: MS/TP COBS-Encoded Frame Format

 *Note: BACnet Addendum 135-2012an [Addendum_an] defines a range of
 Frame Type values to designate frames that contain data and data CRC
 fields encoded using Consistent Overhead Byte Stuffing [COBS] (see

Appendix B). The purpose of COBS encoding is to eliminate preamble
 sequences from the Encoded Data and Encoded CRC-32K fields. The
 maximum length of an MSDU as defined by this specification is 1501
 octets (before encoding). The Encoded Data is covered by a 32-bit
 CRC [CRC32K] (see Appendix C), which is then itself COBS encoded.

 MS/TP COBS-encoded frame fields have the following descriptions:

 Preamble two octet preamble: 0x55, 0xFF
 Frame Type one octet
 Destination Address one octet address
 Source Address one octet address
 Length two octets, most significant octet first
 Header CRC one octet
 Encoded Data 2 - 1512 octets (see Appendix B)
 Encoded CRC-32K five octets (see Appendix C)
 (pad) (optional) at most one octet of trailer: 0xFF

Lynn, et al. Expires January 5, 2015 [Page 4]

Internet-Draft IPv6 over MS/TP July 2014

 The Frame Type is used to distinguish between different types of MAC
 frames. The types relevent to this specification (in decimal) are:

 0 Token
 1 Poll For Master
 2 Reply To Poll For Master
 ...
 34 IPv6 over MS/TP (LoBAC) Encapsulation

 ASHRAE reserves undefined MS/TP Frame Type values 8 through 31 and 34
 through 127, inclusive. Frame Types 32 through 127 designate COBS-
 encoded frames and MUST convey Encoded Data and Encoded CRC-32K
 fields. All master nodes MUST understand Token, Poll For Master, and
 Reply to Poll For Master control frames. See Section 2 for
 additional details.

 The Destination and Source Addresses are each one octet in length.
 See Section 3 for additional details.

 For COBS-encoded frames, the Length field specifies the combined
 length of the [COBS] Encoded Data and Encoded CRC-32K fields in
 octets, minus two. (This adjustment is required for backward
 compatibility with legacy MS/TP devices.) See Section 4 and
 Appendices for additional details.

 The Header CRC field covers the Frame Type, Destination Address,
 Source Address, and Length fields. The Header CRC generation and
 check procedures are specified in BACnet [Clause9].

1.4. Goals and Non-goals

 The primary goal of this specification is to enable IPv6 directly on
 wired end devices in building automation and control networks by
 leveraging existing standards to the greatest extent possible. A
 secondary goal is to co-exist with legacy MS/TP implementations.
 Only the minimal changes necessary to support IPv6 over MS/TP are
 specified in BACnet [Addendum_an] (see Note in Section 1.3).

 Non-goals include making changes to the MS/TP frame header format,
 control frames, Master Node state machine, or addressing modes.
 Also, while the techniques described here may be applicable to other
 data links, no attempt is made to define a general design pattern.

Lynn, et al. Expires January 5, 2015 [Page 5]

Internet-Draft IPv6 over MS/TP July 2014

2. MS/TP Mode for IPv6

 ASHRAE must assign a new MS/TP Frame Type to indicate IPv6 over MS/TP
 Encapsulation from the range reserved for designating COBS-encoded
 frames. The Frame Type requested for IPv6 over MS/TP Encapsulation
 is 34 (0x22).

 All MS/TP master nodes (including those that support IPv6) must
 understand Token, Poll For Master, and Reply to Poll For Master
 control frames and support the Master Node state machine as specified
 in BACnet [Clause9]. MS/TP master nodes that support IPv6 must also
 support the Receive Frame state machine as specified in [Clause9] and
 extended by BACnet [Addendum_an].

3. Addressing Modes

 MS/TP link-layer (node) addresses are one octet in length. The
 method of assigning a node address is outside the scope of this
 document. However, each MS/TP node on the link MUST have a unique
 address or a mis-configuration condition exists.

