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Abstract

   This document describes the minimal framework required for a new
   device, called "pledge", to securely join a 6TiSCH (IPv6 over the
   TSCH mode of IEEE 802.15.4e) network.  The framework requires that
   the pledge and the JRC (join registrar/coordinator, a central
   entity), share a symmetric key.  How this key is provisioned is out
   of scope of this document.  Through a single CoAP (Constrained
   Application Protocol) request-response exchange secured by OSCORE
   (Object Security for Constrained RESTful Environments), the pledge
   requests admission into the network and the JRC configures it with
   link-layer keying material and other parameters.  The JRC may at any
   time update the parameters through another request-response exchange
   secured by OSCORE.  This specification defines the Constrained Join
   Protocol and its CBOR (Concise Binary Object Representation) data
   structures, and configures the rest of the 6TiSCH communication stack
   for this join process to occur in a secure manner.  Additional
   security mechanisms may be added on top of this minimal framework.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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   This Internet-Draft will expire on January 30, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   This document defines a "secure join" solution for a new device,
   called "pledge", to securely join a 6TiSCH network.  The term "secure
   join" refers to network access authentication, authorization and
   parameter distribution, as defined in [I-D.ietf-6tisch-terminology].
   The Constrained Join Protocol (CoJP) defined in this document handles
   parameter distribution needed for a pledge to become a joined node.
   Authorization mechanisms are considered out of scope.  Mutual
   authentication during network access is achieved through the use of a
   secure channel, as configured by this document.  This document also
   specifies a configuration of different layers of the 6TiSCH protocol
   stack that reduces the Denial of Service (DoS) attack surface during
   the join process.

   This document presumes a 6TiSCH network as described by [RFC7554] and
   [RFC8180].  By design, nodes in a 6TiSCH network [RFC7554] have their
   radio turned off most of the time, to conserve energy.  As a
   consequence, the link used by a new device for joining the network
   has limited bandwidth [RFC8180].  The secure join solution defined in
   this document therefore keeps the number of over-the-air exchanges to
   a minimum.

   The micro-controllers at the heart of 6TiSCH nodes have a small
   amount of code memory.  It is therefore paramount to reuse existing
   protocols available as part of the 6TiSCH stack.  At the application
   layer, the 6TiSCH stack already relies on CoAP [RFC7252] for web
   transfer, and on OSCORE [I-D.ietf-core-object-security] for its end-
   to-end security.  The secure join solution defined in this document
   therefore reuses those two protocols as its building blocks.

   CoJP is a generic protocol that can be used as-is in all modes of
   IEEE Std 802.15.4, including the Time-Slotted Channel Hopping (TSCH)
   mode 6TiSCH is based on.  CoJP may as well be used in other (low-
   power) networking technologies where efficiency in terms of
   communication overhead and code footprint is important.  In such a
   case, it may be necessary to define configuration parameters specific
   to the technology in question, through companion documents.  The
   overall process described in Section 4 and the configuration of the
   stack is specific to 6TiSCH.

https://datatracker.ietf.org/doc/html/rfc7554
https://datatracker.ietf.org/doc/html/rfc8180
https://datatracker.ietf.org/doc/html/rfc7554
https://datatracker.ietf.org/doc/html/rfc8180
https://datatracker.ietf.org/doc/html/rfc7252
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   CoJP assumes the presence of a Join Registrar/Coordinator (JRC), a
   central entity.  The configuration defined in this document assumes
   that the pledge and the JRC share a secret cryptographic key, called
   PSK (pre-shared key).  The PSK is used to configure OSCORE to provide
   a secure channel to CoJP.  How the PSK is installed is out of scope
   of this document: this may happen during the provisioning phase or by
   a key exchange protocol that may precede the execution of CoJP.

   When the pledge seeks admission to a 6TiSCH network, it first
   synchronizes to it, by initiating the passive scan defined in
   [IEEE802.15.4].  The pledge then exchanges CoJP messages with the
   JRC; these messages can be forwarded by nodes already part of the
   6TiSCH network, called Join Proxies.  The messages exchanged allow
   the JRC and the pledge to mutually authenticate, based on the
   properties provided by OSCORE.  They also allow the JRC to configure
   the pledge with link-layer keying material, short identifier and
   other parameters.  After this secure join process successfully
   completes, the joined node can interact with its neighbors to request
   additional bandwidth using the 6top Protocol [RFC8480] and start
   sending application traffic.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in

BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The reader is expected to be familiar with the terms and concepts
   defined in [I-D.ietf-6tisch-terminology], [RFC7252],
   [I-D.ietf-core-object-security], and [RFC8152].

   The specification also includes a set of informative specifications
   using the Concise data definition language (CDDL)
   [I-D.ietf-cbor-cddl].

   The following terms defined in [I-D.ietf-6tisch-terminology] are used
   extensively throughout this document:

   o  pledge

   o  joined node

   o  join proxy (JP)

   o  join registrar/coordinator (JRC)

https://datatracker.ietf.org/doc/html/rfc8480
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8152
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   o  enhanced beacon (EB)

   o  join protocol

   o  join process

   The following terms defined in [RFC8505] are also used throughout
   this document:

   o  6LoWPAN Border Router (6LBR)

   o  6LoWPAN Node (6LN)

   The term "6LBR" is used interchangeably with the term "DODAG root"
   defined in [RFC6550], assuming the two entities are co-located, as
   recommended by [I-D.ietf-6tisch-architecture].

   The term "pledge", as used throughout the document, explicitly
   denotes non-6LBR devices attempting to join the network using their
   IEEE Std 802.15.4 network interface.  The device that attempts to
   join as the 6LBR of the network and does so over another network
   interface is explicitly denoted as the "6LBR pledge".  When the text
   equally applies to the pledge and the 6LBR pledge, the "(6LBR)
   pledge" form is used.

   In addition, we use generic terms "pledge identifier" and "network
   identifier".  See Section 3.

   The terms "secret key" and "symmetric key" are used interchangeably.

3.  Provisioning Phase

   The (6LBR) pledge is provisioned with certain parameters before
   attempting to join the network, and the same parameters are
   provisioned to the JRC.  There are many ways by which this
   provisioning can be done.  Physically, the parameters can be written
   into the (6LBR) pledge using a number of mechanisms, such as a JTAG
   interface, a serial (craft) console interface, pushing buttons
   simultaneously on different devices, over-the-air configuration in a
   Faraday cage, etc.  The provisioning can be done by the vendor, the
   manufacturer, the integrator, etc.

   Details of how this provisioning is done is out of scope of this
   document.  What is assumed is that there can be a secure, private
   conversation between the JRC and the (6LBR) pledge, and that the two
   devices can exchange the parameters.

   Parameters that are provisioned to the (6LBR) pledge include:

https://datatracker.ietf.org/doc/html/rfc8505
https://datatracker.ietf.org/doc/html/rfc6550
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   o  pledge identifier.  The pledge identifier identifies the (6LBR)
      pledge.  The pledge identifier MUST be unique in the set of all
      pledge identifiers managed by a JRC.  The pledge identifier
      uniqueness is an important security requirement, as discussed in

Section 9.  The pledge identifier is typically the globally unique
      64-bit Extended Unique Identifier (EUI-64) of the IEEE Std
      802.15.4 device, in which case it is provisioned by the hardware
      manufacturer.  The pledge identifier is used to generate the IPv6
      addresses of the (6LBR) pledge and to identify it during the
      execution of the join protocol.  For privacy reasons (see

Section 10), it is possible to use a pledge identifier different
      from the EUI-64.  For example, a pledge identifier may be a random
      byte string, but care needs to be taken that such a string meets
      the uniqueness requirement.

   o  Pre-Shared Key (PSK).  A secret cryptographic key shared between
      the (6LBR) pledge and the JRC.  The JRC additionally needs to
      store the pledge identifier bound to the given PSK.  Each (6LBR)
      pledge MUST be provisioned with a unique PSK.  The PSK SHOULD be a
      cryptographically strong key, at least 128 bits in length,
      indistinguishable by feasible computation from a random uniform
      string of the same length.  How the PSK is generated and/or
      provisioned is out of scope of this specification.  This could be
      done during a provisioning step or companion documents can specify
      the use of a key agreement protocol.  Common pitfalls when
      generating PSKs are discussed in Section 9.

   o  Optionally, a network identifier.  The network identifier
      identifies the 6TiSCH network.  The network identifier MUST be
      carried within Enhanced Beacon (EB) frames.  Typically, the 16-bit
      Personal Area Network Identifier (PAN ID) defined in
      [IEEE802.15.4] is used as the network identifier.  However, PAN ID
      is not considered a stable network identifier as it may change
      during network lifetime if a collision with another network is
      detected.  Companion documents can specify the use of a different
      network identifier for join purposes, but this is out of scope of
      this specification.  Provisioning the network identifier is
      RECOMMENDED.  However, due to operational constraints, the network
      identifier may not be known at the time when the provisioning is
      done.  In case this parameter is not provisioned to the pledge,
      the pledge attempts to join one advertised network at a time,
      which significantly prolongs the join process.  This parameter
      MUST be provisioned to the 6LBR pledge.

   o  Optionally, any non-default algorithms.  The default algorithms
      are specified in Section 7.3.3.  When algorithm identifiers are
      not exchanged, the use of these default algorithms is implied.
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   Additionally, the 6LBR pledge that is not co-located with the JRC
   needs to be provisioned with:

   o  Global IPv6 address of the JRC.  This address is used by the 6LBR
      pledge to address the JRC during the join process.  The 6LBR
      pledge may also obtain the IPv6 address of the JRC through other
      available mechanisms, such as DHCPv6, GRASP, mDNS, the use of
      which is out of scope of this document.  Pledges do not need to be
      provisioned with this address as they discover it dynamically
      through CoJP.

4.  Join Process Overview

   This section describes the steps taken by a pledge in a 6TiSCH
   network.  When a pledge seeks admission to a 6TiSCH network, the
   following exchange occurs:

   1.  The pledge listens for an Enhanced Beacon (EB) frame
       [IEEE802.15.4].  This frame provides network synchronization
       information, and tells the device when it can send a frame to the
       node sending the beacons, which acts as a Join Proxy (JP) for the
       pledge, and when it can expect to receive a frame.  The Enhanced
       Beacon provides the L2 address of the JP and it may also provide
       its link-local IPv6 address.

   2.  The pledge configures its link-local IPv6 address and advertises
       it to the JP using Neighbor Discovery.  This step may be omitted
       if the link-local address has been derived from a known unique
       interface identifier, such as an EUI-64 address.

   3.  The pledge sends a Join Request to the JP in order to securely
       identify itself to the network.  The Join Request is forwarded to
       the JRC.

   4.  In case of successful processing of the request, the pledge
       receives a Join Response from the JRC (via the JP).  The Join
       Response contains configuration parameters necessary for the
       pledge to join the network.

   From the pledge's perspective, joining is a local phenomenon - the
   pledge only interacts with the JP, and it needs not know how far it
   is from the 6LBR, or how to route to the JRC.  Only after
   establishing one or more link-layer keys does it need to know about
   the particulars of a 6TiSCH network.

