
6TiSCH Working Group M. Vucinic, Ed.
Internet-Draft Inria
Intended status: Standards Track J. Simon
Expires: January 30, 2020 Analog Devices
 K. Pister
 University of California Berkeley
 M. Richardson
 Sandelman Software Works
 July 29, 2019

Minimal Security Framework for 6TiSCH
draft-ietf-6tisch-minimal-security-12

Abstract

 This document describes the minimal framework required for a new
 device, called "pledge", to securely join a 6TiSCH (IPv6 over the
 TSCH mode of IEEE 802.15.4e) network. The framework requires that
 the pledge and the JRC (join registrar/coordinator, a central
 entity), share a symmetric key. How this key is provisioned is out
 of scope of this document. Through a single CoAP (Constrained
 Application Protocol) request-response exchange secured by OSCORE
 (Object Security for Constrained RESTful Environments), the pledge
 requests admission into the network and the JRC configures it with
 link-layer keying material and other parameters. The JRC may at any
 time update the parameters through another request-response exchange
 secured by OSCORE. This specification defines the Constrained Join
 Protocol and its CBOR (Concise Binary Object Representation) data
 structures, and configures the rest of the 6TiSCH communication stack
 for this join process to occur in a secure manner. Additional
 security mechanisms may be added on top of this minimal framework.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Vucinic, et al. Expires January 30, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 This Internet-Draft will expire on January 30, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Provisioning Phase . 5
4. Join Process Overview . 7
4.1. Step 1 - Enhanced Beacon 8
4.2. Step 2 - Neighbor Discovery 9
4.3. Step 3 - Constrained Join Protocol (CoJP) Execution . . . 9
4.4. The Special Case of the 6LBR Pledge Joining 10

5. Link-layer Configuration 10
5.1. Distribution of Time 11

6. Network-layer Configuration 11
6.1. Identification of Unauthenticated Traffic 12

7. Application-level Configuration 14
7.1. Statelessness of the JP 14
7.2. Recommended Settings 15
7.3. OSCORE . 16

8. Constrained Join Protocol (CoJP) 18
8.1. Join Exchange . 20
8.2. Parameter Update Exchange 21
8.3. Error Handling . 22
8.4. CoJP Objects . 24
8.5. Recommended Settings 37

9. Security Considerations 38
10. Privacy Considerations 39
11. IANA Considerations . 40
11.1. CoJP Parameters Registry 40
11.2. CoJP Key Usage Registry 41
11.3. CoJP Unsupported Configuration Code Registry 42

12. Acknowledgments . 42

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Vucinic, et al. Expires January 30, 2020 [Page 2]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

13. References . 42
13.1. Normative References 43
13.2. Informative References 44

Appendix A. Example . 45
Appendix B. Lightweight Implementation Option 48

 Authors' Addresses . 49

1. Introduction

 This document defines a "secure join" solution for a new device,
 called "pledge", to securely join a 6TiSCH network. The term "secure
 join" refers to network access authentication, authorization and
 parameter distribution, as defined in [I-D.ietf-6tisch-terminology].
 The Constrained Join Protocol (CoJP) defined in this document handles
 parameter distribution needed for a pledge to become a joined node.
 Authorization mechanisms are considered out of scope. Mutual
 authentication during network access is achieved through the use of a
 secure channel, as configured by this document. This document also
 specifies a configuration of different layers of the 6TiSCH protocol
 stack that reduces the Denial of Service (DoS) attack surface during
 the join process.

 This document presumes a 6TiSCH network as described by [RFC7554] and
 [RFC8180]. By design, nodes in a 6TiSCH network [RFC7554] have their
 radio turned off most of the time, to conserve energy. As a
 consequence, the link used by a new device for joining the network
 has limited bandwidth [RFC8180]. The secure join solution defined in
 this document therefore keeps the number of over-the-air exchanges to
 a minimum.

 The micro-controllers at the heart of 6TiSCH nodes have a small
 amount of code memory. It is therefore paramount to reuse existing
 protocols available as part of the 6TiSCH stack. At the application
 layer, the 6TiSCH stack already relies on CoAP [RFC7252] for web
 transfer, and on OSCORE [I-D.ietf-core-object-security] for its end-
 to-end security. The secure join solution defined in this document
 therefore reuses those two protocols as its building blocks.

 CoJP is a generic protocol that can be used as-is in all modes of
 IEEE Std 802.15.4, including the Time-Slotted Channel Hopping (TSCH)
 mode 6TiSCH is based on. CoJP may as well be used in other (low-
 power) networking technologies where efficiency in terms of
 communication overhead and code footprint is important. In such a
 case, it may be necessary to define configuration parameters specific
 to the technology in question, through companion documents. The
 overall process described in Section 4 and the configuration of the
 stack is specific to 6TiSCH.

https://datatracker.ietf.org/doc/html/rfc7554
https://datatracker.ietf.org/doc/html/rfc8180
https://datatracker.ietf.org/doc/html/rfc7554
https://datatracker.ietf.org/doc/html/rfc8180
https://datatracker.ietf.org/doc/html/rfc7252

Vucinic, et al. Expires January 30, 2020 [Page 3]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 CoJP assumes the presence of a Join Registrar/Coordinator (JRC), a
 central entity. The configuration defined in this document assumes
 that the pledge and the JRC share a secret cryptographic key, called
 PSK (pre-shared key). The PSK is used to configure OSCORE to provide
 a secure channel to CoJP. How the PSK is installed is out of scope
 of this document: this may happen during the provisioning phase or by
 a key exchange protocol that may precede the execution of CoJP.

