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Abstract

This document examines the role of the UDP transport checksum when used

with IPv6, as defined in RFC2460. It presents a summary of the trade-

offs for evaluating the safety of updating RFC 2460 to permit an IPv6

UDP endpoint to use a zero value in the checksum field as an indication

that no checksum is present. This method is compared with some other

possibilities. The document also describes the issues and design

principles that need to be considered when UDP is used with IPv6 to

support tunnel encapsulations. It concludes that UDP with a zero

checksum in IPv6 can safely be used for this purpose, provided that

this usage is governed by a set of constraints.
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1. Introduction

The User Datagram Protocol (UDP) [RFC0768] transport is defined for the

Internet Protocol (IPv4) [RFC0791] and is defined in Internet Protocol,

Version 6 (IPv6) [RFC2460] for IPv6 hosts and routers. The UDP

transport protocol has a minimal set of features. This limited set has
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enabled a wide range of applications to use UDP, but these application

do need to provide many important transport functions on top of UDP.

The UDP Usage Guidelines [RFC5405] provides overall guidance for

application designers, including the use of UDP to support tunneling.

The key difference between UDP usage with IPv4 and IPv6 is that IPv6

mandates use of the UDP checksum, i.e. a non-zero value, due to the

lack of an IPv6 header checksum.

The lack of a possibility to use UDP with a zero-checksum in IPv6 has

been observed as a real problem for certain classes of application,

primarily tunnel applications. This class of application has been

deployed with a zero checksum using IPv4. The design of IPv6 raises

different issues when considering the safety of using a zero checksum

for UDP with IPv6. These issues can significantly affect applications,

both when an endpoint is the intended user and when an innocent

bystander (received by a different endpoint to that intended). The

document examines these issues and compares the strengths and

weaknesses of a number of proposed solutions. This analysis presents a

set of issues that must be considered and mitigated to be able to

safely deploy UDP with a zero checksum over IPv6. The provided

comparison of methods is expected to also be useful when considering

applications that have different goals from the ones that initiated the

writing of this document, especially the use of already standardized

methods.

The analysis concludes that using UDP with a zero checksum is the best

method of the proposed alternatives to meet the goals for certain

tunnel applications. Unfortunately, this usage is expected to have some

deployment issues related to middleboxes, limiting the usability more

than desired in the currently deployed internet. However, this

limitation will be largest initially and will reduce as updates for

support of UDP zero checksum for IPv6 are provided to middleboxes. The

document therefore derives a set of constraints required to ensure safe

deployment of zero checksum in UDP. It also identifies some issues that

require future consideration and possibly additional research.

1.1. Document Structure

Section 1 provides a background to key issues, and introduces the use

of UDP as a tunnel transport protocol.

Section 2 describes a set of standards-track datagram transport

protocols that may be used to support tunnels.

Section 3 discusses issues with a zero checksum in UDP for IPv6. It

considers the impact of corruption, the need for validation of the path

and when it is suitable to use a zero checksum.

Section 4 evaluates a set of proposals to update the UDP transport

behaviour and other alternatives intended to improve support for tunnel

protocols. It focuses on a proposal to allow a zero checksum for this

use-case with IPv6 and assess the trade-offs that would arise.

Section 5.1 lists the constraints perceived for safe deployment of

zero-checksum.



Section 6 provides the recommendations for standardization of zero-

checksum with a summary of the findings and notes remaining issues

needing future work.

1.2. Background

This section provides a background on topics relevant to the following

discussion.

1.2.1. The Role of a Transport Endpoint

An Internet transport endpoint should concern itself with the following

issues:

Protection of the endpoint transport state from unnecessary extra

state (e.g. Invalid state from rogue packets).

Protection of the endpoint transport state from corruption of

internal state.

Pre-filtering by the endpoint of erroneous data, to protect the

transport from unnecessary processing and from corruption that it

can not itself reject.

Pre-filtering of incorrectly addressed destination packets,

before responding to a source address.

1.2.2. The UDP Checksum

UDP, as defined in [RFC0768], supports two checksum behaviours when

used with IPv4. The normal behaviour is for the sender to calculate a

checksum over a block of data that includes a pseudo header and the UDP

datagram payload. The UDP header includes a 16-bit one's complement

checksum that provides a statistical guarantee that the payload was not

corrupted in transit. This also allows a receiver to verify that the

endpoint was the intended destination of the datagram, because the

transport pseudo header covers the IP addresses, port numbers,

transport payload length, and Next Header/Protocol value corresponding

to the UDP transport protocol [RFC1071]. The length field verifies that

the datagram is not truncated or padded. The checksum therefore

protects an application against receiving corrupted payload data in

place of, or in addition to, the data that was sent. Although the IPv4 

UDP [RFC0768] checksum may be disabled, applications are recommended to

enable UDP checksums [RFC5405].

The network-layer fields that are validated by a transport checksum

are:

Endpoint IP source address (always included in the pseudo header

of the checksum)
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Endpoint IP destination address (always included in the pseudo

header of the checksum)

Upper layer payload type (always included in the pseudo header of

the checksum)

IP length of payload (always included in the pseudo header of the

checksum)

Length of the network layer extension headers (i.e. by correct

position of the checksum bytes)

The transport-layer fields that are validated by a transport checksum

are:

Transport demultiplexing, i.e. ports (always included in the

checksum)

Transport payload size (always included in the checksum)

Transport endpoints also need to verify the correctness of reassembly

of any fragmented datagram. For UDP, this is normally provided as a

part of the integrity check. Disabling the IPv4 checksum prevents this

check. A lack of the UDP header and checksum in fragments can lead to

issues in a translator or middlebox. For example, many IPv4 Network

Address Translators, NATs, rely on port numbers to find the mappings,

packet fragments do not carry port numbers, so fragments get dropped. 

RFC2765 [RFC2765] provides some guidance on the processing of

fragmented IPv4 UDP datagrams that do not carry a UDP checksum.

IPv4 UDP checksum control is often a kernel-wide configuration control

(e.g. In Linux and BSD), rather than a per socket call. There are also

Networking Interface Cards (NICs) that automatically calculate TCP 

[RFC0793] and UDP checksums on transmission when a checksum of zero is

sent to the NIC, using a method known as checksum offloading.

