
Workgroup: 6lo

Updates: 4944 (if approved)

Published: 4 February 2020

Intended Status: Standards Track

Expires: 7 August 2020

Authors: P. Thubert, Ed.

Cisco Systems

6LoWPAN Selective Fragment Recovery

Abstract

This draft updates RFC 4944 with a simple protocol to recover

individual fragments across a route-over mesh network, with a

minimal flow control to protect the network against bloat.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 August 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc4944
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

2.1. BCP 14

2.2. References

2.3. New Terms

3. Updating RFC 4944

4. Extending draft-ietf-6lo-minimal-fragment

4.1. Slack in the First Fragment

4.2. Gap between frames

4.3. Modifying the First Fragment

5. New Dispatch types and headers

5.1. Recoverable Fragment Dispatch type and Header

5.2. RFRAG Acknowledgment Dispatch type and Header

6. Fragments Recovery

6.1. Forwarding Fragments

6.1.1. Receiving the first fragment

6.1.2. Receiving the next fragments

6.2. Receiving RFRAG Acknowledgments

6.3. Aborting the Transmission of a Fragmented Packet

6.4. Applying Recoverable Fragmentation along a Diverse Path

7. Management Considerations

7.1. Protocol Parameters

7.2. Observing the network

8. Security Considerations

9. IANA Considerations

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

10. Acknowledgments

11. Normative References

12. Informative References

Appendix A. Rationale

Appendix B. Requirements

Appendix C. Considerations on Flow Control

Author's Address

1. Introduction

In most Low Power and Lossy Network (LLN) applications, the bulk of

the traffic consists of small chunks of data (on the order of a few

bytes to a few tens of bytes) at a time. Given that an IEEE Std.

802.15.4 [IEEE.802.15.4] frame can carry a payload of 74 bytes or

more, fragmentation is usually not required. However, and though

this happens only occasionally, a number of mission critical

applications do require the capability to transfer larger chunks of

data, for instance to support the firmware upgrade of the LLN nodes

or the extraction of logs from LLN nodes. In the former case, the

large chunk of data is transferred to the LLN node, whereas in the

latter, the large chunk flows away from the LLN node. In both cases,

the size can be on the order of 10 kilobytes or more and an end-to-

end reliable transport is required.

"Transmission of IPv6 Packets over IEEE 802.15.4 Networks" [RFC4944]

defines the original 6LoWPAN datagram fragmentation mechanism for

LLNs. One critical issue with this original design is that routing

an IPv6 [RFC8200] packet across a route-over mesh requires

reassembling the full packet at each hop, which may cause latency

along a path and an overall buffer bloat in the network. The "6TiSCH

Architecture" [I-D.ietf-6tisch-architecture] recommends using a

fragment forwarding (FF) technique to alleviate those undesirable

effects. "LLN Minimal Fragment Forwarding" [I-D.ietf-6lo-minimal-

fragment] specifies the general behavior that all FF techniques

including this specification follow, and presents the associated

caveats. In particular, the routing information is fully indicated

in the first fragment, which is always forwarded first. A state is

formed and used to forward all the next fragments along the same

path. The datagram_tag is locally significant to the Layer-2 source

of the packet and is swapped at each hop.

"Virtual reassembly buffers in 6LoWPAN" [I-D.ietf-lwig-6lowpan-

virtual-reassembly] (VRB) proposes a FF technique that is compatible

with [RFC4944] without the need to define a new protocol. However,

¶

¶

¶

¶

¶

¶

¶

¶

¶

adding that capability alone to the local implementation of the

original 6LoWPAN fragmentation would not address the inherent

fragility of fragmentation (see [I-D.ietf-intarea-frag-fragile]) in

particular the issues of resources locked on the receiver and the

wasted transmissions due to the loss of a single fragment in a whole

datagram. [Kent] compares the unreliable delivery of fragments with

a mechanism it calls "selective acknowledgements" that recovers the

loss of a fragment individually. The paper illustrates the benefits

that can be derived from such a method in figures 1, 2 and 3, on

pages 6 and 7. [RFC4944] as no selective recovery and the whole

datagram fails when one fragment is not delivered to the destination

6LoWPAN endpoint. Constrained memory resources are blocked on the

receiver until the receiver times out, possibly causing the loss of

subsequent packets that cannot be received for the lack of buffers.

That problem is exacerbated when forwarding fragments over multiple

hops since a loss at an intermediate hop will not be discovered by

either the source or the destination, and the source will keep on

sending fragments, wasting even more resources in the network and

possibly contributing to the condition that caused the loss to no

avail since the datagram cannot arrive in its entirety. RFC 4944 is

also missing signaling to abort a multi-fragment transmission at any

time and from either end, and, if the capability to forward

fragments is implemented, clean up the related state in the network.

It is also lacking flow control capabilities to avoid participating

in congestion that may in turn cause the loss of a fragment and

potentially the retransmission of the full datagram.

This specification provides a method to forward fragments across a

multi-hop route-over mesh, and a selective acknowledgment to recover

individual fragments between 6LoWPAN endpoints. The method is

designed to limit congestion loss in the network and addresses the

requirements that are detailed in Appendix B.

2. Terminology

2.1. BCP 14

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119][RFC8174] when, and only when, they appear in all

capitals, as shown here.

2.2. References

In this document, readers will encounter terms and concepts that are

discussed in "Problem Statement and Requirements for IPv6 over Low-

Power Wireless Personal Area Network (6LoWPAN) Routing" [RFC6606]

¶

¶

¶

¶

¶

6LoWPAN endpoints:

"LLN Minimal Fragment Forwarding" [I-D.ietf-6lo-minimal-fragment]

introduces the generic concept of a Virtual Reassembly Buffer (VRB)

and specifies behaviours and caveats that are common to a large

family of FF techniques including this, which fully inherits from

that specification.

Past experience with fragmentation has shown that misassociated or

lost fragments can lead to poor network behavior and, occasionally,

trouble at the application layer. The reader is encouraged to read

"IPv4 Reassembly Errors at High Data Rates" [RFC4963] and follow the

references for more information.

That experience led to the definition of "Path MTU discovery"

[RFC8201] (PMTUD) protocol that limits fragmentation over the

Internet.

Specifically in the case of UDP, valuable additional information can

be found in "UDP Usage Guidelines for Application Designers"

[RFC8085].

Readers are expected to be familiar with all the terms and concepts

that are discussed in "IPv6 over Low-Power Wireless Personal Area

Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and

Goals" [RFC4919] and "Transmission of IPv6 Packets over IEEE

802.15.4 Networks" [RFC4944].

"The Benefits of Using Explicit Congestion Notification (ECN)" [RFC8

087] provides useful information on the potential benefits and

pitfalls of using ECN.

Quoting the "Multiprotocol Label Switching (MPLS) Architecture"

[RFC3031]: with MPLS, 'packets are "labeled" before they are

forwarded' along a Label Switched Path (LSP). At subsequent hops,

there is no further analysis of the packet's network layer header.