 BACnet [Clause9] specifies that addresses 0 through 127 are valid for
 master nodes. The method specified in Section 6 for creating the
 Interface Identifier (IID) ensures that an IID of all zeros can never
 result.

 A Destination Address of 255 (0xFF) denotes a link-level broadcast
 (all nodes). A Source Address of 255 MUST NOT be used. MS/TP does
 not support multicast, therefore all IPv6 multicast packets MUST be
 sent as link-level broadcasts and filtered at the IPv6 layer.

 This specification assumes that a unique IPv6 subnet prefix is
 assigned to each MS/TP segment. Hosts learn IPv6 prefixes via router
 advertisements according to [RFC4861].

4. Maximum Transmission Unit (MTU)

 BACnet [Addendum_an] supports MPDUs up to 2032 octets in length.
 This specification defines an MPDU length of at least 1281 octets and
 at most 1501 octets. This is sufficient to convey the minimum MTU
 required by IPv6 [RFC2460] without the need for link-layer
 fragmentation and reassembly.

 However, the relatively low data rates of MS/TP still make a
 compelling case for header compression. An adaptation layer to
 indicate compressed or uncompressed IPv6 headers is specified in

Section 5 and the compression scheme is specified in Section 10.

https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc2460

Lynn, et al. Expires January 5, 2015 [Page 6]

Internet-Draft IPv6 over MS/TP July 2014

5. LoBAC Adaptation Layer

 The encapsulation formats defined in this section (subsequently
 referred to as the "LoBAC" encapsulation) comprise the MSDU (payload)
 of an MS/TP frame. The LoBAC payload (i.e., an IPv6 packet) follows
 an encapsulation header stack. LoBAC is a subset of the LoWPAN
 encapsulation defined in [RFC4944], therefore the use of "LOWPAN" in
 literals below is intentional. The primary differences between LoBAC
 and LoWPAN are: a) omission of the Fragmentation, Mesh, and Broadcast
 headers, and b) use of LOWPAN_IPHC [RFC6282] in place of LOWPAN_HC1
 header compression (which is deprecated by [RFC6282]).

 All LoBAC encapsulated datagrams transmitted over MS/TP are prefixed
 by an encapsulation header stack. Each header in the stack consists
 of a header type followed by zero or more header fields. Whereas in
 an IPv6 header the stack would contain, in the following order,
 addressing, hop-by-hop options, routing, fragmentation, destination
 options, and finally payload [RFC2460]; in a LoBAC encapsulation the
 analogous sequence is (optional) header compression and payload. The
 header stacks that are valid in a LoBAC network are shown below.

 A LoBAC encapsulated IPv6 datagram:

 +---------------+-------------+---------+
 | IPv6 Dispatch | IPv6 Header | Payload |
 +---------------+-------------+---------+

 A LoBAC encapsulated LOWPAN_IPHC compressed IPv6 datagram:

 +---------------+-------------+---------+
 | IPHC Dispatch | IPHC Header | Payload |
 +---------------+-------------+---------+

 All protocol datagrams (i.e., IPv6 or compressed IPv6 headers) SHALL
 be preceded by one of the valid LoBAC encapsulation headers. This
 permits uniform software treatment of datagrams without regard to
 their mode of transmission.

 The definition of LoBAC headers consists of the dispatch value, the
 definition of the header fields that follow, and their ordering
 constraints relative to all other headers. Although the header stack
 structure provides a mechanism to address future demands on the LoBAC
 (LoWPAN) adaptation layer, it is not intended to provided general
 purpose extensibility. This format document specifies a small set of
 header types using the header stack for clarity, compactness, and
 orthogonality.