 When the pledge seeks admission to a 6TiSCH network, it first
 synchronizes to it, by initiating the passive scan defined in
 [IEEE802.15.4]. The pledge then exchanges CoJP messages with the
 JRC; these messages can be forwarded by nodes already part of the
 6TiSCH network, called Join Proxies. The messages exchanged allow
 the JRC and the pledge to mutually authenticate, based on the
 properties provided by OSCORE. They also allow the JRC to configure
 the pledge with link-layer keying material, short identifier and
 other parameters. After this secure join process successfully
 completes, the joined node can interact with its neighbors to request
 additional bandwidth using the 6top Protocol [RFC8480] and start
 sending application traffic.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The reader is expected to be familiar with the terms and concepts
 defined in [I-D.ietf-6tisch-terminology], [RFC7252],
 [I-D.ietf-core-object-security], and [RFC8152].

 The specification also includes a set of informative specifications
 using the Concise data definition language (CDDL)
 [I-D.ietf-cbor-cddl].

 The following terms defined in [I-D.ietf-6tisch-terminology] are used
 extensively throughout this document:

 o pledge

 o joined node

 o join proxy (JP)

 o join registrar/coordinator (JRC)

https://datatracker.ietf.org/doc/html/rfc8480
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8152

Vucinic, et al. Expires January 30, 2020 [Page 4]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 o enhanced beacon (EB)

 o join protocol

 o join process

 The following terms defined in [RFC8505] are also used throughout
 this document:

 o 6LoWPAN Border Router (6LBR)

 o 6LoWPAN Node (6LN)

 The term "6LBR" is used interchangeably with the term "DODAG root"
 defined in [RFC6550], assuming the two entities are co-located, as
 recommended by [I-D.ietf-6tisch-architecture].

 The term "pledge", as used throughout the document, explicitly
 denotes non-6LBR devices attempting to join the network using their
 IEEE Std 802.15.4 network interface. The device that attempts to
 join as the 6LBR of the network and does so over another network
 interface is explicitly denoted as the "6LBR pledge". When the text
 equally applies to the pledge and the 6LBR pledge, the "(6LBR)
 pledge" form is used.

 In addition, we use generic terms "pledge identifier" and "network
 identifier". See Section 3.

 The terms "secret key" and "symmetric key" are used interchangeably.

3. Provisioning Phase

 The (6LBR) pledge is provisioned with certain parameters before
 attempting to join the network, and the same parameters are
 provisioned to the JRC. There are many ways by which this
 provisioning can be done. Physically, the parameters can be written
 into the (6LBR) pledge using a number of mechanisms, such as a JTAG
 interface, a serial (craft) console interface, pushing buttons
 simultaneously on different devices, over-the-air configuration in a
 Faraday cage, etc. The provisioning can be done by the vendor, the
 manufacturer, the integrator, etc.

 Details of how this provisioning is done is out of scope of this
 document. What is assumed is that there can be a secure, private
 conversation between the JRC and the (6LBR) pledge, and that the two
 devices can exchange the parameters.

 Parameters that are provisioned to the (6LBR) pledge include:

https://datatracker.ietf.org/doc/html/rfc8505
https://datatracker.ietf.org/doc/html/rfc6550

Vucinic, et al. Expires January 30, 2020 [Page 5]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 o pledge identifier. The pledge identifier identifies the (6LBR)
 pledge. The pledge identifier MUST be unique in the set of all
 pledge identifiers managed by a JRC. The pledge identifier
 uniqueness is an important security requirement, as discussed in

Section 9. The pledge identifier is typically the globally unique
 64-bit Extended Unique Identifier (EUI-64) of the IEEE Std
 802.15.4 device, in which case it is provisioned by the hardware
 manufacturer. The pledge identifier is used to generate the IPv6
 addresses of the (6LBR) pledge and to identify it during the
 execution of the join protocol. For privacy reasons (see

Section 10), it is possible to use a pledge identifier different
 from the EUI-64. For example, a pledge identifier may be a random
 byte string, but care needs to be taken that such a string meets
 the uniqueness requirement.

 o Pre-Shared Key (PSK). A secret cryptographic key shared between
 the (6LBR) pledge and the JRC. The JRC additionally needs to
 store the pledge identifier bound to the given PSK. Each (6LBR)
 pledge MUST be provisioned with a unique PSK. The PSK SHOULD be a
 cryptographically strong key, at least 128 bits in length,
 indistinguishable by feasible computation from a random uniform
 string of the same length. How the PSK is generated and/or
 provisioned is out of scope of this specification. This could be
 done during a provisioning step or companion documents can specify
 the use of a key agreement protocol. Common pitfalls when
 generating PSKs are discussed in Section 9.

 o Optionally, a network identifier. The network identifier
 identifies the 6TiSCH network. The network identifier MUST be
 carried within Enhanced Beacon (EB) frames. Typically, the 16-bit
 Personal Area Network Identifier (PAN ID) defined in
 [IEEE802.15.4] is used as the network identifier. However, PAN ID
 is not considered a stable network identifier as it may change
 during network lifetime if a collision with another network is
 detected. Companion documents can specify the use of a different
 network identifier for join purposes, but this is out of scope of
 this specification. Provisioning the network identifier is
 RECOMMENDED. However, due to operational constraints, the network
 identifier may not be known at the time when the provisioning is
 done. In case this parameter is not provisioned to the pledge,
 the pledge attempts to join one advertised network at a time,
 which significantly prolongs the join process. This parameter
 MUST be provisioned to the 6LBR pledge.

 o Optionally, any non-default algorithms. The default algorithms
 are specified in Section 7.3.3. When algorithm identifiers are
 not exchanged, the use of these default algorithms is implied.

