
6lo T. Watteyne, Ed.
Internet-Draft Analog Devices
Intended status: Informational C. Bormann
Expires: December 26, 2019 Universitaet Bremen TZI
 P. Thubert
 Cisco
 June 24, 2019

LLN Minimal Fragment Forwarding
draft-ietf-6lo-minimal-fragment-02

Abstract

 This document gives an overview of LLN Minimal Fragment Forwarding.
 When employing adaptation layer fragmentation in 6LoWPAN, it may be
 beneficial for a forwarder not to have to reassemble each packet in
 its entirety before forwarding it. This has always been possible
 with the original fragmentation design of RFC4944. This document is
 a companion document to [I-D.ietf-lwig-6lowpan-virtual-reassembly],
 which details the virtual Reassembly Buffer (VRB) implementation
 technique which reduces the latency and increases end-to-end
 reliability in route-over forwarding.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 26, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Watteyne, et al. Expires December 26, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft watteyne-6lo-minimal-fragment June 2019

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview of 6LoWPAN Fragmentation 2
2. Limits of Per-Hop Fragmentation and Reassembly 4
2.1. Latency . 4
2.2. Memory Management and Reliability 4

3. Virtual Reassembly Buffer (VRB) Implementation 5
4. Security Considerations 6
5. IANA Considerations . 6
6. Acknowledgments . 6
7. Informative References 6

 Authors' Addresses . 7

1. Overview of 6LoWPAN Fragmentation

 6LoWPAN fragmentation is defined in [RFC4944]. Although [RFC6282]
 updates [RFC4944], it does not redefine 6LoWPAN fragmentation.

 We use Figure 1 to illustrate 6LoWPAN fragmentation. We assume node
 A forwards a packet to node B, possibly as part of a multi-hop route
 between IPv6 source and destination nodes which are neither A nor B.

 +---+ +---+
 ... ---| A |-------------------->| B |--- ...
 +---+ +---+
 # (frag. 5)

 123456789 123456789
 +---------+ +---------+
 | # ###| |### # |
 +---------+ +---------+
 outgoing incoming
 fragmentation reassembly
 buffer buffer

 Figure 1: Fragmentation at node A, reassembly at node B.

 Node A starts by compacting the IPv6 packet using the header
 compression mechanism defined in [RFC6282]. If the resulting 6LoWPAN
 packet does not fit into a single link-layer frame, node A's 6LoWPAN

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6282

Watteyne, et al. Expires December 26, 2019 [Page 2]

Internet-Draft watteyne-6lo-minimal-fragment June 2019

 sublayer cuts it into multiple 6LoWPAN fragments, which it transmits
 as separate link-layer frames to node B. Node B's 6LoWPAN sublayer
 reassembles these fragments, inflates the compressed header fields
 back to the original IPv6 header, and hands over the full IPv6 packet
 to its IPv6 layer.

 In Figure 1, a packet forwarded by node A to node B is cut into nine
 fragments, numbered 1 to 9. Each fragment is represented by the '#'
 symbol. Node A has sent fragments 1, 2, 3, 5, 6 to node B. Node B
 has received fragments 1, 2, 3, 6 from node A. Fragment 5 is still
 being transmitted at the link layer from node A to node B.

 Conceptually, a reassembly buffer for 6LoWPAN contains:

 o a datagram_size,
 o a datagram_tag, associated to the link-layer sender and receiver
 addresses to which the datagram_tag is local,
 o the actual packet data from the fragments received so far, in a
 form that makes it possible to detect when the whole packet has
 been received and can be processed or forwarded,
 o a timer that allows discarding a partially reassembled packet
 after some timeout.

 A fragmentation header is added to each fragment; it indicates what
 portion of the packet that fragment corresponds to. Section 5.3 of
 [RFC4944] defines the format of the header for the first and
 subsequent fragments. All fragments are tagged with a 16-bit
 "datagram_tag", used to identify which packet each fragment belongs
 to. Each datagram can be uniquely identified by the source and final
 destination link-layer addresses of the frame that carries it, the
 fragment size and the datagram_tag. Each fragment can be identified
 within its datagram by the datagram-offset.