Rather, the label is used as an index into a table which specifies

the next hop, and a new label". The MPLS technique is leveraged in

the present specification to forward fragments that actually do not

have a network layer header, since the fragmentation occurs below

IP.

2.3. New Terms

This specification uses the following terms:

The LLN nodes in charge of generating or

expanding a 6LoWPAN header from/to a full IPv6 packet. The

¶

¶

¶

¶

¶

¶

¶

¶

Compressed Form:

datagram_size:

datagram_tag:

fragment_offset:

RFRAG:

RFRAG-ACK:

RFRAG Acknowledgment Request:

NULL bitmap:

FULL bitmap:

Forward:

Reverse:

6LoWPAN endpoints are the points where fragmentation and

reassembly take place.

This specification uses the generic term

Compressed Form to refer to the format of a datagram after the

action of [RFC6282] and possibly [RFC8138] for RPL [RFC6550]

artifacts.

The size of the datagram in its Compressed Form

before it is fragmented. The datagram_size is expressed in a unit

that depends on the MAC address layer technology, by default a

byte.

An identifier of a datagram that is locally unique to

the Layer-2 sender. Associated with the MAC addressof the sender,

this becomes a globally unique identifier for the datagram.

The offset of a particular fragment of a datagram

in its Compressed Form. The fragment_offset is expressed in a

unit that depends on the MAC address layer technology and is by

default a byte.

Recoverable Fragment

Recoverable Fragment Acknowledgement

An RFRAG with the Acknowledgement

Request flag ('X' flag) set.

Refers to a bitmap with all bits set to zero.

Refers to a bitmap with all bits set to one.

The direction of a LSP path, followed by the RFRAG.

The reverse direction of a LSP path, taken by the RFRAG-

ACK.

3. Updating RFC 4944

This specification updates the fragmentation mechanism that is

specified in "Transmission of IPv6 Packets over IEEE 802.15.4

Networks" [RFC4944] for use in route-over LLNs by providing a model

where fragments can be forwarded end-to-end across a 6LoWPAN LLN,

and where fragments that are lost on the way can be recovered

individually. A new format for fragments is introduced and new

dispatch types are defined in Section 5.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC8138] allows modifying the size of a packet en route by removing

the consumed hops in a compressed Routing Header. This requires that

fragment_offset and datagram_size (see Section 2.3) are also

modified en route, which is difficult to do in the uncompressed

form. This specification expresses those fields in the Compressed

Form and allows modifying them en route (see Section 4.3) easily.

Note that consistent with Section 2 of [RFC6282], for the

fragmentation mechanism described in Section 5.3 of [RFC4944], any

header that cannot fit within the first fragment MUST NOT be

compressed when using the fragmentation mechanism described in this

specification.

4. Extending draft-ietf-6lo-minimal-fragment

This specification implements the generic FF technique specified in

"LLN Minimal Fragment Forwarding" [I-D.ietf-6lo-minimal-fragment] in

a fashion that enables end-to-end recovery of fragments and some

degree of flow control.

4.1. Slack in the First Fragment

[I-D.ietf-6lo-minimal-fragment] allows for refragmenting in

intermediate nodes, meaning that some bytes from a given fragment

may be left in the VRB to be added to the next fragment. The reason

for this happening would be the need for space in the outgoing

fragment that was not needed in the incoming fragment, for instance

because the 6LoWPAN Header Compression is not as efficient on the

outgoing link, e.g., if the Interface ID (IID) of the source IPv6

address is elided by the originator on the first hop because it

matches the source MAC address, but cannot be on the next hops

because the source MAC addresschanges.

This specification cannot allow this operation since fragments are

recovered end-to-end based on a sequence number. This means that the

fragments that contain a 6LoWPAN-compressed header MUST have enough

slack to enable a less efficient compression in the next hops that

still fits in one MAC address frame. For instance, if the IID of the

source IPv6 address is elided by the originator, then it MUST

compute the fragment_size as if the MTU was 8 bytes less. This way,

the next hop can restore the source IID to the first fragment

without impacting the second fragment.

4.2. Gap between frames

This specification introduces a concept of an inter-frame gap, which

is a configurable interval of time between transmissions to a same

next hop. In the case of half duplex interfaces, this inter-frame

gap ensures that the next hop has completed processing of the

previous frame and is capable of receiving the next one.

¶

¶

¶

¶

¶

¶

In the case of a mesh operating at a single frequency with

omnidirectional antennas, a larger inter-frame gap is required to

protect the frame against hidden terminal collisions with the

previous frame of a same flow that is still progressing along a

common path.

The inter-frame gap is useful even for unfragmented datagrams, but

it becomes a necessity for fragments that are typically generated in

a fast sequence and are all sent over the exact same path.

4.3. Modifying the First Fragment

The compression of the Hop Limit, of the source and destination

addresses in the IPv6 Header, and of the Routing Header may change

en route in a Route-Over mesh LLN. If the size of the first fragment

is modified, then the intermediate node MUST adapt the datagram_size

to reflect that difference.

The intermediate node MUST also save the difference of datagram_size

of the first fragment in the VRB and add it to the datagram_size and

to the fragment_offset of all the subsequent fragments for that

datagram.

5. New Dispatch types and headers

This specification enables the 6LoWPAN fragmentation sublayer to

provide an MTU up to 2048 bytes to the upper layer, which can be the

6LoWPAN Header Compression sublayer that is defined in the

"Compression Format for IPv6 Datagrams" [RFC6282] specification. In

order to achieve this, this specification enables the fragmentation

and the reliable transmission of fragments over a multihop 6LoWPAN

mesh network.

This specification provides a technique that is derived from MPLS to

forward individual fragments across a 6LoWPAN route-over mesh

without reassembly at each hop. The datagram_tag is used as a label;

it is locally unique to the node that owns the source MAC addressof

the fragment, so together the MAC addressand the label can identify

the fragment globally. A node may build the datagram_tag in its own

locally-significant way, as long as the chosen datagram_tag stays

unique to the particular datagram for the lifetime of that datagram.

It results that the label does not need to be globally unique but

also that it must be swapped at each hop as the source MAC

addresschanges.

This specification extends RFC 4944 [RFC4944] with 2 new Dispatch

types, for Recoverable Fragment (RFRAG) and for the RFRAG

Acknowledgment back. The new 6LoWPAN Dispatch types are taken from

Page 0 [RFC8025] as indicated in Table 1 in Section 9.

¶

¶

¶

¶

¶

¶

¶

In the following sections, a "datagram_tag" extends the semantics

defined in [RFC4944] Section 5.3."Fragmentation Type and Header".

The datagram_tag is a locally unique identifier for the datagram

from the perspective of the sender. This means that the datagram_tag

identifies a datagram uniquely in the network when associated with

the source of the datagram. As the datagram gets forwarded, the

source changes and the datagram_tag must be swapped as detailed in

[I-D.ietf-6lo-minimal-fragment].