   The join process is shown as a transaction diagram in Figure 1:
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     +--------+                 +-------+                 +--------+
     | pledge |                 |  JP   |                 |  JRC   |
     |        |                 |       |                 |        |
     +--------+                 +-------+                 +--------+
        |                          |                          |
        |<---Enhanced Beacon (1)---|                          |
        |                          |                          |
        |<-Neighbor Discovery (2)->|                          |
        |                          |                          |
        |-----Join Request (3a)----|----Join Request (3a)---->| \
        |                          |                          | | CoJP
        |<----Join Response (3b)---|----Join Response (3b)----| /
        |                          |                          |

             Figure 1: Overview of a successful join process.

   As other nodes in the network, the 6LBR node may act as the JP.  The
   6LBR may in addition be co-located with the JRC.

   The details of each step are described in the following sections.

4.1.  Step 1 - Enhanced Beacon

   The pledge synchronizes to the network by listening for, and
   receiving, an Enhanced Beacon (EB) sent by a node already in the
   network.  This process is entirely defined by [IEEE802.15.4], and
   described in [RFC7554].

   Once the pledge hears an EB, it synchronizes to the joining schedule
   using the cells contained in the EB.  The pledge can hear multiple
   EBs; the selection of which EB to use is out of the scope for this
   document, and is discussed in [RFC7554].  Implementers should make
   use of information such as: what network identifier the EB contains,
   the value of the Join Metric field within EBs, whether the source
   link-layer address of the EB has been tried before, what signal
   strength the different EBs were received at, etc.  In addition, the
   pledge may be pre-configured to search for EBs with a specific
   network identifier.

   If the pledge is not provisioned with the network identifier, it
   attempts to join one network at a time, as described in

Section 8.1.1.

   Once the pledge selects the EB, it synchronizes to it and transitions
   into a low-power mode.  It follows the schedule information contained
   in the EB which indicates the slots that the pledge may use for the
   join process.  During the remainder of the join process, the node
   that has sent the EB to the pledge acts as the JP.

https://datatracker.ietf.org/doc/html/rfc7554
https://datatracker.ietf.org/doc/html/rfc7554
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   At this point, the pledge may proceed to step 2, or continue to
   listen for additional EBs.

4.2.  Step 2 - Neighbor Discovery

   The pledge forms its link-local IPv6 address based on the interface
   identifier, as per [RFC4944].  The pledge MAY perform the Neighbor
   Solicitation / Neighbor Advertisement exchange with the JP, as per

Section 5.6 of [RFC8505].  The pledge and the JP use their link-local
   IPv6 addresses for all subsequent communication during the join
   process.

   Note that Neighbor Discovery exchanges at this point are not
   protected with link-layer security as the pledge is not in possession
   of the keys.  How JP accepts these unprotected frames is discussed in

Section 5.

4.3.  Step 3 - Constrained Join Protocol (CoJP) Execution

   The pledge triggers the join exchange of the Constrained Join
   Protocol (CoJP).  The join exchange consists of two messages: the
   Join Request message (Step 3a), and the Join Response message
   conditioned on the successful security processing of the request
   (Step 3b).

   All CoJP messages are exchanged over a secure end-to-end channel that
   provides confidentiality, data authenticity and replay protection.
   Frames carrying CoJP messages are not protected with link-layer
   security when exchanged between the pledge and the JP as the pledge
   is not in possession of the link-layer keys in use.  How JP and
   pledge accept these unprotected frames is discussed in Section 5.
   When frames carrying CoJP messages are exchanged between nodes that
   have already joined the network, the link-layer security is applied
   according to the security configuration used in the network.

4.3.1.  Step 3a - Join Request

   The Join Request is a message sent from the pledge to the JP, and
   which the JP forwards to the JRC.  The pledge indicates in the Join
   Request the role it requests to play in the network, as well as the
   identifier of the network it requests to join.  The JP forwards the
   Join Request to the JRC on the existing links.  How exactly this
   happens is out of scope of this document; some networks may wish to
   dedicate specific link layer resources for this join traffic.

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc8505#section-5.6
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4.3.2.  Step 3b - Join Response

   The Join Response is sent by the JRC to the pledge, and is forwarded
   through the JP.  The packet containing the Join Response travels from
   the JRC to the JP using the operating routes in the network.  The JP
   delivers it to the pledge.  The JP operates as the application-layer
   proxy.

   The Join Response contains different parameters needed by the pledge
   to become a fully operational network node.  These parameters include
   the link-layer key(s) currently in use in the network, the short
   address assigned to the pledge, the IPv6 address of the JRC needed by
   the pledge to operate as the JP, among others.

4.4.  The Special Case of the 6LBR Pledge Joining

   The 6LBR pledge performs Section 4.3 of the join process described
   above, just as any other pledge, albeit over a different network
   interface.  There is no JP intermediating the communication between
   the 6LBR pledge and the JRC, as described in Section 6.  The other
   steps of the described join process do not apply to the 6LBR pledge.
   How the 6LBR pledge obtains an IPv6 address and triggers the
   execution of the CoJP protocol is out of scope of this document.

5.  Link-layer Configuration

   In an operational 6TiSCH network, all frames MUST use link-layer
   frame security [RFC8180].  The IEEE Std 802.15.4 security attributes
   MUST include frame authenticity, and MAY include frame
   confidentiality (i.e. encryption).

   The pledge does not initially do any authenticity check of the EB
   frames, as it does not possess the link-layer key(s) in use.  The
   pledge is still able to parse the contents of the received EBs and
   synchronize to the network, as EBs are not encrypted [RFC8180].

   When sending frames during the join process, the pledge sends
   unencrypted and unauthenticated frames.  The JP accepts these
   unsecured frames for the duration of the join process.  This behavior
   may be implemented by setting the "secExempt" attribute in the IEEE
   Std 802.15.4 security configuration tables.  How the JP learns
   whether the join process is ongoing is out of scope of this
   specification.

   When the pledge initially synchronizes to the network, it has no
   means of verifying the authenticity of EB frames.  As an attacker can
   craft a frame that looks like a legitimate EB frame, this opens up a
   DoS vector, as discussed in Section 9.

https://datatracker.ietf.org/doc/html/rfc8180
https://datatracker.ietf.org/doc/html/rfc8180
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5.1.  Distribution of Time

   Nodes in a 6TiSCH network keep a global notion of time known as the
   absolute slot number (ASN).  ASN is used in the construction of the
   link-layer nonce, as defined in [IEEE802.15.4].  The pledge initially
   synchronizes to the EB frame sent by the JP, and uses the value of
   the ASN found in the TSCH Synchronization Information Element.  At
   the time of the synchronization, the EB frame can neither be
   authenticated nor its freshness verified.  During the join process,
   the pledge sends frames that are unprotected at the link-layer and
   protected end-to-end instead.  The pledge does not obtain the time
   information as the output of the join process as this information is
   local to the network and may not be known at the JRC.

   This enables an attack on the pledge where the attacker replays to
   the pledge legitimate EB frames obtained from the network and acts as
   a man-in-the-middle between the pledge and the JP.  The EB frames
   will make the pledge believe that the replayed ASN value is the
   current notion of time in the network.  By forwarding the join
   traffic to the legitimate JP, the attacker enables the pledge to join
   the network.  Under different conditions relating to the reuse of the
   pledge's short address by the JRC or its attempt to rejoin the
   network, this may cause the pledge to reuse the link-layer nonce in
   the first frame it sends protected after the join process is
   completed.

   For this reason, all frames originated at the JP and destined to the
   pledge during the join process MUST be authenticated at the link-
   layer using the key that is normally in use in the network.  Link-
   layer security processing at the pledge for these frames will fail as
   the pledge is not yet in possession of the key.  The pledge
   acknowledges these frames without link-layer security, and JP accepts
   the unsecured acknowledgment due to the secExempt attribute set for
   the pledge.  The frames should be passed to the upper layer for
   processing using the promiscuous mode of [IEEE802.15.4] or another
   appropriate mechanism.  When the upper layer processing is completed
   and the link-layer keys are configured, the upper layer MUST trigger
   the security processing of the corresponding frame.  Once the
   security processing of the frame carrying the Join Response message
   is successful, the current ASN kept locally at the pledge SHALL be
   declared as valid.

6.  Network-layer Configuration

   The pledge and the JP SHOULD keep a separate neighbor cache for
   untrusted entries and use it to store each other's information during
   the join process.  Mixing neighbor entries belonging to pledges and
   nodes that are part of the network opens up the JP to a DoS attack,
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   as the attacker may fill JP's neighbor table and prevent the
   discovery of legitimate neighbors.

   Once the pledge obtains link-layer keys and becomes a joined node, it
   is able to securely communicate with its neighbors, obtain the
   network IPv6 prefix and form its global IPv6 address.  The joined
   node then undergoes an independent process to bootstrap its neighbor
   cache entries, possibly with a node that formerly acted as a JP,
   following [RFC8505].  From the point of view of the JP, there is no
   relationship between the neighbor cache entry belonging to a pledge
   and the joined node that formerly acted as a pledge.

   The pledge does not communicate with the JRC at the network layer.
   This allows the pledge to join without knowing the IPv6 address of
   the JRC.  Instead, the pledge communicates with the JP at the network
   layer using link-local addressing, and with the JRC at the
   application layer, as specified in Section 7.

   The JP communicates with the JRC over global IPv6 addresses.  The JP
   discovers the network IPv6 prefix and configures its global IPv6
   address upon successful completion of the join process and the
   obtention of link-layer keys.  The pledge learns the IPv6 address of
   the JRC from the Join Response, as specified in Section 8.1.2; it
   uses it once joined in order to operate as a JP.

   As a special case, the 6LBR pledge is expected to have an additional
   network interface that it uses in order to obtain the configuration
   parameters from the JRC and start advertising the 6TiSCH network.
   This additional interface needs to be configured with a global IPv6
   address, by a mechanism that is out of scope of this document.  The
   6LBR pledge uses this interface to directly communicate with the JRC
   using global IPv6 addressing.

   The JRC can be co-located on the 6LBR.  In this special case, the
   IPv6 address of the JRC can be omitted from the Join Response message
   for space optimization.  The 6LBR then MUST set the DODAGID field in
   the RPL DIOs [RFC6550] to its IPv6 address.  The pledge learns the
   address of the JRC once joined and upon the reception of the first
   RPL DIO message, and uses it to operate as a JP.

6.1.  Identification of Unauthenticated Traffic

   The traffic that is proxied by the Join Proxy (JP) comes from
   unauthenticated pledges, and there may be an arbitrary amount of it.
   In particular, an attacker may send fraudulent traffic in an attempt
   to overwhelm the network.

https://datatracker.ietf.org/doc/html/rfc8505
https://datatracker.ietf.org/doc/html/rfc6550
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   When operating as part of a [RFC8180] 6TiSCH minimal network using
   distributed scheduling algorithms, the traffic from unauthenticated
   pledges may cause intermediate nodes to request additional bandwidth.
   An attacker could use this property to cause the network to
   overcommit bandwidth (and energy) to the join process.