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc2460

Lynn, et al. Expires January 5, 2015 [Page 7]

Internet-Draft IPv6 over MS/TP July 2014

5.1. Dispatch Value and Header

 The LoBAC Dispatch value begins with a "0" bit followed by a "1" bit.
 The Dispatch value and header are shown here:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|1| Dispatch | Type-specific header
 +-+

 Dispatch 6-bit selector. Identifies the type of header
 immediately following the Dispatch value.

 Type-specific header A header determined by the Dispatch value.

 Figure 2: Dispatch Value and Header

 The Dispatch value may be treated as an unstructured namespace. Only
 a few symbols are required to represent current LoBAC functionality.
 Although some additional savings could be achieved by encoding
 additional functionality into the dispatch value, these measures
 would tend to constrain the ability to address future alternatives.

 Pattern Header Type
 +------------+---+
 | 00 xxxxxx | NALP - Not a LoWPAN (LoBAC) frame |
 | 01 000000 | ESC - Additional Dispatch octet follows |
 | 01 000001 | IPv6 - Uncompressed IPv6 Addresses |
 | ... | reserved - Defined or reserved by [RFC4944] |
 | 01 1xxxxx | LOWPAN_IPHC - LOWPAN_IPHC compressed IPv6 [RFC6282] |
 | 1x xxxxxx | reserved - Defined or reserved by [RFC4944] |
 +------------+---+

 Figure 3: Dispatch Value Bit Patterns

 NALP: Specifies that the following bits are not a part of the LoBAC
 encapsulation, and any LoBAC node that encounters a Dispatch
 value of 00xxxxxx shall discard the packet. Non-LoBAC protocols
 that wish to coexist with LoBAC nodes should include an octet
 matching this pattern immediately following the MS/TP header.

 ESC: Specifies that the following header is a single 8-bit field for
 the Dispatch value. It allows support for Dispatch values larger
 than 127 (see [RFC6282] section 5).

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282#section-5

Lynn, et al. Expires January 5, 2015 [Page 8]

Internet-Draft IPv6 over MS/TP July 2014

 IPv6: Specifies that the following header is an uncompressed IPv6
 header [RFC2460].

 LOWPAN_IPHC: A value of 011xxxxx specifies a LOWPAN_IPHC compression
 header (see Section 10.)

 Reserved: A LoBAC node that encounters a Dispatch value in the range
 01000010 through 01011111 or 1xxxxxxx SHALL discard the packet.

6. Stateless Address Autoconfiguration

 This section defines how to obtain an IPv6 Interface Identifier. The
 general procedure is described in Appendix A of [RFC4291], "Creating
 Modified EUI-64 Format Interface Identifiers", as updated by
 [RFC7136].

 The Interface Identifier MAY be based on an [EUI-64] identifier
 assigned to the device but this is not typical for MS/TP. In this
 case, the EUI-64 to IID transformation defined in the IPv6 addressing
 architecture [RFC4291] MUST be used. This will result in a globally
 unique Interface Identifier.

 If the device does not have an EUI-64, then the Interface Identifier
 SHOULD be formed by concatenating its 8-bit MS/TP node address to the
 seven octets 0x00, 0x00, 0x00, 0xFF, 0xFE, 0x00, 0x00. For example,
 an MS/TP node address of hexadecimal value 0x4F results in the
 following Interface Identifier:

 |0 1|1 3|3 4|4 6|
 |0 5|6 1|2 7|8 3|
 +----------------+----------------+----------------+----------------+
 |0000000000000000|0000000011111111|1111111000000000|0000000001001111|
 +----------------+----------------+----------------+----------------+

 This is the RECOMMENDED method of forming an IID, as it supports the
 most efficient header compression provided by the LOWPAN_IPHC
 [RFC6282] scheme specified in Section 10.

 An IPv6 address prefix used for stateless autoconfiguration [RFC4862]
 of an MS/TP interface MUST have a length of 64 bits.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4291#appendix-A
https://datatracker.ietf.org/doc/html/rfc7136
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc4862

Lynn, et al. Expires January 5, 2015 [Page 9]

Internet-Draft IPv6 over MS/TP July 2014

7. IPv6 Link Local Address

 The IPv6 link-local address [RFC4291] for an MS/TP interface is
 formed by appending the Interface Identifier, as defined above, to
 the prefix FE80::/64.