5.1. Recoverable Fragment Dispatch type and Header

In this specification, if the packet is compressed then the size and

offset of the fragments are expressed with respect to the Compressed

Form of the packet form as opposed to the uncompressed (native)

packet form.

The format of the fragment header is shown in Figure 1. It is the

same for all fragments. The format has a length and an offset, as

well as a sequence field. This would be redundant if the offset was

computed as the product of the sequence by the length, but this is

not the case. The position of a fragment in the reassembly buffer is

neither correlated with the value of the sequence field nor with the

order in which the fragments are received. This enables out-of-

sequence subfragmenting, e.g., a fragment seq. 5 that is retried

end-to-end as smaller fragments seq. 5, 13 and 14 due to a change of

MTU along the path between the 6LoWPAN endpoints.

Figure 1: RFRAG Dispatch type and Header

There is no requirement on the receiver to check for contiguity of

the received fragments, and the sender MUST ensure that when all

fragments are acknowledged, then the datagram is fully received.

This may be useful in particular in the case where the MTU changes

and a fragment sequence is retried with a smaller fragment_size, the

remainder of the original fragment being retried with new sequence

values.

The first fragment is recognized by a sequence of 0; it carries its

fragment_size and the datagram_size of the compressed packet before

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |1 1 1 0 1 0 0|E| datagram_tag |

 +-+

 |X| sequence| fragment_size | fragment_offset |

 +-+

 X set == Ack-Request

¶

X:

E:

Fragment_size:

datagram_tag:

Sequence:

Fragment_offset:

it is fragmented, whereas the other fragments carry their

fragment_size and fragment_offset. The last fragment for a datagram

is recognized when its fragment_offset and its fragment_size add up

to the datagram_size.

Recoverable Fragments are sequenced and a bitmap is used in the

RFRAG Acknowledgment to indicate the received fragments by setting

the individual bits that correspond to their sequence.

1 bit; Ack-Request: when set, the sender requires an RFRAG

Acknowledgment from the receiver.

1 bit; Explicit Congestion Notification; the "E" flag is reset

by the source of the fragment and set by intermediate routers to

signal that this fragment experienced congestion along its path.

10-bit unsigned integer; the size of this fragment

in a unit that depends on the MAC address layer technology.

Unless overridden by a more specific specification, that unit is

the octet, which allows fragments up to 512 bytes.

8 bits; an identifier of the datagram that is locally

unique to the sender.

5-bit unsigned integer; the sequence number of the

fragment in the acknowledgement bitmap. Fragments are numbered

[0..N] where N is in [0..31]. A Sequence of 0 indicates the first

fragment in a datagram, but non-zero values are not indicative of

the position in the reassembly buffer.

16-bit unsigned integer.

When the Fragment_offset is set to a non-0 value, its semantics

depend on the value of the Sequence field as follows:

For a first fragment (i.e., with a Sequence of 0), this

field indicates the datagram_size of the compressed

datagram, to help the receiver allocate an adapted buffer

for the reception and reassembly operations. The fragment

may be stored for local reassembly. Alternatively, it may

be routed based on the destination IPv6 address. In that

case, a VRB state must be installed as described in Section

6.1.1.

When the Sequence is not 0, this field indicates the offset

of the fragment in the Compressed Form of the datagram. The

fragment may be added to a local reassembly buffer or

forwarded based on an existing VRB as described in Section

6.1.2.

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

A Fragment_offset that is set to a value of 0 indicates an abort

condition and all state regarding the datagram should be cleaned

up once the processing of the fragment is complete; the

processing of the fragment depends on whether there is a VRB

already established for this datagram, and the next hop is still

reachable:

if a VRB already exists and is not broken, the fragment is

to be forwarded along the associated Label Switched Path

(LSP) as described in Section 6.1.2, but regardless of the

value of the Sequence field;

else, if the Sequence is 0, then the fragment is to be

routed as described in Section 6.1.1, but no state is

conserved afterwards. In that case, the session if it

exists is aborted and the packet is also forwarded in an

attempt to clean up the next hops along the path indicated

by the IPv6 header (possibly including a routing header).

If the fragment cannot be forwarded or routed, then an abort

RFRAG-ACK is sent back to the source as described in Section

6.1.2.

5.2. RFRAG Acknowledgment Dispatch type and Header

This specification also defines a 4-octet RFRAG Acknowledgment

bitmap that is used by the reassembling endpoint to confirm

selectively the reception of individual fragments. A given offset in

the bitmap maps one-to-one with a given sequence number and

indicates which fragment is acknowledged as follows:

Figure 2: RFRAG Acknowledgment Bitmap Encoding

Figure 3 shows an example Acknowledgment bitmap which indicates that

all fragments from sequence 0 to 20 were received, except for

fragments 1, 2 and 16 were lost and must be retried.

¶

*

¶

*

¶

¶

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | RFRAG Acknowledgment Bitmap |

 +-+

 ^ ^

 | | bitmap indicating whether:

 | +----- Fragment with sequence 9 was received

 +----------------------- Fragment with sequence 0 was received

¶

E:

RFRAG Acknowledgment Bitmap:

Figure 3: Example RFRAG Acknowledgment Bitmap

The RFRAG Acknowledgment Bitmap is included in an RFRAG

Acknowledgment header, as follows:

Figure 4: RFRAG Acknowledgment Dispatch type and Header

1 bit; Explicit Congestion Notification Echo

When set, the sender indicates that at least one of the

acknowledged fragments was received with an Explicit Congestion

Notification, indicating that the path followed by the fragments

is subject to congestion. More in Appendix C.

An RFRAG Acknowledgment Bitmap,

whereby setting the bit at offset x indicates that fragment x was

received, as shown in Figure 2. A NULL bitmap that indicates that

the fragmentation process is aborted. A FULL bitmap that

indicates that the fragmentation process is complete, all

fragments were received at the reassembly endpoint.

6. Fragments Recovery

The Recoverable Fragment header RFRAG is used to transport a

fragment and optionally request an RFRAG Acknowledgment that will

confirm the good reception of one or more fragments. An RFRAG

Acknowledgment is carried as a standalone fragment header (i.e.,

with no 6LoWPAN payload) in a message that is propagated back to the

6LoWPAN endpoint that was the originator of the fragments. To

achieve this, each hop that performed an MPLS-like operation on

fragments reverses that operation for the RFRAG_ACK by sending a

frame from the next hop to the previous hop as known by its MAC

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 |1|0|0|1|1|1|1|1|1|1|1|1|1|1|1|1|0|1|1|1|1|0|0|0|0|0|0|0|0|0|0|0|

 +-+

¶

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |1 1 1 0 1 0 1|E| datagram_tag |

 +-+

 | RFRAG Acknowledgment Bitmap (32 bits) |

 +-+

¶

¶

¶

addressin the VRB. The datagram_tag in the RFRAG_ACK is unique to

the receiver and is enough information for an intermediate hop to

locate the VRB that contains the datagram_tag used by the previous

hop and the Layer-2 information associated to it (interface and MAC

address).