1.2.3. Differences between IPv6 and IPv4

IPv6 does not provide a network-layer integrity check. The removal of

the header checksum from the IPv6 specification released routers from a

need to update a network-layer checksum for each router hop as the IPv6

Hop Count is changed (in contrast to the checksum update needed when an

IPv4 router modifies the Time-To-Live (TTL)).

The IP header checksum calculation was seen as redundant for most

traffic (with UDP or TCP checksums enabled), and people wanted to avoid

this extra processing. However, there was concern that the removal of

the IP header checksum in IPv6 combined with a UDP checksum set to zero

would lessen the protection of the source/destination IP addresses and

result in a significant (a multiplier of ~32,000) increase in the

number of times that a UDP packet was accidentally delivered to the

wrong destination address and/or apparently sourced from the wrong
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source address. This would have had implications on the detectability

of mis-delivery of a packet to an incorrect endpoint/socket, and the

robustness of the Internet infrastructure. The use of the UDP checksum

is therefore required [RFC2460] when endpoint applications transmit UDP

datagrams over IPv6.

1.3. Use of UDP Tunnels 

One increasingly popular use of UDP is as a tunneling protocol, where a

tunnel endpoint encapsulates the packets of another protocol inside UDP

datagrams and transmits them to another tunnel endpoint. Using UDP as a

tunneling protocol is attractive when the payload protocol is not

supported by the middleboxes that may exist along the path, because

many middleboxes support transmission using UDP. In this use, the

receiving endpoint decapsulates the UDP datagrams and forwards the

original packets contained in the payload [RFC5405]. Tunnels establish

virtual links that appear to directly connect locations that are

distant in the physical Internet topology and can be used to create

virtual (private) networks.

1.3.1. Motivation for new approaches

A number of tunnel encapsulations deployed over IPv4 have used the UDP

transport with a zero checksum. Users of these protocols expect a

similar solution for IPv6.

A number of tunnel protocols are also currently being defined (e.g.

Automated Multicast Tunnels, AMT [AMT], and the Locator/Identifier

Separation Protocol, LISP [LISP]). These protocols have proposed an

update to IPv6 UDP checksum processing. These tunnel protocols could

benefit from simpler checksum processing for various reasons:

Reducing forwarding costs, motivated by redundancy present in the

encapsulated packet header, since in tunnel encapsulations,

payload integrity and length verification may be provided by

higher layer encapsulations (often using the IPv4, UDP, UDP-Lite,

or TCP checksums).

Eliminating a need to access the entire packet when forwarding

the packet by a tunnel endpoint.

Enhancing ability to traverse middleboxes, especially Network

Address Translators, NATs.

A desire to use the port number space to enable load-sharing.

1.3.2. Reducing forwarding cost

It is a common requirement to terminate a large number of tunnels on a

single router/host. Processing per tunnel concerns both state (memory

requirements) and per-packet processing costs.
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Automatic IP Multicast Without Explicit Tunnels, known as AMT [AMT]

currently specifies UDP as the transport protocol for packets carrying

tunneled IP multicast packets. The current specification for AMT

requires that the UDP checksum in the outer packet header should be 0

(see Section 6.6 of [AMT]). It argues that the computation of an

additional checksum, when an inner packet is already adequately

protected, is an unwarranted burden on nodes implementing lightweight

tunneling protocols. The AMT protocol needs to replicate a multicast

packet to each gateway tunnel. In this case, the outer IP addresses are

different for each tunnel and therefore require a different pseudo

header to be built for each UDP replicated encapsulation.

The argument concerning redundant processing costs is valid regarding

the integrity of a tunneled packet. In some architectures (e.g. PC-

based routers), other mechanisms may also significantly reduce checksum

processing costs: There are implementations that have optimised

checksum processing algorithms, including the use of checksum-

offloading. This processing is readily available for IPv4 packets at

high line rates. Such processing may be anticipated for IPv6 endpoints,

allowing receivers to reject corrupted packets without further

processing. However, there are certain classes of tunnel end-points

where this off-loading is not available and unlikely to become

available in the near future.

1.3.3. Need to inspect the entire packet

The currently-deployed hardware in many routers uses a fast-path

processing that only provides the first n bytes of a packet to the

forwarding engine, where typically n <= 128. This prevents fast

processing of a transport checksum over an entire (large) packet. Hence

the currently defined IPv6 UDP checksum is poorly suited to use within

a router that is unable to access the entire packet and does not

provide checksum-offloading. Thus enabling checksum calculation over

the complete packet can impact router design, performance improvement,

energy consumption and/or cost.

1.3.4. Interactions with middleboxes

In IPv4, UDP-encapsulation may be desirable for NAT traversal, since

UDP support is commonly provided. It is also necessary due to the

almost ubiquitous deployment of IPv4 NATs. There has also been

discussion of NAT for IPv6, although not for the same reason as in

IPv4. If IPv6 NAT becomes a reality they hopefully do not present the

same protocol issues as for IPv4. If NAT is defined for IPv6, it should

take UDP zero checksum into consideration.

The requirements for IPv6 firewall traversal are likely be to be

similar to those for IPv4. In addition, it can be reasonably expected

that a firewall conforming to RFC 2460 will not regard UDP datagrams

with a zero checksum as valid packets. If an zero-checksum for UDP were



to be allowed for IPv6, this would need firewalls to be updated before

full utility of the change is available.

It can be expected that UDP with zero-checksum will initially not have

the same middlebox traversal characteristics as regular UDP. However,

if standardized we can expect an improvement over time of the traversal

capabilities. We also note that deployment of IPv6-capable middleboxes

is still in its initial phases. Thus, it might be that the number of

non-updated boxes quickly become a very small percentage of the

deployed middleboxes.

1.3.5. Support for load balancing

The UDP port number fields have been used as a basis to design load-

balancing solutions for IPv4. This approach has also been leveraged for

IPv6. An alternate method would be to utilise the IPv6 Flow Label as

basis for entropy for the load balancing. This would have the desirable

effect of releasing IPv6 load-balancing devices from the need to assume

semantics for the use of the transport port field and also works for

all type of transport protocols. This use of the flow-label is

consistent with the intended use, although further clarity may be

needed to ensure the field can be consistently used for this purpose,

(e.g. Equal-Cost Multi-Path routing, ECMP [ECMP]).