   The Join Proxy is aware of what traffic originates from
   unauthenticated pledges, and so can avoid allocating additional
   bandwidth itself.  The Join Proxy implements a data cap on outgoing
   join traffic through CoAP's congestion control mechanism.  This cap
   will not protect intermediate nodes as they can not tell join traffic
   from regular traffic.  Despite the data cap implemented separately on
   each Join Proxy, the aggregate join traffic from many Join Proxies
   may cause intermediate nodes to decide to allocate additional cells.
   It is undesirable to do so in response to the traffic originated at
   unauthenticated pledges.  In order to permit the intermediate nodes
   to avoid this, the traffic needs to be tagged.  [RFC2597] defines a
   set of per-hop behaviors that may be encoded into the Diffserv Code
   Points (DSCPs).  Based on the DSCP, intermediate nodes can decide
   whether to act on a given packet.

6.1.1.  Traffic from JP to JRC

   The Join Proxy SHOULD set the DSCP of packets that it produces as
   part of the forwarding process to AF43 code point (See Section 6 of
   [RFC2597]).  A Join Proxy that does not set the DSCP on traffic
   forwarded should set it to zero so that it is compressed out.

   A Scheduling Function (SF) running on 6TiSCH nodes SHOULD NOT
   allocate additional cells as a result of traffic with code point
   AF43.  Companion SF documents SHOULD specify how this recommended
   behavior is achieved.

6.1.2.  Traffic from JRC to JP

   The JRC SHOULD set the DSCP of join response packets addressed to the
   Join Proxy to AF42 code point.  AF42 has lower drop probability than
   AF43, giving this traffic priority in buffers over the traffic going
   towards the JRC.

   Due to the convergecast nature of the DODAG, the 6LBR links are often
   the most congested, and from that point down there is progressively
   less (or equal) congestion.  If the 6LBR paces itself when sending
   join response traffic then it ought to never exceed the bandwidth
   allocated to the best effort traffic cells.  If the 6LBR has the
   capacity (if it is not constrained) then it should provide some
   buffers in order to satisfy the Assured Forwarding behavior.

https://datatracker.ietf.org/doc/html/rfc8180
https://datatracker.ietf.org/doc/html/rfc2597
https://datatracker.ietf.org/doc/html/rfc2597#section-6
https://datatracker.ietf.org/doc/html/rfc2597#section-6
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   Companion SF documents SHOULD specify how traffic with code point
   AF42 is handled with respect to cell allocation.  In case the
   recommended behavior described in this section is not followed, the
   network may become prone to the attack discussed in Section 6.1.

7.  Application-level Configuration

   The CoJP join exchange in Figure 1 is carried over CoAP [RFC7252] and
   the secure channel provided by OSCORE
   [I-D.ietf-core-object-security].  The (6LBR) pledge acts as a CoAP
   client; the JRC acts as a CoAP server.  The JP implements CoAP
   forward proxy functionality [RFC7252].  Because the JP can also be a
   constrained device, it cannot implement a cache.

   The pledge designates a JP as a proxy by including the Proxy-Scheme
   option in CoAP requests it sends to the JP.  The pledge also includes
   in the requests the Uri-Host option with its value set to the well-
   known JRC's alias, as specified in Section 8.1.1.

   The JP resolves the alias to the IPv6 address of the JRC that it
   learned when it acted as a pledge, and joined the network.  This
   allows the JP to reach the JRC at the network layer and forward the
   requests on behalf of the pledge.

7.1.  Statelessness of the JP

   The CoAP proxy defined in [RFC7252] keeps per-client state
   information in order to forward the response towards the originator
   of the request.  This state information includes at least the CoAP
   token, the IPv6 address of the client, and the UDP source port
   number.  Since the JP can be a constrained device that acts as a CoAP
   proxy, memory limitations make it prone to a Denial-of-Service (DoS)
   attack.

   This DoS vector on the JP can be mitigated by making the JP act as a
   stateless CoAP proxy, where "state" encompasses the information
   related individual pledges.  The JP can wrap the state it needs to
   keep for a given pledge throughout the network stack in a "state
   object" and include it as a CoAP token in the forwarded request to
   the JRC.  The JP may use the CoAP token as defined in [RFC7252], if
   the size of the serialized state object permits, or use the extended
   CoAP token defined in [I-D.ietf-core-stateless], to transport the
   state object.  Since the CoAP token is echoed back in the response,
   the JP is able to decode the state object and configure the state
   needed to forward the response to the pledge.  The information that
   the JP needs to encode in the state object to operate in a fully
   stateless manner with respect to a given pledge is implementation
   specific.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
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   It is RECOMMENDED that the JP operates in a stateless manner and
   signals the per-pledge state within the CoAP token, for every request
   it forwards into the network on behalf of unauthenticated pledges.
   When operating in a stateless manner, the security considerations
   from [I-D.ietf-core-stateless] apply and the type of the CoAP message
   that the JP forwards on behalf of the pledge MUST be non-confirmable
   (NON), regardless of the message type received from the pledge.  The
   use of a non-confirmable message by the JP alleviates the JP from
   keeping CoAP message exchange state.  The retransmission burden is
   then entirely shifted to the pledge.  A JP that operates in a
   stateless manner still needs to keep congestion control state with
   the JRC, see Section 9.  Recommended values of CoAP settings for use
   during the join process, both by the pledge and the JP, are given in

Section 7.2.

   Note that in some networking stack implementations, a fully (per-
   pledge) stateless operation of the JP may be challenging from the
   implementation's point of view.  In those cases, the JP may operate
   as a statefull proxy that stores the per-pledge state until the
   response is received or timed out, but this comes at a price of a DoS
   vector.

7.2.  Recommended Settings

   This section gives RECOMMENDED values of CoAP settings during the
   join process.

     +-------------------+-----------------------+-------------------+
     |              Name | Default Value: Pledge | Default Value: JP |
     +-------------------+-----------------------+-------------------+
     |       ACK_TIMEOUT | 10 seconds            |      (10 seconds) |
     |                   |                       |                   |
     | ACK_RANDOM_FACTOR | 1.5                   |             (1.5) |
     |                   |                       |                   |
     |    MAX_RETRANSMIT | 4                     |               (4) |
     +-------------------+-----------------------+-------------------+

   Recommended CoAP settings.  Values enclosed in () have no effect when
                    JP operates in a stateless manner.

   These values may be configured to values specific to the deployment.
   The default values have been chosen to accommodate a wide range of
   deployments, taking into account dense networks.

   The PROBING_RATE value at the JP is controlled by the join rate
   parameter, see Section 8.4.2.  Following [RFC7252], the average data
   rate in sending to the JRC must not exceed PROBING_RATE.  For

https://datatracker.ietf.org/doc/html/rfc7252
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   security reasons, the average data rate SHOULD be measured over a
   rather short window, e.g.  ACK_TIMEOUT, see Section 9.

7.3.  OSCORE

   Before the (6LBR) pledge and the JRC start exchanging CoAP messages
   protected with OSCORE, they need to derive the OSCORE security
   context from the provisioned parameters, as discussed in Section 3.

   The OSCORE security context MUST be derived as per Section 3 of
   [I-D.ietf-core-object-security].

   o  the Master Secret MUST be the PSK.

   o  the Master Salt MUST be the empty byte string.

   o  the ID Context MUST be set to the pledge identifier.

   o  the ID of the pledge MUST be set to the empty byte string.  This
      identifier is used as the OSCORE Sender ID of the pledge in the
      security context derivation, since the pledge initially acts as a
      CoAP client.

   o  the ID of the JRC MUST be set to the byte string 0x4a5243 ("JRC"
      in ASCII).  This identifier is used as the OSCORE Recipient ID of
      the pledge in the security context derivation, as the JRC
      initially acts as a CoAP server.

   o  the Algorithm MUST be set to the value from [RFC8152], agreed out-
      of-band by the same mechanism used to provision the PSK.  The
      default is AES-CCM-16-64-128.

   o  the Key Derivation Function MUST be agreed out-of-band by the same
      mechanism used to provision the PSK.  Default is HKDF SHA-256
      [RFC5869].

   Since the pledge's OSCORE Sender ID is the empty byte string, when
   constructing the OSCORE option, the pledge sets the k bit in the
   OSCORE flag byte, but indicates a 0-length kid.  The pledge
   transports its pledge identifier within the kid context field of the
   OSCORE option.  The derivation in [I-D.ietf-core-object-security]
   results in OSCORE keys and a common IV for each side of the
   conversation.  Nonces are constructed by XOR'ing the common IV with
   the current sequence number.  For details on nonce and OSCORE option
   construction, refer to [I-D.ietf-core-object-security].

   Implementations MUST ensure that multiple CoAP requests, including to
   different JRCs, are properly incrementing the sequence numbers, so

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc5869
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   that the same sequence number is never reused in distinct requests.
   The pledge typically sends requests to different JRCs if it is not
   provisioned with the network identifier and attempts to join one
   network at a time.  Failure to comply will break the security
   guarantees of the Authenticated Encryption with Associated Data
   (AEAD) algorithm because of nonce reuse.

   This OSCORE security context is used for initial joining of the
   (6LBR) pledge, where the (6LBR) pledge acts as a CoAP client, as well
   as for any later parameter updates, where the JRC acts as a CoAP
   client and the joined node as a CoAP server, as discussed in

Section 8.2.  Note that when the (6LBR) pledge and the JRC change
   roles between CoAP client and CoAP server, the same OSCORE security
   context as initially derived remains in use and the derived
   parameters are unchanged, for example Sender ID when sending and
   Recipient ID when receiving (see Section 3.1 of
   [I-D.ietf-core-object-security]).  A (6LBR) pledge is expected to
   have exactly one OSCORE security context with the JRC.

7.3.1.  Replay Window and Persistency

   Both (6LBR) pledge and the JRC MUST implement a replay protection
   mechanism.  The use of the default OSCORE replay protection mechanism
   specified in Section 3.2.2 of [I-D.ietf-core-object-security] is
   RECOMMENDED.

   Implementations MUST ensure that mutable OSCORE context parameters
   (Sender Sequence Number, Replay Window) are stored in persistent
   memory.  A technique that prevents reuse of sequence numbers,
   detailed in Appendix B.1.1 of [I-D.ietf-core-object-security], MUST
   be implemented.  Each update of the OSCORE Replay Window MUST be
   written to persistent memory.

   This is an important security requirement in order to guarantee nonce
   uniqueness and resistance to replay attacks across reboots and
   rejoins.  Traffic between the (6LBR) pledge and the JRC is rare,
   making security outweigh the cost of writing to persistent memory.

7.3.2.  OSCORE Error Handling

   Errors raised by OSCORE during the join process MUST be silently
   dropped, with no error response being signaled.  The pledge MUST
   silently discard any response not protected with OSCORE, including
   error codes.