The 6LoWPAN endpoint that fragments the packets at the 6LoWPAN level

(the sender) also controls the amount of acknowledgments by setting

the Ack-Request flag in the RFRAG packets. The sender may set the

Ack-Request flag on any fragment to perform congestion control by

limiting the number of outstanding fragments, which are the

fragments that have been sent but for which reception or loss was

not positively confirmed by the reassembling endpoint. The maximum

number of outstanding fragments is the Window-Size. It is

configurable and may vary in case of ECN notification. When the

6LoWPAN endpoint that reassembles the packets at the 6LoWPAN level

(the receiver) receives a fragment with the Ack-Request flag set, it

MUST send an RFRAG Acknowledgment back to the originator to confirm

reception of all the fragments it has received so far.

The Ack-Request ('X') set in an RFRAG marks the end of a window.

This flag MUST be set on the last fragment if the sender wishes to

protect the datagram, and it MAY be set in any intermediate fragment

for the purpose of flow control.

This automatic repeat request (ARQ) process MUST be protected by a

timer, and the fragment that carries the 'X' flag MAY be retried

upon a time out for a configurable number of times (see Section

7.1). Upon exhaustion of the retries the sender may either abort the

transmission of the datagram or retry the datagram from the first

fragment with an 'X' flag set in order to reestablish a path and

discover which fragments were received over the old path in the

acknowledgment bitmap. When the sender of the fragment knows that an

underlying link-layer mechanism protects the fragments, it may

refrain from using the RFRAG Acknowledgment mechanism, and never set

the Ack-Request bit.

The receiver MAY issue unsolicited acknowledgments. An unsolicited

acknowledgment signals to the sender endpoint that it can resume

sending if it had reached its maximum number of outstanding

fragments. Another use is to inform the sender that the reassembling

endpoint aborted the processing of an individual datagram.

The RFRAG Acknowledgment can optionally carry an ECN indication for

flow control (see Appendix C). The receiver of a fragment with the

'E' (ECN) flag set MUST echo that information by setting the 'E'

(ECN) flag in the next RFRAG Acknowledgment.

¶

¶

¶

¶

¶

¶

In order to protect the datagram, the sender transfers a controlled

number of fragments and flags the last fragment of a window with an

RFRAG Acknowledgment Request. The receiver MUST acknowledge a

fragment with the acknowledgment request bit set. If any fragment

immediately preceding an acknowledgment request is still missing,

the receiver MAY intentionally delay its acknowledgment to allow in-

transit fragments to arrive. Because it might defeat the round-trip

delay computation, delaying the acknowledgment should be

configurable and not enabled by default.

When all the fragments are received, the receiving endpoint

reconstructs the packet, passes it to the upper layer, sends an

RFRAG Acknowledgment on the reverse path with a FULL bitmap, and

arms a short timer, e.g., in the order of an average round-trip

delay in the network. As the timer runs, the receiving endpoint

absorbs the fragments that were still in flight for that datagram

without creating a new state. The receiving endpoint abort the

communication if it keeps going on beyond the duration of the timer.

Note that acknowledgments might consume precious resources so the

use of unsolicited acknowledgments should be configurable and not

enabled by default.

An observation is that streamlining forwarding of fragments

generally reduces the latency over the LLN mesh, providing room for

retries within existing upper-layer reliability mechanisms. The

sender protects the transmission over the LLN mesh with a retry

timer that is computed according to the method detailed in

[RFC6298]. It is expected that the upper layer retries obey the

recommendations in "UDP Usage Guidelines" [RFC8085], in which case a

single round of fragment recovery should fit within the upper layer

recovery timers.

Fragments are sent in a round-robin fashion: the sender sends all

the fragments for a first time before it retries any lost fragment;

lost fragments are retried in sequence, oldest first. This mechanism

enables the receiver to acknowledge fragments that were delayed in

the network before they are retried.

When a single frequency is used by contiguous hops, the sender

should insert a delay between fragments of a same datagram that

covers multiple transmissions so as to let a fragment progress a few

hops and avoid hidden terminal issues. This precaution is not

required on channel hopping technologies such as Time Slotted

Channel Hopping (TSCH) [RFC6554], where nodes that communicate at

Layer-2 are scheduled to send and receive respectively, and

different hops operate on different channels.

¶

¶

¶

¶

¶

¶

6.1. Forwarding Fragments

It is assumed that the first fragment is large enough to carry the

IPv6 header and make routing decisions. If that is not so, then this

specification MUST NOT be used.

This specification extends the Virtual Reassembly Buffer (VRB)

technique to forward fragments with no intermediate reconstruction

of the entire packet. It inherits operations like datagram_tag

switching and using a timer to clean the VRB when the traffic dries

up. The first fragment carries the IP header and it is routed all

the way from the fragmenting endpoint to the reassembling endpoint.

Upon receiving the first fragment, the routers along the path

install a label-switched path (LSP), and the following fragments are

label-switched along that path. As a consequence, the next fragments

can only follow the path that was set up by the first fragment and

cannot follow an alternate route. The datagram_tag is used to carry

the label, which is swapped in each hop. All fragments follow the

same path and fragments are delivered in the order at which they are

sent.

6.1.1. Receiving the first fragment

In Route-Over mode, the source and destination MAC addresses in a

frame change at each hop. The label that is formed and placed in the

datagram_tag is associated with the source MAC address and only

valid (and unique) for that source MAC address. Upon a first

fragment (i.e., with a sequence of zero), an intermediate router

creates a VRB and the associated LSP state for the tuple (source MAC

address, datagram_tag) and the fragment is forwarded along the IPv6

route that matches the destination IPv6 address in the IPv6 header

as prescribed by [I-D.ietf-6lo-minimal-fragment], where the

receiving endpoint allocates a reassembly buffer.

The LSP state enables to match the (previous MAC address,

datagram_tag) in an incoming fragment to the tuple (next MAC

address, swapped datagram_tag) used in the forwarded fragment and

points at the VRB. In addition, the router also forms a reverse LSP

state indexed by the MAC address address of the next hop and the

swapped datagram_tag. This reverse LSP state also points at the VRB

and enables matching the (next MAC address, swapped_datagram_tag)

found in an RFRAG Acknowledgment to the tuple (previous MAC address,

datagram_tag) used when forwarding a Fragment Acknowledgment (RFRAG-

ACK) back to the sender endpoint.

The first fragment may be received a second time, indicating that it

did not reach the destination and was retried. In that case, it

SHOULD follow the same path as the first occurrence. It is up to

¶

¶

¶

¶

sending endpoint to determine whether to abort a transmission and

then retry it from scratch, which may build an entirely new path.

6.1.2. Receiving the next fragments

Upon receiving a next fragment (i.e., with a non-zero sequence), an

intermediate router looks up a LSP indexed by the tuple (MAC

address, datagram_tag) found in the fragment. If it is found, the

router forwards the fragment using the associated VRB as prescribed

by [I-D.ietf-6lo-minimal-fragment].