 Node B's typical behavior, per [RFC4944], is as follows. Upon
 receiving a fragment from node A with a datagram_tag previously
 unseen from node A, node B allocates a buffer large enough to hold
 the entire packet. The length of the packet is indicated in each
 fragment (the datagram_size field), so node B can allocate the buffer
 even if the first fragment it receives is not fragment 1. As
 fragments come in, node B fills the buffer. When all fragments have
 been received, node B inflates the compressed header fields into an
 IPv6 header, and hands the resulting IPv6 packet to the IPv6 layer.

 This behavior typically results in per-hop fragmentation and
 reassembly. That is, the packet is fully reassembled, then
 (re)fragmented, at every hop.

https://datatracker.ietf.org/doc/html/rfc4944#section-5.3
https://datatracker.ietf.org/doc/html/rfc4944#section-5.3
https://datatracker.ietf.org/doc/html/rfc4944

Watteyne, et al. Expires December 26, 2019 [Page 3]

Internet-Draft watteyne-6lo-minimal-fragment June 2019

2. Limits of Per-Hop Fragmentation and Reassembly

 There are at least 2 limits to doing per-hop fragmentation and
 reassembly. See [ARTICLE] for detailed simulation results on both
 limits.

2.1. Latency

 When reassembling, a node needs to wait for all the fragments to be
 received before being able to generate the IPv6 packet, and possibly
 forward it to the next hop. This repeats at every hop.

 This may result in increased end-to-end latency compared to a case
 where each fragment is forwarded without per-hop reassembly.

2.2. Memory Management and Reliability

 Constrained nodes have limited memory. Assuming 1 kB reassembly
 buffer, typical nodes only have enough memory for 1-3 reassembly
 buffers.

 To illustrate this we use the topology from Figure 2, where nodes A,
 B, C and D all send packets through node E. We further assume that
 node E's memory can only hold 3 reassembly buffers.

 +---+ +---+
 ... --->| A |------>| B |
 +---+ +---+\
 \
 +---+ +---+
 | E |--->| F | ...
 +---+ +---+
 /
 /
 +---+ +---+
 ... --->| C |------>| D |
 +---+ +---+

 Figure 2: Illustrating the Memory Management Issue.

 When nodes A, B and C concurrently send fragmented packets, all 3
 reassembly buffers in node E are occupied. If, at that moment, node
 D also sends a fragmented packet, node E has no option but to drop
 one of the packets, lowering end-to-end reliability.

Watteyne, et al. Expires December 26, 2019 [Page 4]

Internet-Draft watteyne-6lo-minimal-fragment June 2019

3. Virtual Reassembly Buffer (VRB) Implementation

 Virtual Reassembly Buffer (VRB) is the implementation technique
 described in [I-D.ietf-lwig-6lowpan-virtual-reassembly] in which a
 forwarder does not reassemble each packet in its entirety before
 forwarding it.

 VRB overcomes the limits listed in Section 2. Nodes do not wait for
 the last fragment before forwarding, reducing end-to-end latency.
 Similarly, the memory footprint of VRB is just the VRB table,
 reducing the packet drop probability significantly.

 There are, however, limits:

 Non-zero Packet Drop Probability: The abstract data in a VRB table
 entry contains at a minimum the MAC address of the predecessor
 and that of the successor, the datagram_tag used by the
 predecessor and the local datagram_tag that this node will swap
 with it. The VRB may need to store a few octets from the last
 fragment that may not have fit within MTU and that will be
 prepended to the next fragment. This yields a small footprint
 that is 2 orders of magnitude smaller compared to needing a
 1280-byte reassembly buffer for each packet. Yet, the size of
 the VRB table necessarily remains finite. In the extreme case
 where a node is required to concurrently forward more packets
 that it has entries in its VRB table, packets are dropped.
 No Fragment Recovery: There is no mechanism in VRB for the node that
 reassembles a packet to request a single missing fragment.
 Dropping a fragment requires the whole packet to be resent. This
 causes unnecessary traffic, as fragments are forwarded even when
 the destination node can never construct the original IPv6
 packet.
 No Per-Fragment Routing: All subsequent fragments follow the same
 sequence of hops from the source to the destination node as the
 first fragment, because the IP header is required to route the
 fragment and is only present in the first fragment. A side
 effect is that the first fragment must always be forwarded first.