 10 bits 54 bits 64 bits
 +----------+-----------------------+----------------------------+
 |1111111010| (zeros) | Interface Identifier |
 +----------+-----------------------+----------------------------+

8. Unicast Address Mapping

 The address resolution procedure for mapping IPv6 non-multicast
 addresses into MS/TP link-layer addresses follows the general
 description in Section 7.2 of [RFC4861], unless otherwise specified.

 The Source/Target Link-layer Address option has the following form
 when the addresses are 8-bit MS/TP link-layer (node) addresses.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Type | Length=1 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 +- Padding (all zeros) -+
 | |
 +- +-+-+-+-+-+-+-+-+
 | | MS/TP Address |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Option fields:

 Type:

 1: for Source Link-layer address.

 2: for Target Link-layer address.

 Length: This is the length of this option (including the type and
 length fields) in units of 8 octets. The value of this field is 1
 for 8-bit MS/TP node addresses.

 MS/TP Address: The 8-bit address in canonical bit order [RFC2469].
 This is the unicast address the interface currently responds to.

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4861#section-7.2
https://datatracker.ietf.org/doc/html/rfc2469

Lynn, et al. Expires January 5, 2015 [Page 10]

Internet-Draft IPv6 over MS/TP July 2014

9. Multicast Address Mapping

 All IPv6 multicast packets MUST be sent to MS/TP Destination Address
 255 (broadcast) and filtered at the IPv6 layer. When represented as
 a 16-bit address in a compressed header (see Section 10), it MUST be
 formed by padding on the left with a zero:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0x00 | 0xFF |
 +-+-+-+-+-+-+-+-+---------------+

10. Header Compression

 LoBAC uses LOWPAN_IPHC IPv6 compression, which is specified in
 [RFC6282] and included herein by reference. This section will simply
 identify substitutions that should be made when interpreting the text
 of [RFC6282].

 In general the following substitutions should be made:

 - Replace instances of "6LoWPAN" with "MS/TP network"

 - Replace instances of "IEEE 802.15.4 address" with "MS/TP address"

 When a 16-bit address is called for (i.e., an IEEE 802.15.4 "short
 address") it MUST be formed by padding the MS/TP address to the left
 with a zero:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | 0x00 | MS/TP address |
 +-+-+-+-+-+-+-+-+---------------+

 If LOWPAN_IPHC compression [RFC6282] is used with context, the border
 router(s) directly attached to the MS/TP segment MUST disseminate the
 6LoWPAN Context Option (6CO) as specified in [RFC6775].

11. IANA Considerations

 This document uses values previously reserved by [RFC4944] and
 [RFC6282] and makes no further requests of IANA.

 Note to RFC Editor: this section may be removed upon publication.

https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc6775
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282

Lynn, et al. Expires January 5, 2015 [Page 11]

Internet-Draft IPv6 over MS/TP July 2014

12. Security Considerations

 The method of deriving Interface Identifiers from MAC addresses is
 intended to preserve global uniqueness when possible. However, there
 is no protection from duplication through accident or forgery.

13. Acknowledgments

 We are grateful to the authors of [RFC4944] and members of the IETF
 6LoWPAN working group; this document borrows liberally from their
 work.

14. References

14.1. Normative References

 [Addendum_an]
 ASHRAE, "Proposed Addendum an to ANSI/ASHRAE Standard
 135-2012, BACnet - A Data Communication Protocol for
 Building Automation and Control Networks (Second Public
 Review)", March 2014, <http://www.bacnet.org/Addenda/

Add-135-2012an-PPR2-draft-rc4_chair_approved.pdf>.