If the VRB for the tuple is not found, the router builds an RFRAG-

ACK to abort the transmission of the packet. The resulting message

has the following information:

The source and destination MAC addresses are swapped from those

found in the fragment

The datagram_tag is set to the datagram_tag found in the fragment

A NULL bitmap is used to signal the abort condition

At this point the router is all set and can send the RFRAG-ACK back

to the previous router. The RFRAG-ACK should normally be forwarded

all the way to the source using the reverse LSP state in the VRBs in

the intermediate routers as described in the next section.

[I-D.ietf-6lo-minimal-fragment] indicates that the receiving

endpoint stores "the actual packet data from the fragments received

so far, in a form that makes it possible to detect when the whole

packet has been received and can be processed or forwarded". How

this is computed in implementation specific but relies on receiving

all the bytes up to the datagram_size indicated in the first

fragment. An implementation may receive overlapping fragments as the

result of retries after an MTU change.

6.2. Receiving RFRAG Acknowledgments

Upon receipt of an RFRAG-ACK, the router looks up a reverse LSP

indexed by the tuple (MAC address, datagram_tag), which are

respectively the source MAC address of the received frame and the

received datagram_tag. If it is found, the router forwards the

fragment using the associated VRB as prescribed by [I-D.ietf-6lo-

minimal-fragment], but using the reverse LSP so that the RFRAG-ACK

flows back to the sender endpoint.

If the reverse LSP is not found, the router MUST silently drop the

RFRAG-ACK message.

¶

¶

¶

*

¶

* ¶

* ¶

¶

¶

¶

¶

Either way, if the RFRAG-ACK indicates that the fragment was

entirely received (FULL bitmap), it arms a short timer, and upon

timeout, the VRB and all the associated state are destroyed. Until

the timer elapses, fragments of that datagram may still be received,

e.g. if the RFRAG-ACK was lost on the way back and the source

retried the last fragment. In that case, the router forwards the

fragment according to the state in the VRB.

This specification does not provide a method to discover the number

of hops or the minimal value of MTU along those hops. But should the

minimal MTU decrease, it is possible to retry a long fragment (say

sequence of 5) with first a shorter fragment of the same sequence (5

again) and then one or more other fragments with a sequence that was

not used before (e.g., 13 and 14). Note that Path MTU Discovery is

out of scope for this document.

6.3. Aborting the Transmission of a Fragmented Packet

A reset is signaled on the forward path with a pseudo fragment that

has the fragment_offset, sequence, and fragment_size all set to 0,

and no data.

When the sender or a router on the way decides that a packet should

be dropped and the fragmentation process aborted, it generates a

reset pseudo fragment and forwards it down the fragment path.

Each router next along the path the way forwards the pseudo fragment

based on the VRB state. If an acknowledgment is not requested, the

VRB and all associated state are destroyed.

Upon reception of the pseudo fragment, the receiver cleans up all

resources for the packet associated with the datagram_tag. If an

acknowledgment is requested, the receiver responds with a NULL

bitmap.

The other way around, the receiver might need to abort the process

of a fragmented packet for internal reasons, for instance if it is

out of reassembly buffers, already uses all 256 possible values of

the datagram_tag, or if it keeps receiving fragments beyond a

reasonable time while it considers that this packet is already fully

reassembled and was passed to the upper layer. In that case, the

receiver SHOULD indicate so to the sender with a NULL bitmap in an

RFRAG Acknowledgment. The RFRAG Acknowledgment is forwarded all the

way back to the source of the packet and cleans up all resources on

the way. Upon an acknowledgment with a NULL bitmap, the sender

endpoint MUST abort the transmission of the fragmented datagram with

one exception: In the particular case of the first fragment, it MAY

decide to retry via an alternate next hop instead.

¶

¶

¶

¶

¶

¶

¶

MinFragmentSize:

OptFragmentSize:

MaxFragmentSize:

UseECN:

MinWindowSize:

OptWindowSize:

MaxWindowSize:

inter-frame gap:

6.4. Applying Recoverable Fragmentation along a Diverse Path

The text above can be read with the assumption of a serial path

between a source and a destination. Section 4.5.3 of the "6TiSCH

Architecture" [I-D.ietf-6tisch-architecture] defines the concept of

a Track that can be a complex path between a source and a

destination with Packet ARQ, Replication, Elimination and

Overhearing (PAREO) along the Track. This specification can be used

along any subset of the complex Track where the first fragment is

flooded. The last RFRAG Acknowledgment is flooded on that same

subset in the reverse direction. Intermediate RFRAG Acknowledgments

can be flooded on any sub-subset of that reverse subset that reach

back to the source.

7. Management Considerations

7.1. Protocol Parameters

There is no particular configuration on the receiver, as echoing ECN

is always on. The configuration only applies to the sender, which is

in control of the transmission. The management system SHOULD be

capable of providing the parameters below:

The MinFragmentSize is the minimum value for the

Fragment_Size.

The MinFragmentSize is the value for the

Fragment_Size that the sender should use to start with.

The MaxFragmentSize is the maximum value for the

Fragment_Size. It MUST be lower than the minimum MTU along the

path. A large value augments the chances of buffer bloat and

transmission loss. The value MUST be less than 512 if the unit

that is defined for the PHY layer is the octet.

Indicates whether the sender should react to ECN. When the

sender reacts to ECN the Window_Size will vary between

MinWindowSize and MaxWindowSize.

The minimum value of Window_Size that the sender can

use.

The OptWindowSize is the value for the Window_Size

that the sender should use to start with.

The maximum value of Window_Size that the sender can

use. The value MUSt be less than 32.

Indicates a minimum amount of time between

transmissions. All packets to a same destination, and in

¶

¶

¶

¶

¶

¶

¶

¶

¶

MinARQTimeOut:

OptARQTimeOut:

MaxARQTimeOut:

MaxFragRetries:

MaxDatagramRetries:

particular fragments, may be subject to receive while

transmitting and hidden terminal collisions with the next or the

previous transmission as the fragments progress along a same

path. The inter-frame gap protects the propagation of one

transmission before the next one is triggered and creates a duty

cycle that controls the ratio of air time and memory in

intermediate nodes that a particular datagram will use.

The maximum amount of time a node should wait for an

RFRAG Acknowledgment before it takes a next action.

The starting point of the value of the amount of

time that a sender should wait for an RFRAG Acknowledgment before

it takes a next action.

The maximum amount of time a node should wait for an

RFRAG Acknowledgment before it takes a next action.

The maximum number of retries for a particular

fragment.

The maximum number of retries from scratch for

a particular datagram.

7.2. Observing the network

The management system should monitor the amount of retries and of

ECN settings that can be observed from the perspective of both the

sender and the receiver, and may tune the optimum size of

Fragment_Size and of the Window_Size, OptDatagramSize and

OptWindowSize respectively, at the sender. The values should be

bounded by the expected number of hops and reduced beyond that when

the number of datagrams that can traverse an intermediate point may

exceed its capacity and cause a congestion loss. The inter-frame gap

is another tool that can be used to increase the spacing between

fragments of the same datagram and reduce the ratio of time when a

particular intermediate node holds a fragment of that datagram.