Router vendors could be encouraged to start using the IPv6 Flow Label

as a part of the flow hash, providing support for ECMP without

requiring use of UDP. However, the method for populating the outer IPv6

header with a value for the flow label is not trivial: If the inner

packet uses IPv6, then the flow label value could be copied to the

outer packet header. However, many current end-points set the flow

label to a zero value (thus no entropy). The ingress of a tunnel

seeking to provide good entropy in the flow label field would therefore

need to create a random flow label value and keep corresponding state,

so that all packets that were associated with a flow would be

consistently given the same flow label. Although possible, this

complexity may not be desirable in a tunnel ingress.

The end-to-end use of flow labels for load balancing is a long-term

solution. Even if the usage of the flow label is clarified, there would

be a transition time before a significant proportion of end-points

start to assign a good quality flow label to the flows that they

originate, with continued use of load balancing using the transport

header fields until any widespread deployment is finally achieved.

2. Standards-Track Transports

The IETF has defined a set of transport protocols that may be

applicable for tunnels with IPv6. There are also a set of network layer

encapsulation tunnels such as IP-in-IP and GRE. These already

standardized solutions are discussed here prior to the issues, as

background for the issue description and some comparison of where the

issue may already occur.



2.1. UDP with Standard Checksum

UDP [RFC0768] with standard checksum behaviour is defined in RFC 2460

has already been discussed. UDP usage guidelines are provided in 

[RFC5405].

2.2. UDP-Lite

UDP-Lite [RFC3828] offers an alternate transport to UDP, specified as a

proposed standard, RFC 3828. A MIB is defined in RFC 5097 and unicast

usage guidelines in [RFC5405]. There is at least one open source

implementation as a part of the Linux kernel since version 2.6.20.

UDP-Lite provides a checksum with optional partial coverage. When using

this option, a datagram is divided into a sensitive part (covered by

the checksum) and an insensitive part (not covered by the checksum).

When the checksum covers the entire packet, UDP-Lite is fully

equivalent with UDP. Errors/corruption in the insensitive part will not

cause the datagram to be discarded by the transport layer at the

receiving endpoint. A minor side-effect of using UDP-Lite is that this

was specified for damage-tolerant payloads, and some link-layers may

employ different link encapsulations when forwarding UDP-Lite segments

(e.g. radio access bearers). Most link-layers will cover the

insensitive part with the same strong layer 2 frame CRC that covers the

sensitive part.

2.2.1. Using UDP-Lite as a Tunnel Encapsulation

Tunnel encapsulations can use UDP-Lite (e.g. Control And Provisioning

of Wireless Access Points, CAPWAP [RFC5415]), since UDP-Lite provides a

transport-layer checksum, including an IP pseudo header checksum, in

IPv6, without the need for a router/middelbox to traverse the entire

packet payload. This provides most of the delivery verifications and

still keep the complexity of the checksumming operation low. UDP-Lite

may set the length of checksum coverage on a per packet basis. This

feature could be used if a tunnel protocol is designed to only verify

delivery of the tunneled payload and uses full checksumming for control

information.

There is currently poor support for middlebox traversal using UDP-Lite,

because UDP-Lite uses a different IPv6 network-layer Next Header value

to that of UDP, and few middleboxes are able to interpret UDP-Lite and

take appropriate actions when forwarding the packet. This makes UDP-

Lite less suited to protocols needing general Internet support, until

such time that UDP-Lite has achieved better support in middleboxes and

end-points.

2.3. General Tunnel Encapsulations

The IETF has defined a set of tunneling protocols or network layer

encapsulations, like IP-in-IP and GRE. These either do not include a



checksum or use a checksum that is optional, since tunnel

encapsulations are typically layered directly over the Internet layer

(identified by the upper layer type in the IPv6 Next Header field) and

are also not used as endpoint transport protocols. There is little

chance of confusing a tunnel-encapsulated packet with other application

data that could result in corruption of application state or data.

From the end-to-end perspective, the principal difference is that the

network-layer Next Header field identifies a separate transport, which

reduces the probability that corruption could result in the packet

being delivered to the wrong endpoint or application. Specifically,

packets are only delivered to protocol modules that process a specific

next header value. The next header field therefore provides a first-

level check of correct demultiplexing. In contrast, the UDP port space

is shared by many diverse applications and therefore UDP demultiplexing

relies solely on the port numbers.

3. Issues Requiring Consideration

This section evaluates issues around the proposal to update IPv6

[RFC2460], to provide the option of using a UDP transport checksum set

to zero. Some of the identified issues are shared with other protocols

already in use.

The decision by IPv6 to omit an integrity check at the network level

has meant that the transport check was overloaded with many functions,

including validating: 

the endpoint address was not corrupted within a router - i.e. A

packet was intended to be received by this destination and a

wrong header has not been spliced to a different payload;

that extension header processing is correctly delimited - i.e.

The start of data has not been corrupted. In this case, reception

of a valid next header value provides some protection;

reassembly processing, when used;

the length of the payload;

the port values - i.e. The correct application receives the

payload (applications should also check the expected use of

source ports/addresses);

the payload integrity.

In IPv4, the first four checks are performed using the IPv4 header

checksum.

In IPv6, these checks occur within the endpoint stack using the UDP

checksum information. An IPv6 node also relies on the header

information to determine whether to send an ICMPv6 error message 

[RFC4443] and to determine the node to which this is sent. Corrupted
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information may lead to misdelivery to an unintended application socket

on an unexpected host.

3.1. Effect of packet modification in the network

IP packets may be corrupted as they traverse an Internet path. Evidence

has been presented [Sigcomm2000] to show that this was once an issue

with IPv4 routers, and occasional corruption could result from bad

internal router processing in routers or hosts. These errors are not

detected by the strong frame checksums employed at the link-layer 

[RFC3819]. There is no current evidence that such cases are rare in the

modern Internet, nor that they may not be applicable to IPv6. It

therefore seems prudent not to relax this constraint. The emergence of

low-end IPv6 routers and the proposed use of NAT with IPv6 further

motivate the need to protect from this type of error.