 [Clause9] American Society of Heating, Refrigerating, and Air-
 Conditioning Engineers, "BACnet - A Data Communication
 Protocol for Building Automation and Control Networks",
 ANSI/ASHRAE 135-2012 (Clause 9), March 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

https://datatracker.ietf.org/doc/html/rfc4944
http://www.bacnet.org/Addenda/Add-135-2012an-PPR2-draft-rc4_chair_approved.pdf
http://www.bacnet.org/Addenda/Add-135-2012an-PPR2-draft-rc4_chair_approved.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc4944

Lynn, et al. Expires January 5, 2015 [Page 12]

Internet-Draft IPv6 over MS/TP July 2014

 [RFC6282] Hui, J. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 September 2011.

 [RFC6775] Shelby, Z., Chakrabarti, S., Nordmark, E., and C. Bormann,
 "Neighbor Discovery Optimization for IPv6 over Low-Power
 Wireless Personal Area Networks (6LoWPANs)", RFC 6775,
 November 2012.

 [RFC7136] Carpenter, B. and S. Jiang, "Significance of IPv6
 Interface Identifiers", RFC 7136, February 2014.

14.2. Informative References

 [COBS] Cheshire, S. and M. Baker, "Consistent Overhead Byte
 Stuffing", IEEE/ACM TRANSACTIONS ON NETWORKING, VOL.7,
 NO.2 , April 1999,
 <http://www.stuartcheshire.org/papers/COBSforToN.pdf>.

 [CRC32K] Koopman, P., "32-Bit Cyclic Redundancy Codes for Internet
 Applications", IEEE/IFIP International Conference on
 Dependable Systems and Networks (DSN 2002) , June 2002,
 <http://www.ece.cmu.edu/~koopman/networks/dsn02/

dsn02_koopman.pdf>.

 [EUI-64] IEEE, "Guidelines for 64-bit Global Identifier (EUI-64)
 Registration Authority", March 1997,
 <http://standards.ieee.org/regauth/oui/tutorials/

EUI64.html>.

 [IEEE.802.3]
 "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 3: Carrier Sense Multiple Access with Collision Detection
 (CMSA/CD) Access Method and Physical Layer
 Specifications", IEEE Std 802.3-2008, December 2008,
 <http://standards.ieee.org/getieee802/802.3.html>.

 [RFC2469] Narten, T. and C. Burton, "A Caution On The Canonical
 Ordering Of Link-Layer Addresses", RFC 2469, December
 1998.

 [TIA-485-A]
 Telecommunications Industry Association, "TIA-485-A,
 Electrical Characteristics of Generators and Receivers for
 Use in Balanced Digital Multipoint Systems (ANSI/TIA/EIA-
 485-A-98) (R2003)", March 2003.

https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc6775
https://datatracker.ietf.org/doc/html/rfc7136
http://www.stuartcheshire.org/papers/COBSforToN.pdf
http://www.ece.cmu.edu/~koopman/networks/dsn02/dsn02_koopman.pdf
http://www.ece.cmu.edu/~koopman/networks/dsn02/dsn02_koopman.pdf
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://standards.ieee.org/getieee802/802.3.html
https://datatracker.ietf.org/doc/html/rfc2469

Lynn, et al. Expires January 5, 2015 [Page 13]

Internet-Draft IPv6 over MS/TP July 2014

Appendix A. Abstract MAC Interface

 This Appendix is informative and not part of the standard.

 BACnet [Clause9] defines support for MAC-layer clients through its
 SendFrame and ReceivedDataNoReply procedures. However, it does not
 define a protocol independent abstract interface for the data link.
 This is provided below as an aid to implementation.

A.1. MA-DATA.request

A.1.1. Function

 This primitive defines the transfer of data from a MAC client entity
 to a single peer entity or multiple peer entities in the case of a
 broadcast address.