   Such errors may happen for a number of reasons, including failed
   lookup of an appropriate security context (e.g. the pledge attempting
   to join a wrong network), failed decryption, positive replay window
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   lookup, formatting errors (possibly due to malicious alterations in
   transit).  Silently dropping OSCORE messages prevents a DoS attack on
   the pledge where the attacker could send bogus error responses,
   forcing the pledge to attempt joining one network at a time, until
   all networks have been tried.

7.3.3.  Mandatory to Implement Algorithms

   The mandatory to implement AEAD algorithm for use with OSCORE is AES-
   CCM-16-64-128 from [RFC8152].  This is the algorithm used for
   securing IEEE Std 802.15.4 frames, and hardware acceleration for it
   is present in virtually all compliant radio chips.  With this choice,
   CoAP messages are protected with an 8-byte CCM authentication tag,
   and the algorithm uses 13-byte long nonces.

   The mandatory to implement hash algorithm is SHA-256 [RFC4231].  The
   mandatory to implement key derivation function is HKDF [RFC5869],
   instantiated with a SHA-256 hash.  See Appendix B for implementation
   guidance when code footprint is important.

8.  Constrained Join Protocol (CoJP)

   The Constrained Join Protocol (CoJP) is a lightweight protocol over
   CoAP [RFC7252] and a secure channel provided by OSCORE
   [I-D.ietf-core-object-security].  CoJP allows the (6LBR) pledge to
   request admission into a network managed by the JRC, and for the JRC
   to configure the pledge with the parameters necessary for joining the
   network, or advertising it in the case of 6LBR pledge.  The JRC may
   update the parameters at any time, by reaching out to the joined node
   that formerly acted as a (6LBR) pledge.  For example, network-wide
   rekeying can be implemented by updating the keying material on each
   node.

   This section specifies how the CoJP messages are mapped to CoAP and
   OSCORE, CBOR data structures carrying different parameters,
   transported within CoAP payload, and the parameter semantics and
   processing rules.

   CoJP relies on the security properties provided by OSCORE.  This
   includes end-to-end confidentiality, data authenticity, replay
   protection, and a secure binding of responses to requests.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc4231
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc7252
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               +-----------------------------------+
               |  Constrained Join Protocol (CoJP) |
               +-----------------------------------+
               +-----------------------------------+  \
               |         Requests / Responses      |  |
               |-----------------------------------|  |
               |               OSCORE              |  | CoAP
               |-----------------------------------|  |
               |           Messaging Layer         |  |
               +-----------------------------------+  /
               +-----------------------------------+
               |                UDP                |
               +-----------------------------------+

                   Figure 2: Abstract layering of CoJP.

   When a (6LBR) pledge requests admission to a given network, it
   undergoes the CoJP join exchange that consists of:

   o  the Join Request message, sent by the (6LBR) pledge to the JRC,
      potentially proxied by the JP.  The Join Request message and its
      mapping to CoAP is specified in Section 8.1.1.

   o  the Join Response message, sent by the JRC to the (6LBR) pledge,
      if the JRC successfully processes the Join Request using OSCORE
      and it determines through a mechanism that is out of scope of this
      specification that the (6LBR) pledge is authorized to join the
      network.  The Join Response message is potentially proxied by the
      JP.  The Join Response message and its mapping to CoAP is
      specified in Section 8.1.2.

   When the JRC needs to update the parameters of a joined node that
   formerly acted as a (6LBR) pledge, it executes the CoJP parameter
   update exchange that consists of:

   o  the Parameter Update message, sent by the JRC to the joined node
      that formerly acted as a (6LBR) pledge.  The Parameter Update
      message and its mapping to CoAP is specified in Section 8.2.1.

   o  the Parameter Update Response message, sent by the joined node to
      the JRC in response to the Parameter Update message to signal
      successful reception of the updated parameters.  The Parameter
      Update Response message and its mapping to CoAP is specified in

Section 8.2.2.

   The payload of CoJP messages is encoded with CBOR [RFC7049].  The
   CBOR data structures that may appear as the payload of different CoJP
   messages are specified in Section 8.4.

https://datatracker.ietf.org/doc/html/rfc7049
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8.1.  Join Exchange

   This section specifies the messages exchanged when the (6LBR) pledge
   requests admission and configuration parameters from the JRC.

8.1.1.  Join Request Message

   The Join Request message that the (6LBR) pledge sends SHALL be mapped
   to a CoAP request:

   o  The request method is POST.

   o  The type is Confirmable (CON).

   o  The Proxy-Scheme option is set to "coap".

   o  The Uri-Host option is set to "6tisch.arpa".  This is an anycast
      type of identifier of the JRC that is resolved to its IPv6 address
      by the JP or the 6LBR pledge.

   o  The Uri-Path option is set to "j".

   o  The OSCORE option SHALL be set according to
      [I-D.ietf-core-object-security].  The OSCORE security context used
      is the one derived in Section 7.3.  The OSCORE kid context allows
      the JRC to retrieve the security context for a given pledge.

   o  The payload is a Join_Request CBOR object, as defined in
Section 8.4.1.

   Since the Join Request is a confirmable message, the transmission at
   (6LBR) pledge will be controlled by CoAP's retransmission mechanism.
   The JP, when operating in a stateless manner, forwards this Join
   Request as a non-confirmable (NON) CoAP message, as specified in

Section 7.  If the CoAP at (6LBR) pledge declares the message
   transmission as failure, the (6LBR) pledge SHOULD attempt to join the
   next advertised 6TiSCH network.  See Section 7.2 for recommended
   values of CoAP settings to use during the join exchange.

   If all join attempts to advertised networks have failed, the (6LBR)
   pledge SHOULD signal to the user the presence of an error condition,
   through some out-of-band mechanism.

8.1.2.  Join Response Message

   The Join Response message that the JRC sends SHALL be mapped to a
   CoAP response:
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   o  The response Code is 2.04 (Changed).

   o  The payload is a Configuration CBOR object, as defined in
Section 8.4.2.

8.2.  Parameter Update Exchange

   During the network lifetime, parameters returned as part of the Join
   Response may need to be updated.  One typical example is the update
   of link-layer keying material for the network, a process known as
   rekeying.  This section specifies a generic mechanism when this
   parameter update is initiated by the JRC.

   At the time of the join, the (6LBR) pledge acts as a CoAP client and
   requests the network parameters through a representation of the "/j"
   resource, exposed by the JRC.  In order for the update of these
   parameters to happen, the JRC needs to asynchronously contact the
   joined node.  The use of the CoAP Observe option for this purpose is
   not feasible due to the change in the IPv6 address when the pledge
   becomes the joined node and obtains a global address.

   Instead, once the (6LBR) pledge receives and successfully validates
   the Join Response and so becomes a joined node, it becomes a CoAP
   server.  The joined node exposes the "/j" resource that is used by
   the JRC to update the parameters.  Consequently, the JRC operates as
   a CoAP client when updating the parameters.  The request/response
   exchange between the JRC and the (6LBR) pledge happens over the
   already-established OSCORE secure channel.

8.2.1.  Parameter Update Message

   The Parameter Update message that the JRC sends to the joined node
   SHALL be mapped to a CoAP request:

   o  The request method is POST.

   o  The type is Confirmable (CON).

   o  The Uri-Path option is set to "j".

   o  The OSCORE option SHALL be set according to
      [I-D.ietf-core-object-security].  The OSCORE security context used
      is the one derived in Section 7.3.  When a joined node receives a
      request with the Sender ID set to 0x4a5243 (ID of the JRC), it is
      able to correctly retrieve the security context with the JRC.

   o  The payload is a Configuration CBOR object, as defined in
Section 8.4.2.
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   The JRC has implicit knowledge on the global IPv6 address of the
   joined node, as it knows the pledge identifier that the joined node
   used when it acted as a pledge, and the IPv6 network prefix.  The JRC
   uses this implicitly derived IPv6 address of the joined node to
   directly address CoAP messages to it.

   In case the JRC does not receive a response to a Parameter Update
   message, it attempts multiple retransmissions, as configured by the
   underlying CoAP retransmission mechanism triggered for confirmable
   messages.  Finally, if the CoAP implementation declares the
   transmission as failure, the JRC may consider this as a hint that the
   joined node is no longer in the network.  How the JRC decides when to
   stop attempting to contact a previously joined node is out of scope
   of this specification but security considerations on the reuse of
   assigned resources apply, as discussed in Section 9.

8.2.2.  Parameter Update Response Message

   The Parameter Update Response message that the joined node sends to
   the JRC SHALL be mapped to a CoAP response:

   o  The response Code is 2.04 (Changed).

   o  The payload is empty.

8.3.  Error Handling

8.3.1.  CoJP CBOR Object Processing

   CoJP CBOR objects are transported within both CoAP requests and
   responses.  This section describes handling in case certain CoJP CBOR
   object parameters are not supported by the implementation or their
   processing fails.  See Section 7.3.2 for the handling of errors that
   may be raised by the underlying OSCORE implementation.

   When such a parameter is detected in a CoAP request (Join Request
   message, Parameter Update message), a Diagnostic Response message
   MUST be returned.  A Diagnostic Response message maps to a CoAP
   response and is specified in Section 8.3.2.

   When a parameter that cannot be acted upon is encountered while
   processing a CoJP object in a CoAP response (Join Response message),
   a (6LBR) pledge SHOULD reattempt to join.  In this case, the (6LBR)
   pledge SHOULD include the Unsupported Configuration CBOR object
   within the Join Request object in the following Join Request message.
   The Unsupported Configuration CBOR object is self-contained and
   enables the (6LBR) pledge to signal any parameters that the
   implementation of the networking stack may not support.  A (6LBR)
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   pledge MUST NOT attempt more than MAX_RETRANSMIT number of attempts
   to join if the processing of the Join Response message fails each
   time.  If COJP_MAX_JOIN_ATTEMPTS number of attempts is reached
   without success, the (6LBR) pledge SHOULD signal to the user the
   presence of an error condition, through some out-of-band mechanism.

8.3.2.  Diagnostic Response Message

   The Diagnostic Response message is returned for any CoJP request when
   the processing of the payload failed.  The Diagnostic Response
   message is protected by OSCORE as any other CoJP protocol message.

   The Diagnostic Response message SHALL be mapped to a CoAP response:

   o  The response Code is 4.00 (Bad Request).

   o  The payload is an Unsupported Configuration CBOR object, as
      defined in Section 8.4.5, containing more information about the
      parameter that triggered the sending of this message.

8.3.3.  Failure Handling

   The Parameter Update exchange may be triggered at any time during the
   network lifetime, which may span several years.  During this period,
   it may occur that a joined node or the JRC experience unexpected
   events such as reboots or complete failures.