Corruption in the network may result in: 

A datagram being mis-delivered to the wrong host/router or the

wrong transport entity within an endpoint. Such a datagram needs

to be discarded;

A datagram payload being corrupted, but still delivered to the

intended host/router transport entity. Such a datagram needs to

be either discarded or correctly processed by an application that

provides its own integrity checks;

A datagram payload being truncated by corruption of the length

field. Such a datagram needs to be discarded.

When a checksum is used, this significantly reduces the impact of

errors, reducing the probability of undetected corruption of state (and

data) on both the host stack and the applications using the transport

service.

The following sections examine the impact of modifying each of these

header fields.

3.1.1. Corruption of the destination IP address

An IP endpoint destination address could be modified in the network

(e.g. corrupted by an error). This is not a concern for IPv4, because

the IP header checksum will result in this packet being discarded by

the receiving IP stack. Such modification in the network can not be

detected at the network layer when using IPv6.

There are two possible outcomes:

Delivery to a destination address that is not in use (the packet

will not be delivered, but could result in an error report);

Delivery to a different destination address. This modification

will normally be detected by the transport checksum, resulting in
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silent discard. Without this checksum, the packet would be passed

to the endpoint port demultiplexing function. If an application

is bound to the associated ports, the packet payload will be

passed to the application (see the subsequent section on port

processing).

3.1.2. Corruption of the source IP address

This section examines what happens when the source address is corrupted

in transit. This is not a concern in IPv4, because the IP header

checksum will normally result in this packet being discarded by the

receiving IP stack.

Corruption of an IPv6 source address does not result in the IP packet

being delivered to a different endpoint protocol or destination

address. If only the source address is corrupted, the datagram will

likely be processed in the intended context, although with erroneous

origin information. The result will depend on the application or

protocol that processes the packet. Some examples are:

An application that requires a per-established context may

disregard the datagram as invalid, or could map this to another

context (if a context for the modified source address was already

activated).

A stateless application will process the datagram outside of any

context, a simple example is the ECHO server, which will respond

with a datagram directed to the modified source address. This

would create unwanted additional processing load, and generate

traffic to the modified endpoint address.

Some datagram applications build state using the information from

packet headers. A previously unused source address would result

in receiver processing and the creation of unnecessary transport-

layer state at the receiver. For example, Real Time Protocol

(RTP) [RFC3550] sessions commonly employ a source independent

receiver port. State is created for each received flow. Reception

of a datagram with a corrupted source address will therefore

result in accumulation of unnecessary state in the RTP state

machine, including collision detection and response (since the

same synchronization source, SSRC, value will appear to arrive

from multiple source IP addresses).

In general, the effect of corrupting the source address will depend

upon the protocol that processes the packet and its robustness to this

error. For the case where the packet is received by a tunnel endpoint,

the tunnel application is expected to correctly handle a corrupted

source address.
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The impact of source address modification is more difficult to quantify

when the receiving application is not that originally intended and

several fields have been modified in transit.

3.1.3. Corruption of Port Information

This section describes what happens if one or both of the UDP port

values are corrupted in transit. This can also happen with IPv4 in the

zero checksum case, but not when UDP checksums are enabled or with UDP-

Lite. If the ports carried in the transport header of an IPv6 packet

were corrupted in transit, packets may be delivered to the wrong

process (on the intended machine) and/or responses or errors sent to

the wrong application process (on the intended machine).

3.1.4. Delivery to an unexpected port

If one combines the corruption effects, such as destination address and

ports, there is a number of potential outcomes when traffic arrives at

an unexpected port. This section discusses these possibilities and

their outcomes for a packet that does not use the UDP checksum

validation:

Delivery to a port that is not in use. The packet is discarded,

but could generate an ICMPv6 message (e.g. port unreachable).

It could be delivered to a different node that implements the

same application, where the packet may be accepted, generating

side-effects or accumulated state.

It could be delivered to an application that does not implement

the tunnel protocol, where the packet may be incorrectly parsed,

and may be misinterpreted, generating side-effects or accumulated

state.

The probability of each outcome depends on the statistical probability

that the address or the port information for the source or destination

becomes corrupt in the datagram such that they match those of an

existing flow or server port. Unfortunately, such a match may be more

likely for UDP than for connection-oriented transports, because:

There is no handshake prior to communication and no sequence

numbers (as in TCP, DCCP, or SCTP). Together, this makes it

hard to verify that an application is given only the data

associated with a transport session.

Applications writers often bind to wild-card values in endpoint

identifiers and do not always validate correctness of datagrams

they receive (guidance on this topic is provided in [RFC5405]).
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Reassembly failure:

Erroneous reassembly:

While these rules could, in principle, be revised to declare naive

applications as "Historic". This remedy is not realistic: the transport

owes it to the stack to do its best to reject bogus datagrams.

If checksum coverage is suppressed, the application therefore needs to

provide a method to detect and discard the unwanted data. A tunnel

protocol would need to perform its own integrity checks on any control

information if transported in UDP with zero-checksum. If the tunnel

payload is another IP packet, the packets requiring checksums can be

assumed to have their own checksums provided that the rate of corrupted

packets is not significantly larger due to the tunnel encapsulation. If

a tunnel transports other inner payloads that do not use IP, the

assumptions of corruption detection for that particular protocol must

be fulfilled, this may require an additional checksum/CRC and/or

integrity protection of the payload and tunnel headers.

A protocol using UDP zero-checksum can never assume that it is the only

protocol using a zero checksum. Therefore, it needs to gracefully

handle misdelivery. It must be robust to reception of malformed packets

received on a listening port and expect that these packets may contain

corrupted data or data associated with a completely different protocol.

3.1.5. Corruption of Fragmentation Information

The fragmentation information in IPv6 employs a 32-bit identity field,

compared to only a 16-bit filed in IPv4, a 13-bit fragment offset and a

1-bit flag, indicating if there are more fragments. Corruption of any

of these field may result in one of two outcomes:

An error in the "More Fragments" field for the

last fragment will for example result in the packet never being

considered complete and will eventually be timed out and discarded.