Vucinic, et al. Expires January 30, 2020 [Page 6]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 Additionally, the 6LBR pledge that is not co-located with the JRC
 needs to be provisioned with:

 o Global IPv6 address of the JRC. This address is used by the 6LBR
 pledge to address the JRC during the join process. The 6LBR
 pledge may also obtain the IPv6 address of the JRC through other
 available mechanisms, such as DHCPv6, GRASP, mDNS, the use of
 which is out of scope of this document. Pledges do not need to be
 provisioned with this address as they discover it dynamically
 through CoJP.

4. Join Process Overview

 This section describes the steps taken by a pledge in a 6TiSCH
 network. When a pledge seeks admission to a 6TiSCH network, the
 following exchange occurs:

 1. The pledge listens for an Enhanced Beacon (EB) frame
 [IEEE802.15.4]. This frame provides network synchronization
 information, and tells the device when it can send a frame to the
 node sending the beacons, which acts as a Join Proxy (JP) for the
 pledge, and when it can expect to receive a frame. The Enhanced
 Beacon provides the L2 address of the JP and it may also provide
 its link-local IPv6 address.

 2. The pledge configures its link-local IPv6 address and advertises
 it to the JP using Neighbor Discovery. This step may be omitted
 if the link-local address has been derived from a known unique
 interface identifier, such as an EUI-64 address.

 3. The pledge sends a Join Request to the JP in order to securely
 identify itself to the network. The Join Request is forwarded to
 the JRC.

 4. In case of successful processing of the request, the pledge
 receives a Join Response from the JRC (via the JP). The Join
 Response contains configuration parameters necessary for the
 pledge to join the network.

 From the pledge's perspective, joining is a local phenomenon - the
 pledge only interacts with the JP, and it needs not know how far it
 is from the 6LBR, or how to route to the JRC. Only after
 establishing one or more link-layer keys does it need to know about
 the particulars of a 6TiSCH network.

 The join process is shown as a transaction diagram in Figure 1:

Vucinic, et al. Expires January 30, 2020 [Page 7]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 +--------+ +-------+ +--------+
 | pledge | | JP | | JRC |
 | | | | | |
 +--------+ +-------+ +--------+
 | | |
 |<---Enhanced Beacon (1)---| |
 | | |
 |<-Neighbor Discovery (2)->| |
 | | |
 |-----Join Request (3a)----|----Join Request (3a)---->| \
 | | | | CoJP
 |<----Join Response (3b)---|----Join Response (3b)----| /
 | | |

 Figure 1: Overview of a successful join process.

 As other nodes in the network, the 6LBR node may act as the JP. The
 6LBR may in addition be co-located with the JRC.

 The details of each step are described in the following sections.

4.1. Step 1 - Enhanced Beacon

 The pledge synchronizes to the network by listening for, and
 receiving, an Enhanced Beacon (EB) sent by a node already in the
 network. This process is entirely defined by [IEEE802.15.4], and
 described in [RFC7554].

 Once the pledge hears an EB, it synchronizes to the joining schedule
 using the cells contained in the EB. The pledge can hear multiple
 EBs; the selection of which EB to use is out of the scope for this
 document, and is discussed in [RFC7554]. Implementers should make
 use of information such as: what network identifier the EB contains,
 the value of the Join Metric field within EBs, whether the source
 link-layer address of the EB has been tried before, what signal
 strength the different EBs were received at, etc. In addition, the
 pledge may be pre-configured to search for EBs with a specific
 network identifier.

 If the pledge is not provisioned with the network identifier, it
 attempts to join one network at a time, as described in

Section 8.1.1.

 Once the pledge selects the EB, it synchronizes to it and transitions
 into a low-power mode. It follows the schedule information contained
 in the EB which indicates the slots that the pledge may use for the
 join process. During the remainder of the join process, the node
 that has sent the EB to the pledge acts as the JP.

https://datatracker.ietf.org/doc/html/rfc7554
https://datatracker.ietf.org/doc/html/rfc7554

Vucinic, et al. Expires January 30, 2020 [Page 8]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 At this point, the pledge may proceed to step 2, or continue to
 listen for additional EBs.

4.2. Step 2 - Neighbor Discovery

 The pledge forms its link-local IPv6 address based on the interface
 identifier, as per [RFC4944]. The pledge MAY perform the Neighbor
 Solicitation / Neighbor Advertisement exchange with the JP, as per

Section 5.6 of [RFC8505]. The pledge and the JP use their link-local
 IPv6 addresses for all subsequent communication during the join
 process.

 Note that Neighbor Discovery exchanges at this point are not
 protected with link-layer security as the pledge is not in possession
 of the keys. How JP accepts these unprotected frames is discussed in

Section 5.

4.3. Step 3 - Constrained Join Protocol (CoJP) Execution

 The pledge triggers the join exchange of the Constrained Join
 Protocol (CoJP). The join exchange consists of two messages: the
 Join Request message (Step 3a), and the Join Response message
 conditioned on the successful security processing of the request
 (Step 3b).