8. Security Considerations

The considerations in the Security sections of [I-D.ietf-core-cocoa]

and [I-D.ietf-6lo-minimal-fragment] apply equally to this

specification.

The process of recovering fragments does not appear to create any

opening for new threat compared to "Transmission of IPv6 Packets

over IEEE 802.15.4 Networks" [RFC4944] beyond the change of size of

the datagram_tag. By being reduced to 8 bits, the tag will wrap

¶

¶

¶

¶

¶

¶

¶

¶

¶

faster than with [RFC4944]. But for a constrained network where a

node is expected to be able to hold only one or a few large packets

in memory, 256 is still a large number. Also, the acknowledgement

mechanism allows cleaning up the state rapidly once the packet is

fully transmitted or aborted.

The abstract Virtual Recovery Buffer inherited from [I-D.ietf-6lo-

minimal-fragment] may be used to perform a Denial-of-Service (DoS)

attack against the intermediate Routers since the routers need to

maintain a state per flow. The particular VRB implementation

technique described in [I-D.ietf-lwig-6lowpan-virtual-reassembly]

allows realigning which data goes in which fragment, which causes

the intermediate node to store a portion of the data, which adds an

attack vector that is not present with this specification. With this

specification, the data that is transported in each fragment is

conserved and the state to keep does not include any data that would

not fit in the previous fragment.

9. IANA Considerations

This document allocates 2 patterns for a total of 4 dispatch values

in Page 0 for recoverable fragments from the "Dispatch Type Field"

registry that was created by "Transmission of IPv6 Packets over IEEE

802.15.4 Networks" [RFC4944] and reformatted by "6LoWPAN Paging

Dispatch" [RFC8025].

The suggested patterns (to be confirmed by IANA) are indicated in

Table 1.

Bit Pattern Page Header Type Reference

11 10100x 0 RFRAG - Recoverable Fragment THIS RFC

11 10100x 1-14 Unassigned

11 10100x 15 Reserved for Experimental Use RFC 8025

11 10101x 0 RFRAG-ACK - RFRAG Acknowledgment THIS RFC

11 10101x 1-14 Unassigned

11 10101x 15 Reserved for Experimental Use RFC 8025

Table 1: Additional Dispatch Value Bit Patterns

10. Acknowledgments

The author wishes to thank Michel Veillette, Dario Tedeschi, Laurent

Toutain, Carles Gomez Montenegro, Thomas Watteyne, and Michael

Richardson for in-depth reviews and comments. Also many thanks to

Peter Yee and Erik Nordmark for their careful reviews and for

helping through the IESG review process, and to Jonathan Hui, Jay

Werb, Christos Polyzois, Soumitri Kolavennu, Pat Kinney, Margaret

Wasserman, Richard Kelsey, Carsten Bormann, and Harry Courtice for

their various contributions.

¶

¶

¶

¶

¶

[RFC2119]

[RFC4944]

[RFC6282]

[RFC6554]

[RFC8025]

[RFC8138]

[RFC8174]

[I-D.ietf-6lo-minimal-fragment]

[RFC8201]

11. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,

"Transmission of IPv6 Packets over IEEE 802.15.4

Networks", RFC 4944, DOI 10.17487/RFC4944, September

2007, <https://www.rfc-editor.org/info/rfc4944>.

Hui, J., Ed. and P. Thubert, "Compression Format for IPv6

Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,

DOI 10.17487/RFC6282, September 2011, <https://www.rfc-

editor.org/info/rfc6282>.

Hui, J., Vasseur, JP., Culler, D., and V. Manral, "An

IPv6 Routing Header for Source Routes with the Routing

Protocol for Low-Power and Lossy Networks (RPL)", RFC

6554, DOI 10.17487/RFC6554, March 2012, <https://www.rfc-

editor.org/info/rfc6554>.

Thubert, P., Ed. and R. Cragie, "IPv6 over Low-Power

Wireless Personal Area Network (6LoWPAN) Paging

Dispatch", RFC 8025, DOI 10.17487/RFC8025, November 2016,

<https://www.rfc-editor.org/info/rfc8025>.

Thubert, P., Ed., Bormann, C., Toutain, L., and R.

Cragie, "IPv6 over Low-Power Wireless Personal Area

Network (6LoWPAN) Routing Header", RFC 8138, DOI

10.17487/RFC8138, April 2017, <https://www.rfc-

editor.org/info/rfc8138>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Watteyne, T., Thubert, P., and C. Bormann, "On Forwarding

6LoWPAN Fragments over a Multihop IPv6 Network", Work in

Progress, Internet-Draft, draft-ietf-6lo-minimal-

fragment-10, 1 February 2020, <https://tools.ietf.org/

html/draft-ietf-6lo-minimal-fragment-10>.

12. Informative References

McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,

"Path MTU Discovery for IP version 6", STD 87, RFC 8201,

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4944
https://www.rfc-editor.org/info/rfc6282
https://www.rfc-editor.org/info/rfc6282
https://www.rfc-editor.org/info/rfc6554
https://www.rfc-editor.org/info/rfc6554
https://www.rfc-editor.org/info/rfc8025
https://www.rfc-editor.org/info/rfc8138
https://www.rfc-editor.org/info/rfc8138
https://www.rfc-editor.org/info/rfc8174
https://tools.ietf.org/html/draft-ietf-6lo-minimal-fragment-10
https://tools.ietf.org/html/draft-ietf-6lo-minimal-fragment-10

[RFC7567]

[RFC3031]

[RFC5681]

[RFC2914]

[RFC3168]

[RFC4919]

[RFC4963]

[RFC6298]

[RFC6550]

DOI 10.17487/RFC8201, July 2017, <https://www.rfc-

editor.org/info/rfc8201>.

Baker, F., Ed. and G. Fairhurst, Ed., "IETF

Recommendations Regarding Active Queue Management", BCP

197, RFC 7567, DOI 10.17487/RFC7567, July 2015, <https://

www.rfc-editor.org/info/rfc7567>.

Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol

Label Switching Architecture", RFC 3031, DOI 10.17487/

RFC3031, January 2001, <https://www.rfc-editor.org/info/

rfc3031>.

Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,

<https://www.rfc-editor.org/info/rfc5681>.

Floyd, S., "Congestion Control Principles", BCP 41, RFC

2914, DOI 10.17487/RFC2914, September 2000, <https://

www.rfc-editor.org/info/rfc2914>.

Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP", RFC

3168, DOI 10.17487/RFC3168, September 2001, <https://

www.rfc-editor.org/info/rfc3168>.

Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6

over Low-Power Wireless Personal Area Networks

(6LoWPANs): Overview, Assumptions, Problem Statement, and

Goals", RFC 4919, DOI 10.17487/RFC4919, August 2007,

<https://www.rfc-editor.org/info/rfc4919>.