A corruption in the ID field will result in the fragment not being

delivered to the intended context thus leaving the rest incomplete,

unless that packet has been duplicated prior to corruption. The

incomplete packet will eventually be timed out and discarded.

The re-assemblied packet did not match the

original packet. This can occur when the ID field of a fragment is

corrupted, resulting in a fragment becoming associated with another

packet and taking the place of another fragment. Corruption in the

offset information can cause the fragment to be misaligned in the

reassembly buffer, resulting in incorrect reassembly. Corruption can

cause the packet to become shorter or longer, however completion of

reassembly is much less probable, since this would requires

consistent corruption of the IPv6 headers payload length field and

the offset field. The possibility of mis-assembly requires the

reassembling stack to provide strong checks that detect overlap or

missing data, note however that this is not guaranteed and has

recently been clarified in "Handling of Overlapping IPv6 Fragments"

[RFC5722].



The erroneous reassembly of packets is a general concern and such

packets should be discarded instead of being passed to higher layer

processes. The primary detector of packet length changes is the IP

payload length field, with a secondary check by the transport checksum.

The Upper-Layer Packet length field included in the pseudo header

assists in verifying correct reassembly, since the Internet checksum

has a low probability of detecting insertion of data or overlap errors

(due to misplacement of data). The checksum is also incapable of

detecting insertion or removal of all zero-data that occurs in a

multiple of a 16-bit chunk.

The most significant risk of corruption results following mis-

association of a fragment with a different packet. This risk can be

significant, since the size of fragments is often the same (e.g.

fragments resulting when the path MTU results in fragmentation of a

larger packet, common when addition of a tunnel encapsulation header

expands the size of a packet). Detection of this type of error requires

a checksum or other integrity check of the headers and the payload.

Such protection is anyway desirable for tunnel encapsulations using

IPv4, since the small fragmentation ID can easily result in wrap-around

[RFC4963], this is especially the case for tunnels that perform flow

aggregation [I-D.ietf-intarea-tunnels].

Tunnel fragmentation behavior matters. There can be outer or inner

fragmentation "Tunnels in the Internet Architecture" [I-D.ietf-intarea-

tunnels]. If there is inner fragmentation by the tunnel, the outer

headers will never be fragmented and thus a zero-checksum in the outer

header will not affect the reassembly process. When a tunnel performs

outer header fragmentation, the tunnel egress needs to perform

reassembly of the outer fragments into an inner packet. The inner

packet is either a complete packet or a fragment. If it is a fragment,

the destination endpoint of the fragment will perform reassembly of the

received fragments. The complete packet or the reassembled fragments

will then be processed according to the packet next header field. The

receiver may only detect reassembly anomalies when it uses a protocol

with a checksum. The larger the number of reassembly processes to which

a packet has been subjected, the greater the probability of an error.

An IP-in-IP tunnel that performs inner fragmentation has similar

properties to a UDP tunnel with a zero-checksum that also

performs inner fragmentation.

An IP-in-IP tunnel that performs outer fragmentation has similar

properties to a UDP tunnel with a zero checksum that performs

outer fragmentation.

A tunnel that performs outer fragmentation can result in a higher

level of corruption due to both inner and outer fragmentation,

enabling more chances for reassembly errors to occur.

*

*
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Recursive tunneling can result in fragmentation at more than one

header level, even for inner fragmentation unless it goes to the

inner most IP header.

Unless there is verification at each reassembly the probability

for undetected error will increase with the number of times

fragmentation is recursively applied. Making IP-in-IP and UDP

with zero checksum equal subject to this effect.

In conclusion fragmentation of packets with a zero-checksum does not

worsen the situation compared to some other commonly used tunnel

encapsulations. However, caution is needed for recursive tunneling

without any additional verification at the different tunnel layers.

3.2. Validating the network path

IP transports designed for use in the general Internet should not

assume specific path characteristics. Network protocols may reroute

packets that change the set of routers and middleboxes along a path.

Therefore transports such as TCP, SCTP and DCCP have been designed to

negotiate protocol parameters, adapt to different network path

characteristics, and receive feedback to verify that the current path

is suited to the intended application. Applications using UDP and UDP-

Lite need to provide their own mechanisms to confirm the validity of

the current network path.

The zero-checksum in UDP is explicitly disallowed in RFC2460. Thus it

may be expected that any device on the path that has a reason to look

beyond the IP header will consider such a packet as erroneous or

illegal and may likely discard it, unless the device is updated to

support a new behavior. A pair of end-points intending to use a new

behavior will therefore not only need to ensure support at each end-

point, but also that the path between them will deliver packets with

the new behavior. This may require negotiation or an explicit mandate

to use the new behavior by all nodes intended to use a new protocol.

Support along the path between end points may be guaranteed in limited

deployments by appropriate configuration. In general, it can be

expected to take time for deployment of any updated behaviour to become

ubiquitous. A sender will need to probe the path to verify the expected

behavior. Path characteristics may change, and usage therefore should

be robust and able to detect a failure of the path under normal usage

and re-negotiate. This will require periodic validation of the path,

adding complexity to any solution using the new behavior.

3.3. Applicability of method

The expectation of the present proposal defined in [I-D.ietf-6man-

udpchecksums] is that this change would only apply to IPv6 router nodes

that implement specific protocols that permit omission of UDP

checksums. However, the distinction between a router and a host is not

*
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always clear, especially at the transport level. Systems (such as unix-

based operating systems) routinely provide both functions. There is

also no way to identify the role of a receiver from a received packet.

Any new method would therefore need a specific applicability statement

indicating when the mechanism can (and can not) be used. Enabling this,

and ensuring correct interactions with the stack, implies much more

than simply disabling the checksum algorithm for specific packets at

the transport interface.

The IETF should carefully consider constraints on sanctioning the use

of any new transport mode. If this is specified and widely available,

it may be expected to be used by applications that are perceived to

gain benefit. Any solution that uses an end-to-end transport protocol,

rather than an IP-in-IP encapsulation, needs to minimise the

possibility that end-hosts could confuse a corrupted or wrongly

delivered packet with that of data addressed to an application running

on their endpoint unless they accept that behavior.