 All CoJP messages are exchanged over a secure end-to-end channel that
 provides confidentiality, data authenticity and replay protection.
 Frames carrying CoJP messages are not protected with link-layer
 security when exchanged between the pledge and the JP as the pledge
 is not in possession of the link-layer keys in use. How JP and
 pledge accept these unprotected frames is discussed in Section 5.
 When frames carrying CoJP messages are exchanged between nodes that
 have already joined the network, the link-layer security is applied
 according to the security configuration used in the network.

4.3.1. Step 3a - Join Request

 The Join Request is a message sent from the pledge to the JP, and
 which the JP forwards to the JRC. The pledge indicates in the Join
 Request the role it requests to play in the network, as well as the
 identifier of the network it requests to join. The JP forwards the
 Join Request to the JRC on the existing links. How exactly this
 happens is out of scope of this document; some networks may wish to
 dedicate specific link layer resources for this join traffic.

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc8505#section-5.6

Vucinic, et al. Expires January 30, 2020 [Page 9]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

4.3.2. Step 3b - Join Response

 The Join Response is sent by the JRC to the pledge, and is forwarded
 through the JP. The packet containing the Join Response travels from
 the JRC to the JP using the operating routes in the network. The JP
 delivers it to the pledge. The JP operates as the application-layer
 proxy.

 The Join Response contains different parameters needed by the pledge
 to become a fully operational network node. These parameters include
 the link-layer key(s) currently in use in the network, the short
 address assigned to the pledge, the IPv6 address of the JRC needed by
 the pledge to operate as the JP, among others.

4.4. The Special Case of the 6LBR Pledge Joining

 The 6LBR pledge performs Section 4.3 of the join process described
 above, just as any other pledge, albeit over a different network
 interface. There is no JP intermediating the communication between
 the 6LBR pledge and the JRC, as described in Section 6. The other
 steps of the described join process do not apply to the 6LBR pledge.
 How the 6LBR pledge obtains an IPv6 address and triggers the
 execution of the CoJP protocol is out of scope of this document.

5. Link-layer Configuration

 In an operational 6TiSCH network, all frames MUST use link-layer
 frame security [RFC8180]. The IEEE Std 802.15.4 security attributes
 MUST include frame authenticity, and MAY include frame
 confidentiality (i.e. encryption).

 The pledge does not initially do any authenticity check of the EB
 frames, as it does not possess the link-layer key(s) in use. The
 pledge is still able to parse the contents of the received EBs and
 synchronize to the network, as EBs are not encrypted [RFC8180].

 When sending frames during the join process, the pledge sends
 unencrypted and unauthenticated frames. The JP accepts these
 unsecured frames for the duration of the join process. This behavior
 may be implemented by setting the "secExempt" attribute in the IEEE
 Std 802.15.4 security configuration tables. How the JP learns
 whether the join process is ongoing is out of scope of this
 specification.

 When the pledge initially synchronizes to the network, it has no
 means of verifying the authenticity of EB frames. As an attacker can
 craft a frame that looks like a legitimate EB frame, this opens up a
 DoS vector, as discussed in Section 9.

https://datatracker.ietf.org/doc/html/rfc8180
https://datatracker.ietf.org/doc/html/rfc8180

Vucinic, et al. Expires January 30, 2020 [Page 10]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

5.1. Distribution of Time

 Nodes in a 6TiSCH network keep a global notion of time known as the
 absolute slot number (ASN). ASN is used in the construction of the
 link-layer nonce, as defined in [IEEE802.15.4]. The pledge initially
 synchronizes to the EB frame sent by the JP, and uses the value of
 the ASN found in the TSCH Synchronization Information Element. At
 the time of the synchronization, the EB frame can neither be
 authenticated nor its freshness verified. During the join process,
 the pledge sends frames that are unprotected at the link-layer and
 protected end-to-end instead. The pledge does not obtain the time
 information as the output of the join process as this information is
 local to the network and may not be known at the JRC.

 This enables an attack on the pledge where the attacker replays to
 the pledge legitimate EB frames obtained from the network and acts as
 a man-in-the-middle between the pledge and the JP. The EB frames
 will make the pledge believe that the replayed ASN value is the
 current notion of time in the network. By forwarding the join
 traffic to the legitimate JP, the attacker enables the pledge to join
 the network. Under different conditions relating to the reuse of the
 pledge's short address by the JRC or its attempt to rejoin the
 network, this may cause the pledge to reuse the link-layer nonce in
 the first frame it sends protected after the join process is
 completed.

 For this reason, all frames originated at the JP and destined to the
 pledge during the join process MUST be authenticated at the link-
 layer using the key that is normally in use in the network. Link-
 layer security processing at the pledge for these frames will fail as
 the pledge is not yet in possession of the key. The pledge
 acknowledges these frames without link-layer security, and JP accepts
 the unsecured acknowledgment due to the secExempt attribute set for
 the pledge. The frames should be passed to the upper layer for
 processing using the promiscuous mode of [IEEE802.15.4] or another
 appropriate mechanism. When the upper layer processing is completed
 and the link-layer keys are configured, the upper layer MUST trigger
 the security processing of the corresponding frame. Once the
 security processing of the frame carrying the Join Response message
 is successful, the current ASN kept locally at the pledge SHALL be
 declared as valid.