A.1.2. Semantics of the Service Primitive

 The semantics of the primitive are as follows:

 MA-DATA.request (
 destination_address,
 source_address,
 data,
 priority,
 type
)

 The 'destination_address' parameter may specify either an individual
 or a broadcast MAC entity address. It must contain sufficient
 information to create the Destination Address field (see Section 10)
 that is prepended to the frame by the local MAC sublayer entity. The
 'source_address' parameter, if present, must specify an individual
 MAC address. If the source_address parameter is omitted, the local
 MAC sublayer entity will insert a value associated with that entity.

 The 'data' parameter specifies the MAC service data unit (MSDU) to be
 transferred by the MAC sublayer entity. There is sufficient
 information associated with the MSDU for the MAC sublayer entity to
 determine the length of the data unit.

 The 'priority' parameter specifies the priority desired for the data
 unit transfer. The priority parameter is ignored by MS/TP.

 The 'type' parameter specifies the value of the MS/TP Frame Type
 field that is prepended to the frame by the local MAC sublayer
 entity.

Lynn, et al. Expires January 5, 2015 [Page 14]

Internet-Draft IPv6 over MS/TP July 2014

A.1.3. When Generated

 This primitive is generated by the MAC client entity whenever data
 shall be transferred to a peer entity or entities. This can be in
 response to a request from higher protocol layers or from data
 generated internally to the MAC client, such as a Token frame.

A.1.4. Effect on Receipt

 Receipt of this primitive will cause the MAC entity to insert all MAC
 specific fields, including Destination Address, Source Address, Frame
 Type, and any fields that are unique to the particular media access
 method, and pass the properly formed frame to the lower protocol
 layers for transfer to the peer MAC sublayer entity or entities.

A.2. MA-DATA.indication

A.2.1. Function

 This primitive defines the transfer of data from the MAC sublayer
 entity to the MAC client entity or entities in the case of a
 broadcast address.

A.2.2. Semantics of the Service Primitive

 The semantics of the primitive are as follows:

 MA-DATA.indication (
 destination_address,
 source_address,
 data,
 priority,
 type
)

 The 'destination_address' parameter may be either an individual or a
 broadcast address as specified by the Destination Address field of
 the incoming frame. The 'source_address' parameter is an individual
 address as specified by the Source Address field of the incoming
 frame.

 The 'data' parameter specifies the MAC service data unit (MSDU) as
 received by the local MAC entity. There is sufficient information
 associated with the MSDU for the MAC sublayer client to determine the
 length of the data unit.

 The 'priority' parameter specifies the priority desired for the data
 unit transfer. The priority parameter is ignored by MS/TP.

Lynn, et al. Expires January 5, 2015 [Page 15]

Internet-Draft IPv6 over MS/TP July 2014

 The 'type' parameter is the value of the MS/TP Frame Type field of
 the incoming frame.

A.2.3. When Generated

 The MA_DATA.indication is passed from the MAC sublayer entity to the
 MAC client entity or entites to indicate the arrival of a frame to
 the local MAC sublayer entity that is destined for the MAC client.
 Such frames are reported only if they are validly formed, received
 without error, and their destination address designates the local MAC
 entity. Frames destined for the MAC Control sublayer are not passed
 to the MAC client.

A.2.4. Effect on Receipt

 The effect of receipt of this primitive by the MAC client is
 unspecified.

Appendix B. Consistent Overhead Byte Stuffing [COBS]

 This Appendix is informative and not part of the standard.

 BACnet [Addendum_an] corrects a long-standing issue with the MS/TP
 specification; namely that preamble sequences were not escaped
 whenever they appeared in the Data or Data CRC fields. In rare
 cases, this resulted in dropped frames due to loss of frame
 synchronization. The solution is to encode the Data and 32-bit Data
 CRC fields before transmission using Consistent Overhead Byte
 Stuffing [COBS] and decode these fields upon reception.

 COBS is a run-length encoding method that nominally removes '0x00'
 octets from its input. Any selected octet value may be removed by
 XOR'ing that value with each octet of the COBS output. BACnet
 [Addendum_an] specifies the preamble octet '0x55' for removal.