3.4. Impact on non-supporting devices or applications

It is important to consider what potential impact the zero-checksum

behavior may have on end-points, devices or applications that are not

modified to support the new behavior or by default or preference, use

the regular behavior. These applications must not be significantly

impacted by the changes.

To illustrate a potential issue, consider the implications of a node

that were to enable use of a zero-checksum at the interface level: This

would result in all applications that listen to a UDP socket receiving

datagram where the checksum was not verified. This could have a

significant impact on an application that was not designed with the

additional robustness needed to handle received packets with

corruption, creating state or destroying existing state in the

application.

In contrast, the use of a zero-checksum could be enabled only for

individual ports using an explicit request by the application. In this

case, applications using other ports would maintain the current IPv6

behavior, discarding incoming UDP datagrams with a zero-checksum. These

other applications would not be effected by this changed behavior. An

application that allows the changed behavior should be aware of the

risk for corruption and the increased level of misdirected traffic, and

can be designed robustly to handle this risk.

4. Evaluation of proposal to update RFC 2460 to support zero checksum

This section evaluates the proposal to update IPv6 [RFC2460], to

provide the option that some nodes may suppress generation and checking

of the UDP transport checksum. It also compares the proposal with other

alternatives.



4.1. Alternatives to the Standard Checksum

There are several alternatives to the normal method for calculating the

UDP Checksum that do not require a tunnel endpoint to inspect the

entire packet when computing a checksum. These include (in decreasing

order of complexity):

Delta computation of the checksum from an encapsulated checksum

field. Since the checksum is a cumulative sum [RFC1624], an

encapsulating header checksum can be derived from the new pseudo

header, the inner checksum and the sum of the other network-layer

fields not included in the pseudo header of the encapsulated

packet, in a manner resembling incremental checksum update 

[RFC1141]. This would not require access to the whole packet, but

does require fields to be collected across the header, and

arithmetic operations on each packet. The method would only work

for packets that contain a 2's complement transport checksum

(i.e. it would not be appropriate for SCTP or when IP

fragmentation is used).

UDP-Lite with the checksum coverage set to only the header

portion of a packet. This requires a pseudo header checksum

calculation only on the encapsulating packet header. The computed

checksum value may be cached (before adding the Length field) for

each flow/destination and subsequently combined with the Length

of each packet to minimise per-packet processing. This value is

combined with the UDP payload length for the pseudo header,

however this length is expected to be known when performing

packet forwarding.

The proposed UDP Tunnel Transport, UDPTT [UDPTT] suggested a

method where UDP would be modified to derive the checksum only

from the encapsulating packet protocol header. This value does

not change between packets in a single flow. The value may be

cached per flow/destination to minimise per-packet processing.

There has been a proposal to simply ignore the UDP checksum value

on reception at the tunnel egress, allowing a tunnel ingress to

insert any value correct or false. For tunnel usage, a non

standard checksum value may be used, forcing an RFC 2460 receiver

to drop the packet. The main downside is that it would be

impossible to identify a UDP packet (in the network or an

endpoint) that is treated in this way compared to a packet that

has actually been corrupted.

A method has been proposed that uses a new (to be defined) IPv6

Destination Options Header to provide an end-to-end validation

check at the network layer. This would allow an endpoint to

verify delivery to an appropriate end point, but would also

*
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require IPv6 nodes to correctly handle the additional header, and

would require changes to middlebox behavior (e.g. when used with

a NAT that always adjusts the checksum value).

UDP modified to disable checksum processing [I-D.ietf-6man-

udpchecksums]. This requires no checksum calculation, but would

require constraints on appropriate usage and updates to end-

points and middleboxes.

IP-in-IP tunneling. As this method completely dispenses with a

transport protocol in the outer-layer it has reduced overhead and

complexity, but also reduced functionality. There is no outer

checksum over the packet and also no ports to perform

demultiplexing between different tunnel types. This reduces the

information available upon which a load balancer may act.

These options are compared and discussed further in the following

sections.

4.2. Comparison

This section compares the above listed methods to support datagram

tunneling. It includes proposals for updating the behaviour of UDP.

4.2.1. Middlebox Traversal

Regular UDP with a standard checksum or the delta encoded optimization

for creating correct checksums have the best possibilities for

successful traversal of a middlebox. No new support is required.

A method that ignores the UDP checksum on reception is expected to have

a good probability of traversal, because most middleboxes perform an

incremental checksum update. UDPTT may also traverse a middlebox with

this behaviour. However, a middlebox on the path that attempts to

verify a standard checksum will not forward packets using either of

these methods, preventing traversal. The methods that ignores the

checksum has an additional downside in that middlebox traversal can not

be improved, because there is no way to identify which packets use the

modified checksum behaviour.

IP-in-IP or GRE tunnels offer good traversal of middleboxes that have

not been designed for security, e.g. firewalls. However, firewalls may

be expected to be configured to block general tunnels as they present a

large attack surface.

A new IPv6 Destination Options header will suffer traversal issues with

middleboxes, especially Firewalls and NATs, and will likely require

them to be updated before the extension header is passed.

Packets using UDP with a zero checksum will not be passed by any

middlebox that validates the checksum using RFC 2460 or updates the

checksum field, such as NAT or firewalls. This would require an update

to correctly handle the zero checksum packets.

*
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UDP-Lite will require an update of almost all type of middleboxes,

because it requires support for a separate network-layer protocol

number. Once enabled, the method to support incremental checksum update

would be identical to that for UDP, but different for checksum

validation.

4.2.2. Load Balancing

The usefulness of solutions for load balancers depends on the

difference in entropy in the headers for different flows that can be

included in a hash function. All the proposals that use the UDP

protocol number have equal behavior. UDP-Lite has the potential for

equally good behavior as for UDP. However, UDP-Lite is currently likely

to not be supported by deployed hashing mechanisms, which may cause a

load balancer to not use the transport header in the computed hash. A

load balancer that only uses the IP header will have low entropy, but

could be improved by including the IPv6 the flow label, providing that

the tunnel ingress ensures that different flow labels are assigned to

different flows. However, a transition to the common use of good

quality flow labels is likely to take time to deploy.