6. Network-layer Configuration

 The pledge and the JP SHOULD keep a separate neighbor cache for
 untrusted entries and use it to store each other's information during
 the join process. Mixing neighbor entries belonging to pledges and
 nodes that are part of the network opens up the JP to a DoS attack,

Vucinic, et al. Expires January 30, 2020 [Page 11]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 as the attacker may fill JP's neighbor table and prevent the
 discovery of legitimate neighbors.

 Once the pledge obtains link-layer keys and becomes a joined node, it
 is able to securely communicate with its neighbors, obtain the
 network IPv6 prefix and form its global IPv6 address. The joined
 node then undergoes an independent process to bootstrap its neighbor
 cache entries, possibly with a node that formerly acted as a JP,
 following [RFC8505]. From the point of view of the JP, there is no
 relationship between the neighbor cache entry belonging to a pledge
 and the joined node that formerly acted as a pledge.

 The pledge does not communicate with the JRC at the network layer.
 This allows the pledge to join without knowing the IPv6 address of
 the JRC. Instead, the pledge communicates with the JP at the network
 layer using link-local addressing, and with the JRC at the
 application layer, as specified in Section 7.

 The JP communicates with the JRC over global IPv6 addresses. The JP
 discovers the network IPv6 prefix and configures its global IPv6
 address upon successful completion of the join process and the
 obtention of link-layer keys. The pledge learns the IPv6 address of
 the JRC from the Join Response, as specified in Section 8.1.2; it
 uses it once joined in order to operate as a JP.

 As a special case, the 6LBR pledge is expected to have an additional
 network interface that it uses in order to obtain the configuration
 parameters from the JRC and start advertising the 6TiSCH network.
 This additional interface needs to be configured with a global IPv6
 address, by a mechanism that is out of scope of this document. The
 6LBR pledge uses this interface to directly communicate with the JRC
 using global IPv6 addressing.

 The JRC can be co-located on the 6LBR. In this special case, the
 IPv6 address of the JRC can be omitted from the Join Response message
 for space optimization. The 6LBR then MUST set the DODAGID field in
 the RPL DIOs [RFC6550] to its IPv6 address. The pledge learns the
 address of the JRC once joined and upon the reception of the first
 RPL DIO message, and uses it to operate as a JP.

6.1. Identification of Unauthenticated Traffic

 The traffic that is proxied by the Join Proxy (JP) comes from
 unauthenticated pledges, and there may be an arbitrary amount of it.
 In particular, an attacker may send fraudulent traffic in an attempt
 to overwhelm the network.

https://datatracker.ietf.org/doc/html/rfc8505
https://datatracker.ietf.org/doc/html/rfc6550

Vucinic, et al. Expires January 30, 2020 [Page 12]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 When operating as part of a [RFC8180] 6TiSCH minimal network using
 distributed scheduling algorithms, the traffic from unauthenticated
 pledges may cause intermediate nodes to request additional bandwidth.
 An attacker could use this property to cause the network to
 overcommit bandwidth (and energy) to the join process.

 The Join Proxy is aware of what traffic originates from
 unauthenticated pledges, and so can avoid allocating additional
 bandwidth itself. The Join Proxy implements a data cap on outgoing
 join traffic through CoAP's congestion control mechanism. This cap
 will not protect intermediate nodes as they can not tell join traffic
 from regular traffic. Despite the data cap implemented separately on
 each Join Proxy, the aggregate join traffic from many Join Proxies
 may cause intermediate nodes to decide to allocate additional cells.
 It is undesirable to do so in response to the traffic originated at
 unauthenticated pledges. In order to permit the intermediate nodes
 to avoid this, the traffic needs to be tagged. [RFC2597] defines a
 set of per-hop behaviors that may be encoded into the Diffserv Code
 Points (DSCPs). Based on the DSCP, intermediate nodes can decide
 whether to act on a given packet.

6.1.1. Traffic from JP to JRC

 The Join Proxy SHOULD set the DSCP of packets that it produces as
 part of the forwarding process to AF43 code point (See Section 6 of
 [RFC2597]). A Join Proxy that does not set the DSCP on traffic
 forwarded should set it to zero so that it is compressed out.

 A Scheduling Function (SF) running on 6TiSCH nodes SHOULD NOT
 allocate additional cells as a result of traffic with code point
 AF43. Companion SF documents SHOULD specify how this recommended
 behavior is achieved.

6.1.2. Traffic from JRC to JP

 The JRC SHOULD set the DSCP of join response packets addressed to the
 Join Proxy to AF42 code point. AF42 has lower drop probability than
 AF43, giving this traffic priority in buffers over the traffic going
 towards the JRC.

 Due to the convergecast nature of the DODAG, the 6LBR links are often
 the most congested, and from that point down there is progressively
 less (or equal) congestion. If the 6LBR paces itself when sending
 join response traffic then it ought to never exceed the bandwidth
 allocated to the best effort traffic cells. If the 6LBR has the
 capacity (if it is not constrained) then it should provide some
 buffers in order to satisfy the Assured Forwarding behavior.

https://datatracker.ietf.org/doc/html/rfc8180
https://datatracker.ietf.org/doc/html/rfc2597
https://datatracker.ietf.org/doc/html/rfc2597#section-6
https://datatracker.ietf.org/doc/html/rfc2597#section-6

Vucinic, et al. Expires January 30, 2020 [Page 13]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 Companion SF documents SHOULD specify how traffic with code point
 AF42 is handled with respect to cell allocation. In case the
 recommended behavior described in this section is not followed, the
 network may become prone to the attack discussed in Section 6.1.