 The severity and occurrence of these limits depends on the link-layer
 used. Whether these limits are acceptable depends entirely on the
 requirements the application places on the network.

 If the limits are present and not acceptable for the application,
 future specifications may define new protocols to overcome these
 limits. One example is [I-D.ietf-6lo-fragment-recovery] which
 defines a protocol which allows fragment recovery.

Watteyne, et al. Expires December 26, 2019 [Page 5]

Internet-Draft watteyne-6lo-minimal-fragment June 2019

4. Security Considerations

 An attacker can perform a Denial-of-Service (DoS) attack on a node
 implementing VRB by generating a large number of bogus "fragment 1"
 fragments without sending subsequent fragments. This causes the VRB
 table to fill up. Note that the VRB does not need to remember the
 full datagram as received so far but only possibly a few octets from
 the last fragment that could not fit in it. It is expected that an
 implementation protects itself to keep the number of VRBs within
 capacity, and that old VRBs are protected by a timer of a reasonable
 duration for the technology and destroyed upon timeout.

 Secure joining and the link-layer security that it sets up protects
 against those attacks from network outsiders.

5. IANA Considerations

 No requests to IANA are made by this document.

6. Acknowledgments

 The authors would like to thank Yasuyuki Tanaka, for his in-depth
 review of this document. Also many thanks to Georgies Papadopoulos
 and Dominique Barthel for their own reviews.

7. Informative References

 [ARTICLE] Tanaka, Y., Minet, P., and T. Watteyne, "6LoWPAN Fragment
 Forwarding", IEEE Communications Standards Magazine ,
 2019.

 [BOOK] Shelby, Z. and C. Bormann, "6LoWPAN", John Wiley & Sons,
 Ltd monograph, DOI 10.1002/9780470686218, November 2009.

 [I-D.ietf-6lo-fragment-recovery]
 Thubert, P., "6LoWPAN Selective Fragment Recovery", draft-

ietf-6lo-fragment-recovery-04 (work in progress), June
 2019.

 [I-D.ietf-lwig-6lowpan-virtual-reassembly]
 Bormann, C. and T. Watteyne, "Virtual reassembly buffers
 in 6LoWPAN", draft-ietf-lwig-6lowpan-virtual-reassembly-01
 (work in progress), March 2019.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

https://datatracker.ietf.org/doc/html/draft-ietf-6lo-fragment-recovery-04
https://datatracker.ietf.org/doc/html/draft-ietf-6lo-fragment-recovery-04
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-6lowpan-virtual-reassembly-01
https://datatracker.ietf.org/doc/html/rfc4944
https://www.rfc-editor.org/info/rfc4944

Watteyne, et al. Expires December 26, 2019 [Page 6]

Internet-Draft watteyne-6lo-minimal-fragment June 2019

 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 DOI 10.17487/RFC6282, September 2011,
 <https://www.rfc-editor.org/info/rfc6282>.

Authors' Addresses

 Thomas Watteyne (editor)
 Analog Devices
 32990 Alvarado-Niles Road, Suite 910
 Union City, CA 94587
 USA

 Email: thomas.watteyne@analog.com

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Email: cabo@tzi.org

 Pascal Thubert
 Cisco Systems, Inc
 Building D
 45 Allee des Ormes - BP1200
 MOUGINS - Sophia Antipolis 06254
 France

 Email: pthubert@cisco.com

https://datatracker.ietf.org/doc/html/rfc6282
https://www.rfc-editor.org/info/rfc6282

Watteyne, et al. Expires December 26, 2019 [Page 7]