 The minimum overhead of COBS is one ectet per encoded field. The
 worst-case overhead is bounded to one octet in 254, or less than
 0.5%, as described in [COBS].

 Frame encoding proceeds logically in two passes. The Extended Data
 field is prepared by passing the MSDU through the COBS encoder and
 XOR'ing the preamble octet '0x055' with each octet of the output.
 The Extended Data CRC field is then prepared by calculating a CRC-32K
 over the Extended Data field and formatting it for transmission as
 described in Appendix C. The combined length of these fields, minus
 two octets for compatibility with existing MS/TP devices, is placed
 in the MS/TP header Length field before transmission.

Lynn, et al. Expires January 5, 2015 [Page 16]

Internet-Draft IPv6 over MS/TP July 2014

 Example COBS encoder and decoder functions are shown below for
 illustration. Complete examples of use and test vectors are provided
 in BACnet [Addendum_an].

 #include <stddef.h>
 #include <stdint.h>

 #define CRC32K_INITIAL_VALUE (0xFFFFFFFF)
 #define MSTP_PREAMBLE_X55 (0x55)

 /*
 * Encodes 'length' octets of data located at 'from' and
 * writes one or more COBS code blocks at 'to', removing any
 * 'mask' octets that may present be in the encoded data.
 * Returns the length of the encoded data.
 */

 size_t
 cobs_encode (uint8_t *to, const uint8_t *from, size_t length,
 uint8_t mask)
 {
 size_t code_index = 0;
 size_t read_index = 0;
 size_t write_index = 1;
 uint8_t code = 1;
 uint8_t data, last_code;

 while (read_index < length) {
 data = from[read_index++];
 /*
 * In the case of encountering a non-zero octet in the data,
 * simply copy input to output and increment the code octet.
 */
 if (data != 0) {
 to[write_index++] = data ^ mask;
 code++;
 if (code != 255)
 continue;
 }
 /*
 * In the case of encountering a zero in the data or having
 * copied the maximum number (254) of non-zero octets, store
 * the code octet and reset the encoder state variables.
 */
 last_code = code;
 to[code_index] = code ^ mask;
 code_index = write_index++;
 code = 1;

Lynn, et al. Expires January 5, 2015 [Page 17]

Internet-Draft IPv6 over MS/TP July 2014

 }
 /*
 * If the last chunk contains exactly 254 non-zero octets, then
 * this exception is handled above (and returned length must be
 * adjusted). Otherwise, encode the last chunk normally, as if
 * a "phantom zero" is appended to the data.
 */
 if ((last_code == 255) && (code == 1))
 write_index--;
 else
 to[code_index] = code ^ mask;

 return write_index;
 }

Lynn, et al. Expires January 5, 2015 [Page 18]

Internet-Draft IPv6 over MS/TP July 2014

 #include <stddef.h>
 #include <stdint.h>

 #define CRC32K_INITIAL_VALUE (0xFFFFFFFF)
 #define CRC32K_RESIDUE (0x0843323B)
 #define MSTP_PREAMBLE_X55 (0x55)

 /*
 * Decodes 'length' octets of data located at 'from' and
 * writes the original client data at 'to', restoring any
 * 'mask' octets that may present in the encoded data.
 * Returns the length of the encoded data or zero if error.
 */
 size_t
 cobs_decode (uint8_t *to, const uint8_t *from, size_t length,
 uint8_t mask)
 {
 size_t read_index = 0;
 size_t write_index = 0;
 uint8_t code, last_code;

 while (read_index < length) {
 code = from[read_index] ^ mask;
 last_code = code;
 /*
 * Sanity check the encoding to prevent the while() loop below
 * from overrunning the output buffer.
 */
 if (read_index + code > length)
 return 0;

 read_index++;
 while (--code > 0)
 to[write_index++] = from[read_index++] ^ mask;
 /*
 * Restore the implicit zero at the end of each decoded block
 * except when it contains exactly 254 non-zero octets or the
 * end of data has been reached.
 */
 if ((last_code != 255) && (read_index < length))
 to[write_index++] = 0;
 }
 return write_index;
 }

Lynn, et al. Expires January 5, 2015 [Page 19]

Internet-Draft IPv6 over MS/TP July 2014

Appendix C. Encoded CRC-32K [CRC32K]

 This Appendix is informative and not part of the standard.