7. Application-level Configuration

 The CoJP join exchange in Figure 1 is carried over CoAP [RFC7252] and
 the secure channel provided by OSCORE
 [I-D.ietf-core-object-security]. The (6LBR) pledge acts as a CoAP
 client; the JRC acts as a CoAP server. The JP implements CoAP
 forward proxy functionality [RFC7252]. Because the JP can also be a
 constrained device, it cannot implement a cache.

 The pledge designates a JP as a proxy by including the Proxy-Scheme
 option in CoAP requests it sends to the JP. The pledge also includes
 in the requests the Uri-Host option with its value set to the well-
 known JRC's alias, as specified in Section 8.1.1.

 The JP resolves the alias to the IPv6 address of the JRC that it
 learned when it acted as a pledge, and joined the network. This
 allows the JP to reach the JRC at the network layer and forward the
 requests on behalf of the pledge.

7.1. Statelessness of the JP

 The CoAP proxy defined in [RFC7252] keeps per-client state
 information in order to forward the response towards the originator
 of the request. This state information includes at least the CoAP
 token, the IPv6 address of the client, and the UDP source port
 number. Since the JP can be a constrained device that acts as a CoAP
 proxy, memory limitations make it prone to a Denial-of-Service (DoS)
 attack.

 This DoS vector on the JP can be mitigated by making the JP act as a
 stateless CoAP proxy, where "state" encompasses the information
 related individual pledges. The JP can wrap the state it needs to
 keep for a given pledge throughout the network stack in a "state
 object" and include it as a CoAP token in the forwarded request to
 the JRC. The JP may use the CoAP token as defined in [RFC7252], if
 the size of the serialized state object permits, or use the extended
 CoAP token defined in [I-D.ietf-core-stateless], to transport the
 state object. Since the CoAP token is echoed back in the response,
 the JP is able to decode the state object and configure the state
 needed to forward the response to the pledge. The information that
 the JP needs to encode in the state object to operate in a fully
 stateless manner with respect to a given pledge is implementation
 specific.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

Vucinic, et al. Expires January 30, 2020 [Page 14]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 It is RECOMMENDED that the JP operates in a stateless manner and
 signals the per-pledge state within the CoAP token, for every request
 it forwards into the network on behalf of unauthenticated pledges.
 When operating in a stateless manner, the security considerations
 from [I-D.ietf-core-stateless] apply and the type of the CoAP message
 that the JP forwards on behalf of the pledge MUST be non-confirmable
 (NON), regardless of the message type received from the pledge. The
 use of a non-confirmable message by the JP alleviates the JP from
 keeping CoAP message exchange state. The retransmission burden is
 then entirely shifted to the pledge. A JP that operates in a
 stateless manner still needs to keep congestion control state with
 the JRC, see Section 9. Recommended values of CoAP settings for use
 during the join process, both by the pledge and the JP, are given in

Section 7.2.

 Note that in some networking stack implementations, a fully (per-
 pledge) stateless operation of the JP may be challenging from the
 implementation's point of view. In those cases, the JP may operate
 as a statefull proxy that stores the per-pledge state until the
 response is received or timed out, but this comes at a price of a DoS
 vector.

7.2. Recommended Settings

 This section gives RECOMMENDED values of CoAP settings during the
 join process.

 +-------------------+-----------------------+-------------------+
 | Name | Default Value: Pledge | Default Value: JP |
 +-------------------+-----------------------+-------------------+
 | ACK_TIMEOUT | 10 seconds | (10 seconds) |
 | | | |
 | ACK_RANDOM_FACTOR | 1.5 | (1.5) |
 | | | |
 | MAX_RETRANSMIT | 4 | (4) |
 +-------------------+-----------------------+-------------------+

 Recommended CoAP settings. Values enclosed in () have no effect when
 JP operates in a stateless manner.

 These values may be configured to values specific to the deployment.
 The default values have been chosen to accommodate a wide range of
 deployments, taking into account dense networks.

 The PROBING_RATE value at the JP is controlled by the join rate
 parameter, see Section 8.4.2. Following [RFC7252], the average data
 rate in sending to the JRC must not exceed PROBING_RATE. For

https://datatracker.ietf.org/doc/html/rfc7252

Vucinic, et al. Expires January 30, 2020 [Page 15]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 security reasons, the average data rate SHOULD be measured over a
 rather short window, e.g. ACK_TIMEOUT, see Section 9.

7.3. OSCORE

 Before the (6LBR) pledge and the JRC start exchanging CoAP messages
 protected with OSCORE, they need to derive the OSCORE security
 context from the provisioned parameters, as discussed in Section 3.

 The OSCORE security context MUST be derived as per Section 3 of
 [I-D.ietf-core-object-security].

 o the Master Secret MUST be the PSK.

 o the Master Salt MUST be the empty byte string.

 o the ID Context MUST be set to the pledge identifier.

 o the ID of the pledge MUST be set to the empty byte string. This
 identifier is used as the OSCORE Sender ID of the pledge in the
 security context derivation, since the pledge initially acts as a
 CoAP client.

 o the ID of the JRC MUST be set to the byte string 0x4a5243 ("JRC"
 in ASCII). This identifier is used as the OSCORE Recipient ID of
 the pledge in the security context derivation, as the JRC
 initially acts as a CoAP server.

 o the Algorithm MUST be set to the value from [RFC8152], agreed out-
 of-band by the same mechanism used to provision the PSK. The
 default is AES-CCM-16-64-128.

 o the Key Derivation Function MUST be agreed out-of-band by the same
 mechanism used to provision the PSK. Default is HKDF SHA-256
 [RFC5869].