   This document mandates that the mutable parameters in the security
   context are written to persistent memory (see Section 7.3.1) by both
   the JRC and pledges (joined nodes).  As the joined node (pledge) is
   typically a constrained device that handles the write operations to
   persistent memory in a predictable manner, the retrieval of mutable
   security context parameters is feasible across reboots such that
   there is no risk of AEAD nonce reuse due to reinitialized Sender
   Sequence numbers, or of a replay attack due to the reinitialized
   replay window.  JRC may be hosted on a generic machine where the
   write operation to persistent memory may lead to unpredictable delays
   due to caching.  In case of a reboot event at JRC occurring before
   the cached data is written to persistent memory, the loss of mutable
   security context parameters is likely which consequently poses the
   risk of AEAD nonce reuse.

   In the event of a complete device failure, where the mutable security
   context parameters cannot be retrieved, it is expected that a failed
   joined node is replaced with a new physical device, using a new
   pledge identifier and a PSK.  When such a failure event occurs at the
   JRC, it is possible that the static information on provisioned
   pledges, like PSKs and pledge identifiers, can be retrieved through
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   available backups.  However, it is likely that the information about
   joined nodes, their assigned short identifiers and mutable security
   context parameters is lost.  If this is the case, during the process
   of JRC reinitialization, the network administrator MUST force through
   out-of-band means all the networks managed by the failed JRC to
   rejoin, through e.g. the reinitialization of the 6LBR nodes and
   freshly generated dynamic cryptographic keys and other parameters
   that have influence on the security properties of the network.

   In order to recover from such a failure event, the reinitialized JRC
   can trigger the renegotiation of the OSCORE security context through
   the procedure described in Appendix B.2 of
   [I-D.ietf-core-object-security].  Aware of the failure event, the
   reinitialized JRC responds to the first join request of each pledge
   it is managing with a 4.01 Unauthorized error and a random nonce.
   The pledge verifies the error response and then initiates the CoJP
   join exchange using a new OSCORE security context derived from an ID
   Context consisting of the concatenation of two nonces, one that it
   received from the JRC and the other that the pledge generates
   locally.  After verifying the join request with the new ID Context
   and the derived OSCORE security context, the JRC should consequently
   take action in mapping the new ID Context with the previously used
   pledge identifier.  How JRC handles this mapping is implementation
   specific.

   The described procedure is specified in Appendix B.2 of
   [I-D.ietf-core-object-security] and is RECOMMENDED in order to handle
   the failure events or any other event that may lead to the loss of
   mutable security context parameters.  The length of nonces exchanged
   using this procedure SHOULD be at least 8 bytes.

   The procedure does require both the pledge and the JRC to have good
   sources of randomness.  While this is typically not an issue at the
   JRC side, the constrained device hosting the pledge may pose
   limitations in this regard.  If the procedure outlined in

Appendix B.2 of [I-D.ietf-core-object-security] is not supported by
   the pledge, the network administrator MUST take action in
   reprovisioning the concerned devices with freshly generated
   parameters, through out-of-band means.

8.4.  CoJP Objects

   This section specifies the structure of CoJP CBOR objects that may be
   carried as the payload of CoJP messages.  Some of these objects may
   be received both as part of the CoJP join exchange when the device
   operates as a (CoJP) pledge, or the parameter update exchange, when
   the device operates as a joined (6LBR) node.
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8.4.1.  Join Request Object

   The Join_Request structure is built on a CBOR map object.

   The set of parameters that can appear in a Join_Request object is
   summarized below.  The labels can be found in the "CoJP Parameters"
   registry Section 11.1.

   o  role: The identifier of the role that the pledge requests to play
      in the network once it joins, encoded as an unsigned integer.
      Possible values are specified in Table 1.  This parameter MAY be
      included.  In case the parameter is omitted, the default value of
      0, i.e. the role "6TiSCH Node", MUST be assumed.

   o  network identifier: The identifier of the network, as discussed in
Section 3, encoded as a CBOR byte string.  When present in the

      Join_Request, it hints to the JRC the network that the pledge is
      requesting to join, enabling the JRC to manage multiple networks.
      The pledge obtains the value of the network identifier from the
      received EB frames.  This parameter MUST be included in a
      Join_Request object regardless of the role parameter value.

   o  unsupported configuration: The identifier of the parameters that
      are not supported by the implementation, encoded as an
      Unsupported_Configuration object described in Section 8.4.5.  This
      parameter MAY be included.  If a (6LBR) pledge previously
      attempted to join and received a valid Join Response message over
      OSCORE, but failed to act on its payload (Configuration object),
      it SHOULD include this parameter to facilitate the recovery and
      debugging.

   The CDDL fragment that represents the text above for the Join_Request
   follows.

   Join_Request = {
       ? 1 : uint,                       ; role
       ? 5 : bstr,                       ; network identifier
       ? 8 : Unsupported_Configuration   ; unsupported configuration
   }
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   +--------+-------+-------------------------------------+------------+
   |   Name | Value |                         Description | Reference  |
   +--------+-------+-------------------------------------+------------+
   | 6TiSCH | 0     |     The pledge requests to play the | [[this     |
   |   Node |       | role of a regular 6TiSCH node, i.e. | document]] |
   |        |       |                      non-6LBR node. |            |
   |        |       |                                     |            |
   |   6LBR | 1     |     The pledge requests to play the | [[this     |
   |        |       |       role of 6LoWPAN Border Router | document]] |
   |        |       |                             (6LBR). |            |
   +--------+-------+-------------------------------------+------------+

                           Table 1: Role values.

8.4.2.  Configuration Object

   The Configuration structure is built on a CBOR map object.  The set
   of parameters that can appear in a Configuration object is summarized
   below.  The labels can be found in "CoJP Parameters" registry

Section 11.1.

   o  link-layer key set: An array encompassing a set of cryptographic
      keys and their identifiers that are currently in use in the
      network, or that are scheduled to be used in the future.  The
      encoding of individual keys is described in Section 8.4.3.  The
      link-layer key set parameter MAY be included in a Configuration
      object.  When present, the link-layer key set parameter MUST
      contain at least one key.  When a pledge is joining for the first
      time and receives this parameter, before sending the first
      outgoing frame secured with a received key, the pledge needs to
      successfully complete the security processing of an incoming
      frame.  To do so, the pledge can wait to receive a new frame, or
      it can store an EB frame that it used to find the JP and use it
      for immediate security processing upon reception of the key set.
      This parameter is also used to implement rekeying in the network.
      How the keys are installed and used differs for the 6LBR and other
      (regular) nodes, and this is explained in Section 8.4.3.1 and

Section 8.4.3.2.

   o  short identifier: a compact identifier assigned to the pledge.
      The short identifier structure is described in Section 8.4.4.  The
      short identifier parameter MAY be included in a Configuration
      object.

   o  JRC address: the IPv6 address of the JRC, encoded as a byte
      string, with the length of 16 bytes.  If the length of the byte
      string is different from 16, the parameter MUST be discarded.  If
      the JRC is not co-located with the 6LBR and has a different IPv6
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      address than the 6LBR, this parameter MUST be included.  In the
      special case where the JRC is co-located with the 6LBR and has the
      same IPv6 address as the 6LBR, this parameter MAY be included.  If
      the JRC address parameter is not present in the Configuration
      object, this indicates that the JRC has the same IPv6 address as
      the 6LBR.  The joined node can then discover the IPv6 address of
      the JRC through network control traffic.  See Section 6.

   o  blacklist: An array encompassing a list of pledge identifiers that
      are blacklisted by the JRC, with each pledge identifier encoded as
      a byte string.  The blacklist parameter MAY be included in a
      Configuration object.  When present, the array MUST contain zero
      or more byte strings encoding pledge identifiers.  The joined node
      MUST silently drop any link-layer frames originating from the
      pledge identifiers enclosed in the blacklist parameter.  When this
      parameter is received, its value MUST overwrite any previously set
      values.  This parameter allows the JRC to configure the node
      acting as a JP to filter out traffic from misconfigured or
      malicious pledges before their traffic is forwarded into the
      network.  If the JRC decides to remove a given pledge identifier
      from a blacklist, it omits the pledge identifier in the blacklist
      parameter value it sends next.

   o  join rate: Average data rate of join traffic forwarded into the
      network that should not be exceeded when a joined node operates as
      a JP, encoded as an unsigned integer in bytes per second.  The
      join rate parameter MAY be included in a Configuration object.
      This parameter allows the JRC to configure different nodes in the
      network to operate as JP, and act in case of an attack by
      throttling the rate at which JP forwards unauthenticated traffic
      into the network.  When this parameter is present in a
      Configuration object, the value MUST be used to set the
      PROBING_RATE of CoAP at the joined node for communication with the
      JRC.  In case this parameter is set to zero, a joined node MUST
      silently drop any join traffic coming from unauthenticated
      pledges.  In case this parameter is omitted, the value of positive
      infinity SHOULD be assumed.  Node operating as a JP MAY use
      another mechanism that is out of scope of this specification to
      configure PROBING_RATE of CoAP in the absence of join rate
      parameter from the Configuration object.

   The CDDL fragment that represents the text above for the
   Configuration follows.  Structures Link_Layer_Key and
   Short_Identifier are specified in Section 8.4.3 and Section 8.4.4.
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   Configuration = {
       ? 2 : [ +Link_Layer_Key ],   ; link-layer key set
       ? 3 : Short_Identifier,      ; short identifier
       ? 4 : bstr,                  ; JRC address
       ? 6 : [ *bstr ],             ; blacklist
       ? 7 : uint                   ; join rate
   }
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   +---------------+-------+----------+-------------------+------------+
   |          Name | Label |     CBOR | Description       | Reference  |
   |               |       |     type |                   |            |
   +---------------+-------+----------+-------------------+------------+
   |          role | 1     | unsigned | Identifies the    | [[this     |
   |               |       |  integer | role parameter    | document]] |
   |               |       |          |                   |            |
   |    link-layer | 2     |    array | Identifies the    | [[this     |
   |       key set |       |          | array carrying    | document]] |
   |               |       |          | one or more link- |            |
   |               |       |          | level             |            |
   |               |       |          | cryptographic     |            |
   |               |       |          | keys              |            |
   |               |       |          |                   |            |
   |         short | 3     |    array | Identifies the    | [[this     |
   |    identifier |       |          | assigned short    | document]] |
   |               |       |          | identifier        |            |
   |               |       |          |                   |            |
   |   JRC address | 4     |     byte | Identifies the    | [[this     |
   |               |       |   string | IPv6 address of   | document]] |
   |               |       |          | the JRC           |            |
   |               |       |          |                   |            |
   |       network | 5     |     byte | Identifies the    | [[this     |
   |    identifier |       |   string | network           | document]] |
   |               |       |          | identifier        |            |
   |               |       |          | parameter         |            |
   |               |       |          |                   |            |
   |     blacklist | 6     |    array | Identifies the    | [[this     |
   |               |       |          | blacklist         | document]] |
   |               |       |          | parameter         |            |
   |               |       |          |                   |            |
   |     join rate | 7     | unsigned | Identifier the    | [[this     |
   |               |       |  integer | join rate         | document]] |
   |               |       |          | parameter         |            |
   |               |       |          |                   |            |
   |   unsupported | 8     |    array | Identifies the    | [[this     |
   | configuration |       |          | unsupported       | document]] |
   |               |       |          | configuration     |            |
   |               |       |          | parameter         |            |
   +---------------+-------+----------+-------------------+------------+

                   Table 2: CoJP parameters map labels.