Heffner, J., Mathis, M., and B. Chandler, "IPv4

Reassembly Errors at High Data Rates", RFC 4963, DOI

10.17487/RFC4963, July 2007, <https://www.rfc-editor.org/

info/rfc4963>.

Paxson, V., Allman, M., Chu, J., and M. Sargent,

"Computing TCP's Retransmission Timer", RFC 6298, DOI

10.17487/RFC6298, June 2011, <https://www.rfc-editor.org/

info/rfc6298>.

Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,

Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,

JP., and R. Alexander, "RPL: IPv6 Routing Protocol for

Low-Power and Lossy Networks", RFC 6550, DOI 10.17487/

https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc7567
https://www.rfc-editor.org/info/rfc7567
https://www.rfc-editor.org/info/rfc3031
https://www.rfc-editor.org/info/rfc3031
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc2914
https://www.rfc-editor.org/info/rfc2914
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc4919
https://www.rfc-editor.org/info/rfc4963
https://www.rfc-editor.org/info/rfc4963
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6298

[RFC7554]

[RFC8200]

[RFC8085]

[RFC8087]

[RFC6606]

[I-D.ietf-lwig-6lowpan-virtual-reassembly]

[I-D.ietf-intarea-frag-fragile]

[I-D.ietf-core-cocoa]

RFC6550, March 2012, <https://www.rfc-editor.org/info/

rfc6550>.

Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using

IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the

Internet of Things (IoT): Problem Statement", RFC 7554,

DOI 10.17487/RFC7554, May 2015, <https://www.rfc-

editor.org/info/rfc7554>.

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>.

Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,

March 2017, <https://www.rfc-editor.org/info/rfc8085>.

Fairhurst, G. and M. Welzl, "The Benefits of Using

Explicit Congestion Notification (ECN)", RFC 8087, DOI

10.17487/RFC8087, March 2017, <https://www.rfc-

editor.org/info/rfc8087>.

Kim, E., Kaspar, D., Gomez, C., and C. Bormann, "Problem

Statement and Requirements for IPv6 over Low-Power

Wireless Personal Area Network (6LoWPAN) Routing", RFC

6606, DOI 10.17487/RFC6606, May 2012, <https://www.rfc-

editor.org/info/rfc6606>.

Bormann, C. and T. Watteyne, "Virtual reassembly buffers

in 6LoWPAN", Work in Progress, Internet-Draft, draft-

ietf-lwig-6lowpan-virtual-reassembly-01, 11 March 2019,

<https://tools.ietf.org/html/draft-ietf-lwig-6lowpan-

virtual-reassembly-01>.

Bonica, R., Baker, F., Huston, G., Hinden, R., Troan, O.,

and F. Gont, "IP Fragmentation Considered Fragile", Work

in Progress, Internet-Draft, draft-ietf-intarea-frag-

fragile-17, 30 September 2019, <https://tools.ietf.org/

html/draft-ietf-intarea-frag-fragile-17>.

Bormann, C., Betzler, A., Gomez, C., and I. Demirkol,

"CoAP Simple Congestion Control/Advanced", Work in

Progress, Internet-Draft, draft-ietf-core-cocoa-03, 21

February 2018, <https://tools.ietf.org/html/draft-ietf-

core-cocoa-03>.

https://www.rfc-editor.org/info/rfc6550
https://www.rfc-editor.org/info/rfc6550
https://www.rfc-editor.org/info/rfc7554
https://www.rfc-editor.org/info/rfc7554
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8087
https://www.rfc-editor.org/info/rfc8087
https://www.rfc-editor.org/info/rfc6606
https://www.rfc-editor.org/info/rfc6606
https://tools.ietf.org/html/draft-ietf-lwig-6lowpan-virtual-reassembly-01
https://tools.ietf.org/html/draft-ietf-lwig-6lowpan-virtual-reassembly-01
https://tools.ietf.org/html/draft-ietf-intarea-frag-fragile-17
https://tools.ietf.org/html/draft-ietf-intarea-frag-fragile-17
https://tools.ietf.org/html/draft-ietf-core-cocoa-03
https://tools.ietf.org/html/draft-ietf-core-cocoa-03

[I-D.ietf-6tisch-architecture]

[IEEE.802.15.4]

[Kent]

Towards the LLN node:

Firmware update:

Packages of Commands:

From the LLN node:

Waveform captures:

Data logs:

Thubert, P., "An Architecture for IPv6 over the TSCH mode

of IEEE 802.15.4", Work in Progress, Internet-Draft,

draft-ietf-6tisch-architecture-28, 29 October 2019,

<https://tools.ietf.org/html/draft-ietf-6tisch-

architecture-28>.

IEEE, "IEEE Standard for Low-Rate Wireless

Networks", IEEE Standard 802.15.4, DOI 10.1109/IEEE

P802.15.4-REVd/D01, , <http://ieeexplore.ieee.org/

document/7460875/>.

Kent, C. and J. Mogul, ""Fragmentation Considered

Harmful", In Proc. SIGCOMM '87 Workshop on Frontiers in

Computer Communications Technology", DOI

10.1145/55483.55524, August 1987, <http://www.hpl.hp.com/

techreports/Compaq-DEC/WRL-87-3.pdf>.

Appendix A. Rationale

There are a number of uses for large packets in Wireless Sensor

Networks. Such usages may not be the most typical or represent the

largest amount of traffic over the LLN; however, the associated

functionality can be critical enough to justify extra care for

ensuring effective transport of large packets across the LLN.

The list of those usages includes:

For example, a new version of the LLN node

software is downloaded from a system manager over unicast or

multicast services. Such a reflashing operation typically

involves updating a large number of similar LLN nodes over a

relatively short period of time.

A number of commands or a full

configuration can be packaged as a single message to ensure

consistency and enable atomic execution or complete roll back.

Until such commands are fully received and interpreted, the

intended operation will not take effect.

A number of consecutive samples are measured

at a high rate for a short time and then transferred from a

sensor to a gateway or an edge server as a single large

report.

LLN nodes may generate large logs of sampled data for

later extraction. LLN nodes may also generate system logs to

assist in diagnosing problems on the node or network.

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-6tisch-architecture-28
https://tools.ietf.org/html/draft-ietf-6tisch-architecture-28
http://ieeexplore.ieee.org/document/7460875/
http://ieeexplore.ieee.org/document/7460875/
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf

Large data packets:
Rich data types might require more than one

fragment.

Uncontrolled firmware download or waveform upload can easily result

in a massive increase of the traffic and saturate the network.

When a fragment is lost in transmission, the lack of recovery in the

original fragmentation system of RFC 4944 implies that all fragments

would need to be resent, further contributing to the congestion that

caused the initial loss, and potentially leading to congestion

collapse.

This saturation may lead to excessive radio interference, or random

early discard (leaky bucket) in relaying nodes. Additional queuing

and memory congestion may result while waiting for a low power next

hop to emerge from its sleeping state.