 Since the pledge's OSCORE Sender ID is the empty byte string, when
 constructing the OSCORE option, the pledge sets the k bit in the
 OSCORE flag byte, but indicates a 0-length kid. The pledge
 transports its pledge identifier within the kid context field of the
 OSCORE option. The derivation in [I-D.ietf-core-object-security]
 results in OSCORE keys and a common IV for each side of the
 conversation. Nonces are constructed by XOR'ing the common IV with
 the current sequence number. For details on nonce and OSCORE option
 construction, refer to [I-D.ietf-core-object-security].

 Implementations MUST ensure that multiple CoAP requests, including to
 different JRCs, are properly incrementing the sequence numbers, so

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc5869

Vucinic, et al. Expires January 30, 2020 [Page 16]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 that the same sequence number is never reused in distinct requests.
 The pledge typically sends requests to different JRCs if it is not
 provisioned with the network identifier and attempts to join one
 network at a time. Failure to comply will break the security
 guarantees of the Authenticated Encryption with Associated Data
 (AEAD) algorithm because of nonce reuse.

 This OSCORE security context is used for initial joining of the
 (6LBR) pledge, where the (6LBR) pledge acts as a CoAP client, as well
 as for any later parameter updates, where the JRC acts as a CoAP
 client and the joined node as a CoAP server, as discussed in

Section 8.2. Note that when the (6LBR) pledge and the JRC change
 roles between CoAP client and CoAP server, the same OSCORE security
 context as initially derived remains in use and the derived
 parameters are unchanged, for example Sender ID when sending and
 Recipient ID when receiving (see Section 3.1 of
 [I-D.ietf-core-object-security]). A (6LBR) pledge is expected to
 have exactly one OSCORE security context with the JRC.

7.3.1. Replay Window and Persistency

 Both (6LBR) pledge and the JRC MUST implement a replay protection
 mechanism. The use of the default OSCORE replay protection mechanism
 specified in Section 3.2.2 of [I-D.ietf-core-object-security] is
 RECOMMENDED.

 Implementations MUST ensure that mutable OSCORE context parameters
 (Sender Sequence Number, Replay Window) are stored in persistent
 memory. A technique that prevents reuse of sequence numbers,
 detailed in Appendix B.1.1 of [I-D.ietf-core-object-security], MUST
 be implemented. Each update of the OSCORE Replay Window MUST be
 written to persistent memory.

 This is an important security requirement in order to guarantee nonce
 uniqueness and resistance to replay attacks across reboots and
 rejoins. Traffic between the (6LBR) pledge and the JRC is rare,
 making security outweigh the cost of writing to persistent memory.

7.3.2. OSCORE Error Handling

 Errors raised by OSCORE during the join process MUST be silently
 dropped, with no error response being signaled. The pledge MUST
 silently discard any response not protected with OSCORE, including
 error codes.

 Such errors may happen for a number of reasons, including failed
 lookup of an appropriate security context (e.g. the pledge attempting
 to join a wrong network), failed decryption, positive replay window

Vucinic, et al. Expires January 30, 2020 [Page 17]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 lookup, formatting errors (possibly due to malicious alterations in
 transit). Silently dropping OSCORE messages prevents a DoS attack on
 the pledge where the attacker could send bogus error responses,
 forcing the pledge to attempt joining one network at a time, until
 all networks have been tried.

7.3.3. Mandatory to Implement Algorithms

 The mandatory to implement AEAD algorithm for use with OSCORE is AES-
 CCM-16-64-128 from [RFC8152]. This is the algorithm used for
 securing IEEE Std 802.15.4 frames, and hardware acceleration for it
 is present in virtually all compliant radio chips. With this choice,
 CoAP messages are protected with an 8-byte CCM authentication tag,
 and the algorithm uses 13-byte long nonces.

 The mandatory to implement hash algorithm is SHA-256 [RFC4231]. The
 mandatory to implement key derivation function is HKDF [RFC5869],
 instantiated with a SHA-256 hash. See Appendix B for implementation
 guidance when code footprint is important.

8. Constrained Join Protocol (CoJP)

 The Constrained Join Protocol (CoJP) is a lightweight protocol over
 CoAP [RFC7252] and a secure channel provided by OSCORE
 [I-D.ietf-core-object-security]. CoJP allows the (6LBR) pledge to
 request admission into a network managed by the JRC, and for the JRC
 to configure the pledge with the parameters necessary for joining the
 network, or advertising it in the case of 6LBR pledge. The JRC may
 update the parameters at any time, by reaching out to the joined node
 that formerly acted as a (6LBR) pledge. For example, network-wide
 rekeying can be implemented by updating the keying material on each
 node.

 This section specifies how the CoJP messages are mapped to CoAP and
 OSCORE, CBOR data structures carrying different parameters,
 transported within CoAP payload, and the parameter semantics and
 processing rules.