4.2.3. Ingress and Egress Performance Implications

IP-in-IP tunnels are often considered efficient, because they introduce

very little processing and low data overhead. The other proposals

introduce a UDP-like header incurring associated data overhead.

Processing is minimised for the zero-checksum method, ignoring the

checksum on reception, and only slightly higher for UDPTT, the

extension header and UDP-Lite. The delta-calculation scheme operates on

a few more fields, but also introduces serious failure modes that can

result in a need to calculate a checksum over the complete packet.

Regular UDP is clearly the most costly to process, always requiring

checksum calculation over the entire packet.

It is important to note that the zero-checksum method, ignoring

checksum on reception, the Option Header, UDPTT and UDP-Lite will

likely incur additional complexities in the application to incorporate

a negotiation and validation mechanism.

4.2.4. Deployability

The major factors influencing deployability of these solutions are a

need to update both end-points, a need for negotiation and the need to

update middleboxes. These are summarised below:

The solution with the best deployability is regular UDP. This

requires no changes and has good middlebox traversal

characteristics.

*



Regular UDP:

IP in IP:

The next easiest to deploy is the delta checksum solution. This

does not modify the protocol on the wire and only needs changes

in tunnel ingress.

IP-in-IP tunnels should not require changes to the end-points,

but raise issues when traversing firewalls and other security-

type devices, which are expected to require updates.

Ignoring the checksum on reception will require changes at both

end-points. The never ceasing risk of path failure requires

additional checks to ensure this solution is robust and will

require changes or additions to the tunneling control protocol to

negotiate support and validate the path.

The remaining solutions offer similar deployability. UDP-Lite

requires support at both end-points and in middleboxes. UDPTT and

Zero-checksum with or without an Extension header require support

at both end-points and in middleboxes. UDP-Lite, UDPTT, and Zero-

checksum and Extension header may additionally require changes or

additions to the tunneling control protocol to negotiate support

and path validation.

4.2.5. Corruption Detection Strength

The standard UDP checksum and the delta checksum can both provide some

verification at the tunnel egress. This can significantly reduce the

probability that a corrupted inner packet is forwarded. UDP-Lite, UDPTT

and the extension header all provide some verification against

corruption, but do not verify the inner packet. They only provide a

strong indication that the delivered packet was intended for the tunnel

egress and was correctly delimited. The Zero-checksum, ignoring the

checksum on reception and IP-and-IP encapsulation provide no

verification that a received packet was intended to be processed by a

specific tunnel egress or that the inner packet was correct.

4.2.6. Comparison Summary

The comparisons above may be summarised as "there is no silver bullet

that will slay all the issues". One has to select which down side(s)

can best be lived with. Focusing on the existing solutions, this can be

summarized as:

Good middlebox traversal and load balancing and

multiplexing, requiring a checksum in the outer headers covering the

whole packet.

A low complexity encapsulation, with limited middlebox

traversal, no multiplexing support, and currently poor load

balancing support that could improve over time.

*

*

*

*



UDP-Lite:

Zero-Checksum:

UDPTT:

IPv6 Destination Option IP in IP tunneling:

IPv6 Destination Option combined with UDP Zero-checksuming:

Ignore the checksum on reception:

A medium complexity encapsulation, with good multiplexing

support, limited middlebox traversal, but possible to improve over

time, currently poor load balancing support that could improve over

time, in most cases requiring application level negotiation and

validation.

The delta-checksum is an optimization in the processing of UDP, as such

it exhibits some of the drawbacks of using regular UDP.

The remaining proposals may be described in similar terms:

A low complexity encapsulation, with good multiplexing

support, limited middlebox traversal that could improve over time,

good load balancing support, in most cases requiring application

level negotiation and validation.

A medium complexity encapsulation, with good multiplexing

support, limited middlebox traversal, but possible to improve over

time, good load balancing support, in most cases requiring

application level negotiation and validation.

A medium complexity, with

no multiplexing support, limited middlebox traversal, currently poor

load balancing support that could improve over time, in most cases

requiring application level negotiation and validation.

A medium

complexity encapsulation, with good multiplexing support, limited

load balancing support that could improve over time, in most cases

requiring application level negotiation and validation.

A low complexity encapsulation, with

good multiplexing support, medium middlebox traversal that never can

improve, good load balancing support, in most cases requiring

application level negotiation and validation.

There is no clear single optimum solution. If the most important need

is to traverse middleboxes, then the best choice is to stay with

regular UDP and consider the optimizations that may be required to

perform the checksumming. If one can live with limited middlebox

traversal, low complexity is necessary and one does not require load

balancing, then IP-in-IP tunneling is the simplest. If one wants

strengthened error detection, but with currently limited middlebox

traversal and load-balancing. UDP-Lite is appropriate. UDP Zero-

checksum addresses another set of constraints, low complexity and a

need for load balancing from the current Internet, providing it can

live with currently limited middlebox traversal.

Techniques for load balancing and middlebox traversal do continue to

evolve. Over a long time, developments in load balancing have good

potential to improve. This time horizon is long since it requires both



load balancer and end-point updates to get full benefit. The challenges

of middlebox traversal are also expected to change with time, as device

capabilities evolve. Middleboxes are very prolific with a larger

proportion of end-user ownership, and therefore may be expected to take

long time cycles to evolve. One potential advantage is that the

deployment of IPv6 capable middleboxes are still in its initial phase

and the quicker zero-checksum becomes standardized the fewer boxes will

be non-compliant.

Thus, the question of whether to allow UDP with a zero-checksum for

IPv6 under reasonable constraints, is therefore best viewed as a trade-

off between a number of more subjective questions:

Is there sufficient interest in zero-checksum with the given

constraints (summarised below)?

Are there other avenues of change that will resolve the issue in

a better way and sufficiently quickly ?

Do we accept the complexity cost of having one more solution in

the future?

The authors do think the answer to the above questions are such that

zero-checksum should be standardized for use by tunnel encapsulations.

5. Requirements on the specification of transported protocols

5.1. Constraints required on usage of a zero checksum

If a zero checksum approach were to be adopted by the IETF, the

specification should consider adding the following constraints on

usage:

IPv6 protocol stack implementations should not by default allow

the new method. The default node receiver behaviour must

discard all IPv6 packets carrying UDP packets with a zero

checksum.