8.4.3.  Link-Layer Key

   The Link_Layer_Key structure encompasses the parameters needed to
   configure the link-layer security module: the key identifier; the
   value of the cryptographic key; the link-layer algorithm identifier
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   and the security level and the frame types that it should be used
   with, both for outgoing and incoming security operations; and any
   additional information that may be needed to configure the key.

   For encoding compactness, the Link_Layer_Key object is not enclosed
   in a top-level CBOR object.  Rather, it is transported as a sequence
   of CBOR elements, some being optional.

   The set of parameters that can appear in a Link_Layer_Key object is
   summarized below, in order:

   o  key_id: The identifier of the key, encoded as a CBOR unsigned
      integer.  This parameter MUST be included.  If the decoded CBOR
      unsigned integer value is larger than the maximum link-layer key
      identifier, the key is considered invalid.  In case the key is
      considered invalid, the key MUST be discarded and the
      implementation MUST signal the error as specified in

Section 8.3.1.

   o  key_usage: The identifier of the link-layer algorithm, security
      level and link-layer frame types that can be used with the key,
      encoded as an integer.  This parameter MAY be included.  Possible
      values and the corresponding link-layer settings are specified in
      IANA "CoJP Key Usage" registry (Section 11.2).  In case the
      parameter is omitted, the default value of 0 from Table 3 MUST be
      assumed.

   o  key_value: The value of the cryptographic key, encoded as a byte
      string.  This parameter MUST be included.  If the length of the
      byte string is different than the corresponding key length for a
      given algorithm specified by the key_usage parameter, the key MUST
      be discarded and the implementation MUST signal the error as
      specified in Section 8.3.1.

   o  key_addinfo: Additional information needed to configure the link-
      layer key, encoded as a byte string.  This parameter MAY be
      included.  The processing of this parameter is dependent on the
      link-layer technology in use and a particular keying mode.

   To be able to decode the keys that are present in the link-layer key
   set, and to identify individual parameters of a single Link_Layer_Key
   object, the CBOR decoder needs to differentiate between elements
   based on the CBOR type.  For example, a uint that follows a byte
   string signals to the decoder that a new Link_Layer_Key object is
   being processed.

   The CDDL fragment that represents the text above for the
   Link_Layer_Key follows.
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   Link_Layer_Key = (
         key_id             : uint,
       ? key_usage          : int,
         key_value          : bstr,
       ? key_addinfo        : bstr,
   )

   +-----------------+-----+------------------+-------------+----------+
   |            Name | Val |        Algorithm | Description | Referenc |
   |                 | ue  |                  |             | e        |
   +-----------------+-----+------------------+-------------+----------+
   |     6TiSCH-K1K2 | 0   |  IEEE802154-AES- | Use MIC-32  | [[this d |
   |      -ENC-MIC32 |     |          CCM-128 | for EBs,    | ocument] |
   |                 |     |                  | ENC-MIC-32  | ]        |
   |                 |     |                  | for DATA    |          |
   |                 |     |                  | and ACKNOWL |          |
   |                 |     |                  | EDGMENT.    |          |
   |                 |     |                  |             |          |
   |     6TiSCH-K1K2 | 1   |  IEEE802154-AES- | Use MIC-64  | [[this d |
   |      -ENC-MIC64 |     |          CCM-128 | for EBs,    | ocument] |
   |                 |     |                  | ENC-MIC-64  | ]        |
   |                 |     |                  | for DATA    |          |
   |                 |     |                  | and ACKNOWL |          |
   |                 |     |                  | EDGMENT.    |          |
   |                 |     |                  |             |          |
   |     6TiSCH-K1K2 | 2   |  IEEE802154-AES- | Use MIC-128 | [[this d |
   |     -ENC-MIC128 |     |          CCM-128 | for EBs,    | ocument] |
   |                 |     |                  | ENC-MIC-128 | ]        |
   |                 |     |                  | for DATA    |          |
   |                 |     |                  | and ACKNOWL |          |
   |                 |     |                  | EDGMENT.    |          |
   |                 |     |                  |             |          |
   |         6TiSCH- | 3   |  IEEE802154-AES- | Use MIC-32  | [[this d |
   |      K1K2-MIC32 |     |          CCM-128 | for EBs,    | ocument] |
   |                 |     |                  | DATA and AC | ]        |
   |                 |     |                  | KNOWLEDGMEN |          |
   |                 |     |                  | T.          |          |
   |                 |     |                  |             |          |
   |         6TiSCH- | 4   |  IEEE802154-AES- | Use MIC-64  | [[this d |
   |      K1K2-MIC64 |     |          CCM-128 | for EBs,    | ocument] |
   |                 |     |                  | DATA and AC | ]        |
   |                 |     |                  | KNOWLEDGMEN |          |
   |                 |     |                  | T.          |          |
   |                 |     |                  |             |          |
   |         6TiSCH- | 5   |  IEEE802154-AES- | Use MIC-128 | [[this d |
   |     K1K2-MIC128 |     |          CCM-128 | for EBs,    | ocument] |
   |                 |     |                  | DATA and AC | ]        |
   |                 |     |                  | KNOWLEDGMEN |          |
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   |                 |     |                  | T.          |          |
   |                 |     |                  |             |          |
   | 6TiSCH-K1-MIC32 | 6   |  IEEE802154-AES- | Use MIC-32  | [[this d |
   |                 |     |          CCM-128 | for EBs.    | ocument] |
   |                 |     |                  |             | ]        |
   |                 |     |                  |             |          |
   | 6TiSCH-K1-MIC64 | 7   |  IEEE802154-AES- | Use MIC-64  | [[this d |
   |                 |     |          CCM-128 | for EBs.    | ocument] |
   |                 |     |                  |             | ]        |
   |                 |     |                  |             |          |
   | 6TiSCH-K1-MIC12 | 8   |  IEEE802154-AES- | Use MIC-128 | [[this d |
   |               8 |     |          CCM-128 | for EBs.    | ocument] |
   |                 |     |                  |             | ]        |
   |                 |     |                  |             |          |
   | 6TiSCH-K2-MIC32 | 9   |  IEEE802154-AES- | Use MIC-32  | [[this d |
   |                 |     |          CCM-128 | for DATA    | ocument] |
   |                 |     |                  | and ACKNOWL | ]        |
   |                 |     |                  | EDGMENT.    |          |
   |                 |     |                  |             |          |
   | 6TiSCH-K2-MIC64 | 10  |  IEEE802154-AES- | Use MIC-64  | [[this d |
   |                 |     |          CCM-128 | for DATA    | ocument] |
   |                 |     |                  | and ACKNOWL | ]        |
   |                 |     |                  | EDGMENT.    |          |
   |                 |     |                  |             |          |
   | 6TiSCH-K2-MIC12 | 11  |  IEEE802154-AES- | Use MIC-128 | [[this d |
   |               8 |     |          CCM-128 | for DATA    | ocument] |
   |                 |     |                  | and ACKNOWL | ]        |
   |                 |     |                  | EDGMENT.    |          |
   |                 |     |                  |             |          |
   |  6TiSCH-K2-ENC- | 12  |  IEEE802154-AES- | Use ENC-    | [[this d |
   |           MIC32 |     |          CCM-128 | MIC-32 for  | ocument] |
   |                 |     |                  | DATA and AC | ]        |
   |                 |     |                  | KNOWLEDGMEN |          |
   |                 |     |                  | T.          |          |
   |                 |     |                  |             |          |
   |  6TiSCH-K2-ENC- | 13  |  IEEE802154-AES- | Use ENC-    | [[this d |
   |           MIC64 |     |          CCM-128 | MIC-64 for  | ocument] |
   |                 |     |                  | DATA and AC | ]        |
   |                 |     |                  | KNOWLEDGMEN |          |
   |                 |     |                  | T.          |          |
   |                 |     |                  |             |          |
   |  6TiSCH-K2-ENC- | 14  |  IEEE802154-AES- | Use ENC-    | [[this d |
   |          MIC128 |     |          CCM-128 | MIC-128 for | ocument] |
   |                 |     |                  | DATA and AC | ]        |
   |                 |     |                  | KNOWLEDGMEN |          |
   |                 |     |                  | T.          |          |
   +-----------------+-----+------------------+-------------+----------+
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                        Table 3: Key Usage values.

8.4.3.1.  Rekeying of (6LoWPAN) Border Routers (6LBR)

   When the 6LoWPAN Border Router (6LBR) receives the Configuration
   object containing a link-layer key set, it MUST immediately install
   and start using the new keys for all outgoing traffic, and remove any
   old keys it has installed from the previous key set after a delay of
   COJP_REKEYING_GUARD_TIME has passed.  This mechanism is used by the
   JRC to force the 6LBR to start sending traffic with the new key.  The
   decision is taken by the JRC when it has determined that the new key
   has been made available to all (or some overwhelming majority) of
   nodes.  Any node that the JRC has not yet reached at that point is
   either non-functional or in extended sleep such that it will not be
   reached.  To get the key update, such node needs to go through the
   join process anew.

8.4.3.2.  Rekeying of regular (6LoWPAN) Nodes (6LN)

   When a regular 6LN node receives the Configuration object with a
   link-layer key set, it MUST install the new keys.  The 6LN will use
   both the old and the new keys to decrypt and authenticate any
   incoming traffic that arrives based upon the key identifier in the
   packet.  It MUST continue to use the old keys for all outgoing
   traffic until it has detected that the network has switched to the
   new key set.

   The detection of network switch is based upon the receipt of traffic
   secured with the new keys.  Upon reception and successful security
   processing of a link-layer frame secured with a key from the new key
   set, a 6LN node MUST then switch to sending outgoing traffic using
   the keys from the new set for all outgoing traffic.  The 6LN node
   MUST remove any old keys it has installed from the previous key set
   after a delay of COJP_REKEYING_GUARD_TIME has passed after it starts
   using the new key set.

   Sending of traffic with the new keys signals to other downstream
   nodes to switch to their new key, and the affect is that there is a
   ripple of key updates in outward concentric circles around each 6LBR.

8.4.3.3.  Use in IEEE Std 802.15.4

   When Link_Layer_Key is used in the context of [IEEE802.15.4], the
   following considerations apply.