Considering that RFC 4944 defines an MTU is 1280 bytes and that in

most incarnations (but 802.15.4g) a IEEE Std. 802.15.4 frame can

limit the MAC address payload to as few as 74 bytes, a packet might

be fragmented into at least 18 fragments at the 6LoWPAN shim layer.

Taking into account the worst-case header overhead for 6LoWPAN

Fragmentation and Mesh Addressing headers will increase the number

of required fragments to around 32. This level of fragmentation is

much higher than that traditionally experienced over the Internet

with IPv4 fragments. At the same time, the use of radios increases

the probability of transmission loss and Mesh-Under techniques

compound that risk over multiple hops.

Mechanisms such as TCP or application-layer segmentation could be

used to support end-to-end reliable transport. One option to support

bulk data transfer over a frame-size-constrained LLN is to set the

Maximum Segment Size to fit within the link maximum frame size.

Doing so, however, can add significant header overhead to each

802.15.4 frame. In addition, deploying such a mechanism requires

that the end-to-end transport is aware of the delivery properties of

the underlying LLN, which is a layer violation, and difficult to

achieve from the far end of the IPv6 network.

Appendix B. Requirements

For one-hop communications, a number of Low Power and Lossy Network

(LLN) link-layers propose a local acknowledgment mechanism that is

enough to detect and recover the loss of fragments. In a multihop

environment, an end-to-end fragment recovery mechanism might be a

good complement to a hop-by-hop MAC address level recovery. This

draft introduces a simple protocol to recover individual fragments

between 6LoWPAN endpoints that may be multiple hops away. The method

addresses the following requirements of an LLN:

¶

¶

¶

¶

¶

¶

¶

Number of fragments:

Minimum acknowledgment overhead:

Controlled latency:

Optional congestion control:

The recovery mechanism must support highly

fragmented packets, with a maximum of 32 fragments per packet.

Because the radio is half duplex,

and because of silent time spent in the various medium access

mechanisms, an acknowledgment consumes roughly as many resources

as a data fragment.

The new end-to-end fragment recovery mechanism should be able to

acknowledge multiple fragments in a single message and not

require an acknowledgment at all if fragments are already

protected at a lower layer.

The recovery mechanism must succeed or give up

within the time boundary imposed by the recovery process of the

Upper Layer Protocols.

The aggregation of multiple concurrent

flows may lead to the saturation of the radio network and

congestion collapse.

The recovery mechanism should provide means for controlling the

number of fragments in transit over the LLN.

Appendix C. Considerations on Flow Control

Considering that a multi-hop LLN can be a very sensitive environment

due to the limited queuing capabilities of a large population of its

nodes, this draft recommends a simple and conservative approach to

Congestion Control, based on TCP congestion avoidance.

Congestion on the forward path is assumed in case of packet loss,

and packet loss is assumed upon time out. The draft allows

controlling the number of outstanding fragments that have been

transmitted but for which an acknowledgment was not received yet. It

must be noted that the number of outstanding fragments should not

exceed the number of hops in the network, but the way to figure the

number of hops is out of scope for this document.

Congestion on the forward path can also be indicated by an Explicit

Congestion Notification (ECN) mechanism. Though whether and how ECN

[RFC3168] is carried out over the LoWPAN is out of scope, this draft

provides a way for the destination endpoint to echo an ECN

indication back to the source endpoint in an acknowledgment message

as represented in Figure 4 in Section 5.2.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

It must be noted that congestion and collision are different topics.

In particular, when a mesh operates on a same channel over multiple

hops, then the forwarding of a fragment over a certain hop may

collide with the forwarding of a next fragment that is following

over a previous hop but in a same interference domain. This draft

enables end-to-end flow control, but leaves it to the sender stack

to pace individual fragments within a transmit window, so that a

given fragment is sent only when the previous fragment has had a

chance to progress beyond the interference domain of this hop. In

the case of 6TiSCH [I-D.ietf-6tisch-architecture], which operates

over the TimeSlotted Channel Hopping [RFC7554] (TSCH) mode of

operation of IEEE802.14.5, a fragment is forwarded over a different

channel at a different time and it makes full sense to transmit the

next fragment as soon as the previous fragment has had its chance to

be forwarded at the next hop.

From the standpoint of a source 6LoWPAN endpoint, an outstanding

fragment is a fragment that was sent but for which no explicit

acknowledgment was received yet. This means that the fragment might

be on the way, received but not yet acknowledged, or the

acknowledgment might be on the way back. It is also possible that

either the fragment or the acknowledgment was lost on the way.

From the sender standpoint, all outstanding fragments might still be

in the network and contribute to its congestion. There is an

assumption, though, that after a certain amount of time, a frame is

either received or lost, so it is not causing congestion anymore.

This amount of time can be estimated based on the round-trip delay

between the 6LoWPAN endpoints. The method detailed in [RFC6298] is

recommended for that computation.

The reader is encouraged to read through "Congestion Control

Principles" [RFC2914]. Additionally [RFC7567] and [RFC5681] provide

deeper information on why this mechanism is needed and how TCP

handles Congestion Control. Basically, the goal here is to manage

the amount of fragments present in the network; this is achieved by

to reducing the number of outstanding fragments over a congested

path by throttling the sources.

Section 6 describes how the sender decides how many fragments are

(re)sent before an acknowledgment is required, and how the sender

adapts that number to the network conditions.

Author's Address

Pascal Thubert (editor)

Cisco Systems, Inc

Building D

45 Allee des Ormes - BP1200

¶

¶

¶

¶

¶

06254 MOUGINS - Sophia Antipolis

France

Phone: +33 497 23 26 34

Email: pthubert@cisco.com

tel:+33%20497%2023%2026%2034
mailto:pthubert@cisco.com

	6LoWPAN Selective Fragment Recovery
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. BCP 14
	2.2. References
	2.3. New Terms

	3. Updating RFC 4944
	4. Extending draft-ietf-6lo-minimal-fragment
	4.1. Slack in the First Fragment
	4.2. Gap between frames
	4.3. Modifying the First Fragment

	5. New Dispatch types and headers
	5.1. Recoverable Fragment Dispatch type and Header
	5.2. RFRAG Acknowledgment Dispatch type and Header

	6. Fragments Recovery
	6.1. Forwarding Fragments
	6.1.1. Receiving the first fragment
	6.1.2. Receiving the next fragments

	6.2. Receiving RFRAG Acknowledgments
	6.3. Aborting the Transmission of a Fragmented Packet
	6.4. Applying Recoverable Fragmentation along a Diverse Path

	7. Management Considerations
	7.1. Protocol Parameters
	7.2. Observing the network

	8. Security Considerations
	9. IANA Considerations
	10. Acknowledgments
	11. Normative References
	12. Informative References
	Appendix A. Rationale
	Appendix B. Requirements
	Appendix C. Considerations on Flow Control
	Author's Address