Implementations must provide a way to signal the set of ports

that will be enabled to receive UDP datagrams with a zero

checksum. An IPv6 node that enables reception of UDP packets

with a zero-checksum, must enable this only for a specific port

or port-range. This may be implemented via a socket API call,

or similar mechanism.

RFC 2460 specifies that IPv6 nodes should log UDP datagrams

with a zero-checksum. This should remain the case for any

datagram received on a port that does not explicitly enable

zero-checksum processing. A port for which zero-checksum has

been enabled must not log the datagram.

*
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A stack may separately identify UDP datagrams that are

discarded with a zero checksum. It should not add these to the

standard log, since the endpoint has not been verified.

Tunnels that encapsulate IP may rely on the inner packet

integrity checks provided that the tunnel will not

significantly increase the rate of corruption of the inner IP

packet. If a significantly increased corruption rate can occur,

then the tunnel must provide an additional integrity

verification mechanism. An integrity mechanisms is always

recommended at the tunnel layer to ensure that corruption rates

of the inner most packet are not increased.

Tunnels that encapsulate Non-IP packets must have a CRC or

other mechanism for checking packet integrity, unless the Non-

IP packet specifically is designed for transmission over lower

layers that do not provide any packet integrity guarantee. In

particular, the application must be designed so that corruption

of this information does not result in accumulated state or

incorrect processing of a tunneled payload.

UDP applications that support use of a zero-checksum, should

not rely upon correct reception of the IP and UDP protocol

information (including the length of the packet) when decoding

and processing the packet payload. In particular, the

application must be designed so that corruption of this

information does not result in accumulated state or incorrect

processing of a tunneled payload.

If a method proposes recursive tunnels, it needs to provide

guidance that is appropriate for all use-cases. Restrictions

may be needed to the use of a tunnel encapsulations and the use

of recursive tunnels (e.g. Necessary when the endpoint is not

verified).

IPv6 nodes that receive ICMPv6 messages that refer to packets

with a zero UDP checksum must provide appropriate checks

concerning the consistency of the reported packet to verify

that the reported packet actually originated from the node,

before acting upon the information (e.g. validating the address

and port numbers in the ICMPv6 message body).

Deployment of the new method needs to remain restricted to endpoints

that explicitly enable this mode and adopt the above procedures. Any

middlebox that examines or interact with the UDP header over IPv6

should support the new method.

4. 
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6. Summary

This document examines the role of the transport checksum when used

with IPv6, as defined in RFC2460.

It presents a summary of the trade-offs for evaluating the safety of

updating RFC 2460 to permit an IPv6 UDP endpoint to use a zero value in

the checksum field to indicate that no checksum is present. A decision

not to include a UDP checksum in received IPv6 datagrams could impact a

tunnel application that receives these packets. However, a well-

designed tunnel application should include consistency checks to

validate any header information encapsulated with a packet. In most

cases tunnels encapsulating IP packets can rely on the inner packets

own integrity protection. When correctly implemented, such a tunnel

endpoint will not be negatively impacted by omission of the transport-

layer checksum. Recursive tunneling and fragmentation is a potential

issues that can raise corruption rates significantly, and requires

careful consideration.

Other applications at the intended destination node or another IPv6

node can be impacted if they are allowed to receive datagrams without a

transport-layer checksum. It is particularly important that already

deployed applications are not impacted by any change at the transport

layer. If these applications execute on nodes that implement RFC 2460,

they will reject all datagrams with a zero UDP checksum, thus this is

not an issue. For nodes that implement support for zero-checksum it is

important to ensure that only UDP applications that desire zero-

checksum can receive and originate zero-checksum packets. Thus, the

enabling of zero-checksum needs to be at a port level, not for the

entire host or for all use of an interface.

The implications on firewalls, NATs and other middleboxes need to be

considered. It is not expected that IPv6 NATs handle IPv6 UDP datagrams

in the same way that they handle IPv4 UDP datagrams. This possibly

reduces the need to update the checksum. Firewalls are intended to be

configured, and therefore may need to be explicitly updated to allow

new services or protocols. IPv6 middlebox deployment is not yet as

prolific as it is in IPv4. Thus, relatively few current middleboxes may

actually block IPv6 UDP with a zero checksum.

In general, UDP-based applications need to employ a mechanism that

allows a large percentage of the corrupted packets to be removed before

they reach an application, both to protect the applications data stream

and the control plane of higher layer protocols. These checks are

currently performed by the UDP checksum for IPv6, or the reduced

checksum for UDP-Lite when used with IPv6.

The use of UDP with no checksum has merits for some applications, such

as tunnel encapsulation, and is widely used in IPv4. However, there are

dangers for IPv6: There is a bigger risk of corruption and miss-

delivery when using zero-checksum in IPv6 compared to IPv4 due to the

removed IP header checksum. Thus, applications needs to make a new

evaluation of the risks of enabling a zero-checksum. Some applications

will need to re-consider their usage of zero-checksum, and possibly



consider a solution that at least provides the same delivery protection

as for IPv4, for example by utilizing UDP-Lite, or by enabling the UDP

checksum. Tunnel applications using UDP for encapsulation can in many

case use zero-checksum without significant impact on the corruption

rate. In some cases, the use of checksum off-loading may help alleviate

the checksum processing cost.

Recursive tunneling and fragmentation is a difficult issue relating to

tunnels in general. There is an increased risk of an error in the

inner-most packet when fragmentation when several layers of tunneling

and several different reassembly processes are run without any

verification of correctness. This issue requires future thought and

consideration.

The conclusion is that UDP zero checksum in IPv6 should be

standardized, as it satisfies usage requirements that are currently

difficult to address. We do note that a safe deployment of zero-

checksum will need to follow a set of constraints listed in Section

5.1.
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8. IANA Considerations

This document does not require any actions by IANA.

9. Security Considerations

Transport checksums provide the first stage of protection for the

stack, although they can not be considered authentication mechanisms.

These checks are also desirable to ensure packet counters correctly log

actual activity, and can be used to detect unusual behaviours.
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