   Signaling of different keying modes of [IEEE802.15.4] is done based
   on the parameter values present in a Link_Layer_Key object.
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   o  Key ID Mode 0x00 (Implicit, pairwise): key_id parameter MUST be
      set to 0.  key_addinfo parameter MUST be present.  key_addinfo
      parameter MUST be set to the link-layer address(es) of a single
      peer with whom the key should be used.  Depending on the
      configuration of the network, key_addinfo may carry the peer's
      long link-layer address (i.e. pledge identifier), short link-layer
      address, or their concatenation with the long address being
      encoded first.  Which address is carried is determined from the
      length of the byte string.

   o  Key ID Mode 0x01 (Key Index): key_id parameter MUST be set to a
      value different than 0.  key_addinfo parameter MUST NOT be
      present.

   o  Key ID Mode 0x02 (4-byte Explicit Key Source): key_id parameter
      MUST be set to a value different than 0.  key_addinfo parameter
      MUST be present.  key_addinfo parameter MUST be set to a byte
      string, exactly 4 bytes long.  key_addinfo parameter carries the
      Key Source parameter used to configure [IEEE802.15.4].

   o  Key ID Mode 0x03 (8-byte Explicit Key Source): key_id parameter
      MUST be set to a value different than 0.  key_addinfo parameter
      MUST be present.  key_addinfo parameter MUST be set to a byte
      string, exactly 8 bytes long.  key_addinfo parameter carries the
      Key Source parameter used to configure [IEEE802.15.4].

   In all cases, key_usage parameter determines how a particular key
   should be used in respect to incoming and outgoing security policies.

   For Key ID Modes 0x01 - 0x03, parameter key_id sets the "secKeyIndex"
   parameter of [IEEE802.15.4] that is signaled in all outgoing frames
   secured with a given key.  The maximum value key_id can have is 254.
   The value of 255 is reserved in [IEEE802.15.4] and is therefore
   considered invalid.

   Key ID Mode 0x00 (Implicit, pairwise) enables the JRC to act as a
   trusted third party and assign pairwise keys between nodes in the
   network.  How JRC learns about the network topology is out of scope
   of this specification, but could be done through 6LBR - JRC signaling
   for example.  Pairwise keys could also be derived through a key
   agreement protocol executed between the peers directly, where the
   authentication is based on the symmetric cryptographic material
   provided to both peers by the JRC.  Such a protocol is out of scope
   of this specification.

   Implementations MUST use different link-layer keys when using
   different authentication tag (MIC) lengths, as using the same key
   with different authentication tag lengths might be unsafe.  For
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   example, this prohibits the usage of the same key for both MIC-32 and
   MIC-64 levels.  See Annex B.4.3 of [IEEE802.15.4] for more
   information.

8.4.4.  Short Identifier

   The Short_Identifier object represents an identifier assigned to the
   pledge.  It is encoded as a CBOR array object, containing, in order:

   o  identifier: The short identifier assigned to the pledge, encoded
      as a byte string.  This parameter MUST be included.  The
      identifier MUST be unique in the set of all identifiers assigned
      in a network that is managed by a JRC.  In case the identifier is
      invalid, the decoder MUST silently ignore the Short_Identifier
      object.

   o  lease_time: The validity of the identifier in hours after the
      reception of the CBOR object, encoded as a CBOR unsigned integer.
      This parameter MAY be included.  The node MUST stop using the
      assigned short identifier after the expiry of the lease_time
      interval.  It is up to the JRC to renew the lease before the
      expiry of the previous interval.  The JRC updates the lease by
      executing the Parameter Update exchange with the node and
      including the Short_Identifier in the Configuration object, as
      described in Section 8.2.  In case the lease expires, the node
      SHOULD initiate a new join exchange, as described in Section 8.1.
      In case this parameter is omitted, the value of positive infinity
      MUST be assumed, meaning that the identifier is valid for as long
      as the node participates in the network.

   The CDDL fragment that represents the text above for the
   Short_Identifier follows.

   Short_Identifier = [
         identifier        : bstr,
       ? lease_time        : uint
   ]

8.4.4.1.  Use in IEEE Std 802.15.4

   When Short_Identifier is used in the context of [IEEE802.15.4], the
   following considerations apply.

   The identifier MUST be used to set the short address of IEEE Std
   802.15.4 module.  When operating in TSCH mode, the identifier MUST be
   unique in the set of all identifiers assigned in multiple networks
   that share link-layer key(s).  If the length of the byte string
   corresponding to the identifier parameter is different than 2, the
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   identifier is considered invalid.  The values 0xfffe and 0xffff are
   reserved by [IEEE802.15.4] and their use is considered invalid.

   The security properties offered by the [IEEE802.15.4] link-layer in
   TSCH mode are conditioned on the uniqueness requirement of the short
   identifier (i.e. short address).  The short address is one of the
   inputs in the construction of the nonce, which is used to protect
   link-layer frames.  If a misconfiguration occurs, and the same short
   address is assigned twice under the same link-layer key, the loss of
   security properties is eminent.  For this reason, practices where the
   pledge generates the short identifier locally are not safe and are
   likely to result in the loss of link-layer security properties.

   The JRC MUST ensure that at any given time there are never two same
   short identifiers being used under the same link-layer key.  If the
   lease_time parameter of a given Short_Identifier object is set to
   positive infinity, care needs to be taken that the corresponding
   identifier is not assigned to another node until the JRC is certain
   that it is no longer in use, potentially through out-of-band
   signaling.  If the lease_time parameter expires for any reason, the
   JRC should take into consideration potential ongoing transmissions by
   the joined node, which may be hanging in the queues, before assigning
   the same identifier to another node.

8.4.5.  Unsupported Configuration Object

   The Unsupported_Configuration object is encoded as a CBOR array,
   containing at least one Unsupported_Parameter object.  Each
   Unsupported_Parameter object is a sequence of CBOR elements without
   an enclosing top-level CBOR object for compactness.  The set of
   parameters that appear in an Unsupported_Parameter object is
   summarized below, in order:

   o  code: Indicates the capability of acting on the parameter signaled
      by parameter_label, encoded as an integer.  This parameter MUST be
      included.  Possible values of this parameter are specified in the
      IANA "CoJP Unsupported Configuration Code Registry"
      (Section 11.3).

   o  parameter_label: Indicates the parameter.  This parameter MUST be
      included.  Possible values of this parameter are specified in the
      label column of the IANA "CoJP Parameters" registry
      (Section 11.1).

   o  parameter_addinfo: Additional information about the parameter that
      cannot be acted upon.  This parameter MUST be included.  In case
      the code is set to "Unsupported", parameter_addinfo gives
      additional information to the JRC.  If the parameter indicated by
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      parameter_label cannot be acted upon regardless of its value,
      parameter_addinfo MUST be set to null, signaling to the JRC that
      it SHOULD NOT attempt to configure the parameter again.  If the
      pledge can act on the parameter, but cannot configure the setting
      indicated by the parameter value, the pledge can hint this to the
      JRC.  In this case, parameter_addinfo MUST be set to the value of
      the parameter that cannot be acted upon following the normative
      parameter structure specified in this document.  For example, it
      is possible to include only a subset of the link-layer key set
      object, signaling the keys that cannot be acted upon, or the
      entire key set that was received.  In case the code is set to
      "Malformed", parameter_addinfo MUST be set to null, signaling to
      the JRC that it SHOULD NOT attempt to configure the parameter
      again.

   The CDDL fragment that represents the text above for
   Unsupported_Configuration and Unsupported_Parameter objects follows.

   Unsupported_Configuration = [
          + parameter           : Unsupported_Parameter
   ]

   Unsupported_Parameter = (
            code                : int,
            parameter_label     : int,
            parameter_addinfo   : nil / any
   )

   +-------------+-------+--------------------------------+------------+
   |        Name | Value |                    Description | Reference  |
   +-------------+-------+--------------------------------+------------+
   | Unsupported | 0     |   The indicated setting is not | [[this     |
   |             |       |    supported by the networking | document]] |
   |             |       |          stack implementation. |            |
   |             |       |                                |            |
   |   Malformed | 1     |  The indicated parameter value | [[this     |
   |             |       |                  is malformed. | document]] |
   +-------------+-------+--------------------------------+------------+

              Table 4: Unsupported Configuration code values.

8.5.  Recommended Settings

   This section gives RECOMMENDED values of CoJP settings.
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               +--------------------------+---------------+
               |                     Name | Default Value |
               +--------------------------+---------------+
               |   COJP_MAX_JOIN_ATTEMPTS | 4             |
               |                          |               |
               | COJP_REKEYING_GUARD_TIME | 12 seconds    |
               +--------------------------+---------------+

                        Recommended CoJP settings.

   The COJP_REKEYING_GUARD_TIME value SHOULD take into account possible
   retransmissions at the link layer due to imperfect wireless links.

9.  Security Considerations

   Since this document uses the pledge identifier to set the ID Context
   parameter of OSCORE, an important security requirement is that the
   pledge identifier is unique in the set of all pledge identifiers
   managed by a JRC.  The uniqueness of the pledge identifier ensures
   unique (key, nonce) pairs for AEAD algorithm used by OSCORE.  It also
   allows the JRC to retrieve the correct security context, upon the
   reception of a Join Request message.  The management of pledge
   identifiers is simplified if the globally unique EUI-64 is used, but
   this comes with privacy risks, as discussed in Section 10.

   This document further mandates that the (6LBR) pledge and the JRC are
   provisioned with unique PSKs.  The PSK is used to set the OSCORE
   Master Secret during security context derivation.  This derivation
   process results in OSCORE keys that are important for mutual
   authentication of the (6LBR) pledge and the JRC.  Should an attacker
   come to know the PSK, then a man-in-the-middle attack is possible.

   Many vendors are known to use unsafe practices when generating and
   provisioning PSKs.  The use of a single PSK shared among a group of
   devices is a common pitfall that results in poor security.  In this
   case, the compromise of a single device is likely to lead to a
   compromise of the entire batch, with the attacker having the ability
   to impersonate a legitimate device and join the network, generate
   bogus data and disturb the network operation.  As a reminder, recall
   the well-known problem with Bluetooth headsets with a "0000" pin.
   Additionally, some vendors use methods such as scrambling or hashing
   of device serial numbers or their EUI-64 to generate "unique" PSKs.
   Without any secret information involved, the effort that the attacker
   needs to invest into breaking these unsafe derivation methods is
   quite low, resulting in the possible impersonation of any device from
   the batch, without even needing to compromise a single device.  The
   use of cryptographically secure random number generators to generate
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   the PSK is RECOMMENDED, see [NIST800-90A] for different mechanisms
   using deterministic methods.

   The JP forwards the unauthenticated join traffic into the network.  A
   data cap on the JP prevents it from forwarding more traffic than the
   network can handle.  The data cap can be configured by the JRC by
   including a join rate parameter in the Join Response and it is
   implemented through the CoAP's PROBING_RATE setting.  The use of a
   data cap at a JP forces attackers to use more than one JP if they
   wish to overwhelm the network.  Marking the join traffic packets with
   a non-zero DSCP allows the network to carry the traffic if it has
   capacity, but encourages the network to drop the extra traffic rather
   than add bandwidth due to that traffic.

   The shared nature of the "minimal" cell used for the join traffic
   makes the network prone to a DoS attack by congesting the JP with
   bogus traffic.  Such an attacker is limited by its maximum transmit
   power.  The redundancy in the number of deployed JPs alleviates the
   issue and also gives the pledge a possibility to use the best
   available link for joining.  How a network node decides to become a
   JP is out of scope of this specification.