 Extending the payload of MS/TP to 1501 octets required upgrading the
 Data CRC from 16 bits to 32 bits. P.Koopman has authored several
 papers on evaluating CRC polynomials for network applications. In
 [CRC32K], he surveyed the entire 32-bit polynomial space and noted
 some that exceed the [IEEE.802.3] polynomial in performance. BACnet
 [Addendum_an] specifies the CRC-32K (Koopman) polynomial.

 The specified use of the calc_crc32K() function is as follows.
 Before a frame is transmitted, 'crc_value' is initialized to all ones
 before the function is called. After passing all octets of the
 [COBS] Encoded Data through the function, the ones complement of the
 resulting 'crc_value' is arranged in LSB-first order and is itself
 [COBS] encoded.

 Upon reception of a frame, 'crc_value' is initialized to all ones.
 The octets of the Encoded Data field are accumulated by the
 calc_crc32K() function before decoding. The Encoded CRC-32K field is
 then decoded and the resulting four octets are accumulated by the
 calc_crc32K() function. If the result is the expected residue value
 'CRC32K_RESIDUE', then the frame was received correctly.

 An example CRC-32K function in shown below for illustration.
 Complete examples of use and test vectors are provided in BACnet
 [Addendum_an].

Lynn, et al. Expires January 5, 2015 [Page 20]

Internet-Draft IPv6 over MS/TP July 2014

 #include <stdint.h>

 /* See BACnet Addendum 135-2012an, section G.3.2 */
 #define CRC32K_INITIAL_VALUE (0xFFFFFFFF)
 #define CRC32K_RESIDUE (0x0843323B)

 /* CRC-32K polynomial, 1 + x**1 + ... + x**30 (+ x**32) */
 #define CRC32K_POLY (0xEB31D82E)

 /*
 * Accumulate 'data_value' into the CRC in 'crc_value'.
 * Return updated CRC.
 *
 * Note: crcValue must be set to CRC32K_INITIAL_VALUE
 * before initial call.
 */
 uint32_t
 calc_crc32K (uint8_t data_value, uint32_t crc_value)
 {
 uint8_t data, b;
 uint32_t crc;

 data = data_value;
 crc = crc_value;

 for (b = 0; b < 8; b++) {
 if ((data & 1) ^ (crc & 1)) {
 crc >>= 1;
 crc ^= CRC32K_POLY;
 } else {
 crc >>= 1;
 }
 data >>= 1;
 }
 return crc;
 }

Lynn, et al. Expires January 5, 2015 [Page 21]

Internet-Draft IPv6 over MS/TP July 2014

Authors' Addresses

 Kerry Lynn (editor)
 Consultant

 Phone: +1 978 460 4253
 Email: kerlyn@ieee.org

 Jerry Martocci
 Johnson Controls, Inc.
 507 E. Michigan St
 Milwaukee , WI 53202
 USA

 Phone: +1 414 524 4010
 Email: jerald.p.martocci@jci.com

 Carl Neilson
 Delta Controls, Inc.
 17850 56th Ave
 Surrey , BC V3S 1C7
 Canada

 Phone: +1 604 575 5913
 Email: cneilson@deltacontrols.com

 Stuart Donaldson
 Honeywell Automation & Control Solutions
 6670 185th Ave NE
 Redmond , WA 98052
 USA

 Email: stuart.donaldson@honeywell.com

Lynn, et al. Expires January 5, 2015 [Page 22]