   At the beginning of the join process, the pledge has no means of
   verifying the content in the EB, and has to accept it at "face
   value".  In case the pledge tries to join an attacker's network, the
   Join Response message will either fail the security check or time
   out.  The pledge may implement a temporary blacklist in order to
   filter out undesired EBs and try to join using the next seemingly
   valid EB.  This blacklist alleviates the issue, but is effectively
   limited by the node's available memory.  Note that this temporary
   blacklist is different from the one communicated as part of the CoJP
   Configuration object as it helps pledge fight a DoS attack.  These
   bogus beacons prolong the join time of the pledge, and so the time
   spent in "minimal" [RFC8180] duty cycle mode.  The blacklist
   communicated as part of the CoJP Configuration object helps JP fight
   a DoS attack by a malicious pledge.

10.  Privacy Considerations

   The join solution specified in this document relies on the uniqueness
   of the pledge identifier in the set of all pledge identifiers managed
   by a JRC.  This identifier is transferred in clear as an OSCORE kid
   context.  The use of the globally unique EUI-64 as pledge identifier
   simplifies the management but comes with certain privacy risks.  The
   implications are thoroughly discussed in [RFC7721] and comprise
   correlation of activities over time, location tracking, address
   scanning and device-specific vulnerability exploitation.  Since the
   join process occurs rarely compared to the network lifetime, long-

https://datatracker.ietf.org/doc/html/rfc8180
https://datatracker.ietf.org/doc/html/rfc7721


Vucinic, et al.         Expires January 30, 2020               [Page 39]



Internet-Draft    Minimal Security Framework for 6TiSCH        July 2019

   term threats that arise from using EUI-64 as the pledge identifier
   are minimal.  In addition, the Join Response message contains a short
   address which is assigned by the JRC to the (6LBR) pledge.  The
   assigned short address SHOULD be uncorrelated with the long-term
   pledge identifier.  The short address is encrypted in the response.
   Once the join process completes, the new node uses the short
   addresses for all further layer 2 (and layer-3) operations.  This
   reduces the aforementioned privacy risks as the short layer-2 address
   (visible even when the network is encrypted) is not traceable between
   locations and does not disclose the manufacturer, as is the case of
   EUI-64.  However, an eavesdropper with access to the radio medium
   during the join process may be able to correlate the assigned short
   address with the extended address based on timing information with a
   non-negligible probability.  This probability decreases with an
   increasing number of pledges joining concurrently.

11.  IANA Considerations

   Note to RFC Editor: Please replace all occurrences of "[[this
   document]]" with the RFC number of this specification.

   This document allocates a well-known name under the .arpa name space
   according to the rules given in [RFC3172].  The name "6tisch.arpa" is
   requested.  No subdomains are expected.  No A, AAAA or PTR record is
   requested.

11.1.  CoJP Parameters Registry

   This section defines a sub-registry within the "IPv6 over the TSCH
   mode of IEEE 802.15.4e (6TiSCH) parameters" registry with the name
   "Constrained Join Protocol Parameters Registry".

   The columns of the registry are:

   Name: This is a descriptive name that enables an easier reference to
   the item.  It is not used in the encoding.

   Label: The value to be used to identify this parameter.  The label is
   an integer.

   CBOR type: This field contains the CBOR type for the field.

   Description: This field contains a brief description for the field.

   Reference: This field contains a pointer to the public specification
   for the field, if one exists.

   This registry is to be populated with the values in Table 2.

https://datatracker.ietf.org/doc/html/rfc3172
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   The amending formula for this sub-registry is: Different ranges of
   values use different registration policies [RFC8126].  Integer values
   from -256 to 255 are designated as Standards Action.  Integer values
   from -65536 to -257 and from 256 to 65535 are designated as
   Specification Required.  Integer values greater than 65535 are
   designated as Expert Review.  Integer values less than -65536 are
   marked as Private Use.

11.2.  CoJP Key Usage Registry

   This section defines a sub-registry within the "IPv6 over the TSCH
   mode of IEEE 802.15.4e (6TiSCH) parameters" registry with the name
   "Constrained Join Protocol Key Usage Registry".

   The columns of this registry are:

   Name: This is a descriptive name that enables easier reference to the
   item.  The name MUST be unique.  It is not used in the encoding.

   Value: This is the value used to identify the key usage setting.
   These values MUST be unique.  The value is an integer.

   Algorithm: This is a descriptive name of the link-layer algorithm in
   use and uniquely determines the key length.  The name is not used in
   the encoding.

   Description: This field contains a description of the key usage
   setting.  The field should describe in enough detail how the key is
   to be used with different frame types, specific for the link-layer
   technology in question.

   Reference: This contains a pointer to the public specification for
   the field, if one exists.

   This registry is to be populated with the values in Table 3.

   The amending formula for this sub-registry is: Different ranges of
   values use different registration policies [RFC8126].  Integer values
   from -256 to 255 are designated as Standards Action.  Integer values
   from -65536 to -257 and from 256 to 65535 are designated as
   Specification Required.  Integer values greater than 65535 are
   designated as Expert Review.  Integer values less than -65536 are
   marked as Private Use.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
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11.3.  CoJP Unsupported Configuration Code Registry

   This section defines a sub-registry within the "IPv6 over the TSCH
   mode of IEEE 802.15.4e (6TiSCH) parameters" registry with the name
   "Constrained Join Protocol Unsupported Configuration Code Registry".

   The columns of this registry are:

   Name: This is a descriptive name that enables easier reference to the
   item.  The name MUST be unique.  It is not used in the encoding.

   Value: This is the value used to identify the diagnostic code.  These
   values MUST be unique.  The value is an integer.

   Description: This is a descriptive human-readable name.  The
   description MUST be unique.  It is not used in the encoding.

   Reference: This contains a pointer to the public specification for
   the field, if one exists.

   This registry is to be populated with the values in Table 4.

   The amending formula for this sub-registry is: Different ranges of
   values use different registration policies [RFC8126].  Integer values
   from -256 to 255 are designated as Standards Action.  Integer values
   from -65536 to -257 and from 256 to 65535 are designated as
   Specification Required.  Integer values greater than 65535 are
   designated as Expert Review.  Integer values less than -65536 are
   marked as Private Use.
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   modified in transit.  In addition, replay protection is ensured
   through persistent handling of mutable context parameters.

   Once the JP receives the Join Response, it authenticates the state
   within the CoAP token before deciding where to forward.  The JP sets
   its internal state to that found in the token, and forwards the Join
   Response to the correct pledge.  Note that the JP does not possess
   the key to decrypt the CBOR object (configuration) present in the
   payload.  The Join Response is matched to the Join Request and
   verified for replay protection at the pledge using OSCORE processing
   rules.  In this example, the Join Response does not contain the IPv6
   address of the JRC, the pledge hence understands the JRC is co-
   located with the 6LBR.
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      <---E2E OSCORE-->
    Client      Proxy     Server
    Pledge       JP        JRC
      |          |          |
      |  Join    |          |            Code: 0.02 (POST)
      | Request  |          |           Token: -
      +--------->|          |    Proxy-Scheme: coap
      |          |          |        Uri-Host: 6tisch.arpa
      |          |          |          OSCORE: kid: -,
      |          |          |                  kid_context: EUI-64,
      |          |          |                  Partial IV: 1
      |          |          |         Payload: { Code: 0.02 (POST),
      |          |          |                    Uri-Path: "j",
      |          |          |                    join_request, <Tag> }
      |          |          |
      |          |  Join    |            Code: 0.02 (POST)
      |          | Request  |           Token: opaque state
      |          +--------->|          OSCORE: kid: -,
      |          |          |                  kid_context: EUI-64,
      |          |          |                  Partial IV: 1
      |          |          |         Payload: { Code: 0.02 (POST),
      |          |          |                    Uri-Path: "j",
      |          |          |                    join_request, <Tag> }
      |          |          |
      |          |          |
      |          |  Join    |            Code: 2.04 (Changed)
      |          | Response |           Token: opaque state
      |          |<---------+          OSCORE: -
      |          |          |         Payload: { Code: 2.04 (Changed),
      |          |          |                    configuration, <Tag> }
      |          |          |
      |          |          |
      |  Join    |          |            Code: 2.04 (Changed)
      | Response |          |           Token: -
      |<---------+          |          OSCORE: -
      |          |          |         Payload: { Code: 2.04 (Changed),
      |          |          |                    configuration, <Tag> }
      |          |          |

     Figure 3: Example of a successful join protocol exchange. { ... }
    denotes authenticated encryption, <Tag> denotes the authentication
                                   tag.

   Where the join_request object is:
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  join_request:
  {
      5 : h'cafe' / PAN ID of the network pledge is attempting to join /
  }

   Since the role parameter is not present, the default role of "6TiSCH
   Node" is implied.

   The join_request object encodes to h'a10542cafe' with a size of 5
   bytes.

   And the configuration object is:

   configuration:
   {
       2 : [           / link-layer key set /
             1,        / key_id /
             h'e6bf4287c2d7618d6a9687445ffd33e6' / key_value /
           ],
       3 : [           / short identifier /
             h'af93'   / assigned short address /
           ]
   }

   Since the key_usage parameter is not present in the link-layer key
   set object, the default value of "6TiSCH-K1K2-ENC-MIC32" is implied.
   Since key_addinfo parameter is not present and key_id is different
   than 0, Key ID Mode 0x01 (Key Index) is implied.  Similarly, since
   the lease_time parameter is not present in the short identifier
   object, the default value of positive infinity is implied.

   The configuration object encodes to

   h'a202820150e6bf4287c2d7618d6a9687445ffd33e6038142af93' with a size
   of 26 bytes.

Appendix B.  Lightweight Implementation Option

   In environments where optimizing the implementation footprint is
   important, it is possible to implement this specification without
   having the implementations of HKDF [RFC5869] and SHA [RFC4231] on
   constrained devices.  HKDF and SHA are used during the OSCORE
   security context derivation phase.  This derivation can also be done
   by the JRC or a provisioning device, on behalf of the (6LBR) pledge
   during the provisioning phase.  In that case, the derived OSCORE
   security context parameters are written directly into the (6LBR)
   pledge, without requiring the PSK be provisioned to the (6LBR)
   pledge.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc4231
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   The use of HKDF to derive OSCORE security context parameters ensures
   that the resulting OSCORE keys have good security properties, and are
   unique as long as the input for different pledges varies.  This
   specification ensures the uniqueness by mandating unique pledge
   identifiers and a unique PSK for each (6LBR) pledge.  From the AEAD
   nonce reuse viewpoint, having a unique pledge identifier is a
   sufficient condition.  However, as discussed in Section 9, the use of
   a single PSK shared among many devices is a common security pitfall.
   The compromise of this shared PSK on a single device would lead to
   the compromise of the entire batch.  When using the implementation/
   deployment scheme outlined above, the PSK does not need to be written
   to individual pledges.  As a consequence, even if a shared PSK is
   used, the scheme offers the same level of security as in the scenario
   where each pledge is provisioned with a unique PSK.
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