 CoJP relies on the security properties provided by OSCORE. This
 includes end-to-end confidentiality, data authenticity, replay
 protection, and a secure binding of responses to requests.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc4231
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc7252

Vucinic, et al. Expires January 30, 2020 [Page 18]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 +-----------------------------------+
 | Constrained Join Protocol (CoJP) |
 +-----------------------------------+
 +-----------------------------------+ \
 | Requests / Responses | |
 |-----------------------------------| |
 | OSCORE | | CoAP
 |-----------------------------------| |
 | Messaging Layer | |
 +-----------------------------------+ /
 +-----------------------------------+
 | UDP |
 +-----------------------------------+

 Figure 2: Abstract layering of CoJP.

 When a (6LBR) pledge requests admission to a given network, it
 undergoes the CoJP join exchange that consists of:

 o the Join Request message, sent by the (6LBR) pledge to the JRC,
 potentially proxied by the JP. The Join Request message and its
 mapping to CoAP is specified in Section 8.1.1.

 o the Join Response message, sent by the JRC to the (6LBR) pledge,
 if the JRC successfully processes the Join Request using OSCORE
 and it determines through a mechanism that is out of scope of this
 specification that the (6LBR) pledge is authorized to join the
 network. The Join Response message is potentially proxied by the
 JP. The Join Response message and its mapping to CoAP is
 specified in Section 8.1.2.

 When the JRC needs to update the parameters of a joined node that
 formerly acted as a (6LBR) pledge, it executes the CoJP parameter
 update exchange that consists of:

 o the Parameter Update message, sent by the JRC to the joined node
 that formerly acted as a (6LBR) pledge. The Parameter Update
 message and its mapping to CoAP is specified in Section 8.2.1.

 o the Parameter Update Response message, sent by the joined node to
 the JRC in response to the Parameter Update message to signal
 successful reception of the updated parameters. The Parameter
 Update Response message and its mapping to CoAP is specified in

Section 8.2.2.

 The payload of CoJP messages is encoded with CBOR [RFC7049]. The
 CBOR data structures that may appear as the payload of different CoJP
 messages are specified in Section 8.4.

https://datatracker.ietf.org/doc/html/rfc7049

Vucinic, et al. Expires January 30, 2020 [Page 19]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

8.1. Join Exchange

 This section specifies the messages exchanged when the (6LBR) pledge
 requests admission and configuration parameters from the JRC.

8.1.1. Join Request Message

 The Join Request message that the (6LBR) pledge sends SHALL be mapped
 to a CoAP request:

 o The request method is POST.

 o The type is Confirmable (CON).

 o The Proxy-Scheme option is set to "coap".

 o The Uri-Host option is set to "6tisch.arpa". This is an anycast
 type of identifier of the JRC that is resolved to its IPv6 address
 by the JP or the 6LBR pledge.

 o The Uri-Path option is set to "j".

 o The OSCORE option SHALL be set according to
 [I-D.ietf-core-object-security]. The OSCORE security context used
 is the one derived in Section 7.3. The OSCORE kid context allows
 the JRC to retrieve the security context for a given pledge.

 o The payload is a Join_Request CBOR object, as defined in
Section 8.4.1.

 Since the Join Request is a confirmable message, the transmission at
 (6LBR) pledge will be controlled by CoAP's retransmission mechanism.
 The JP, when operating in a stateless manner, forwards this Join
 Request as a non-confirmable (NON) CoAP message, as specified in

Section 7. If the CoAP at (6LBR) pledge declares the message
 transmission as failure, the (6LBR) pledge SHOULD attempt to join the
 next advertised 6TiSCH network. See Section 7.2 for recommended
 values of CoAP settings to use during the join exchange.

 If all join attempts to advertised networks have failed, the (6LBR)
 pledge SHOULD signal to the user the presence of an error condition,
 through some out-of-band mechanism.

8.1.2. Join Response Message

 The Join Response message that the JRC sends SHALL be mapped to a
 CoAP response:

Vucinic, et al. Expires January 30, 2020 [Page 20]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 o The response Code is 2.04 (Changed).

 o The payload is a Configuration CBOR object, as defined in
Section 8.4.2.

8.2. Parameter Update Exchange

 During the network lifetime, parameters returned as part of the Join
 Response may need to be updated. One typical example is the update
 of link-layer keying material for the network, a process known as
 rekeying. This section specifies a generic mechanism when this
 parameter update is initiated by the JRC.

 At the time of the join, the (6LBR) pledge acts as a CoAP client and
 requests the network parameters through a representation of the "/j"
 resource, exposed by the JRC. In order for the update of these
 parameters to happen, the JRC needs to asynchronously contact the
 joined node. The use of the CoAP Observe option for this purpose is
 not feasible due to the change in the IPv6 address when the pledge
 becomes the joined node and obtains a global address.

 Instead, once the (6LBR) pledge receives and successfully validates
 the Join Response and so becomes a joined node, it becomes a CoAP
 server. The joined node exposes the "/j" resource that is used by
 the JRC to update the parameters. Consequently, the JRC operates as
 a CoAP client when updating the parameters. The request/response
 exchange between the JRC and the (6LBR) pledge happens over the
 already-established OSCORE secure channel.

8.2.1. Parameter Update Message

 The Parameter Update message that the JRC sends to the joined node
 SHALL be mapped to a CoAP request:

 o The request method is POST.

 o The type is Confirmable (CON).

 o The Uri-Path option is set to "j".

 o The OSCORE option SHALL be set according to
 [I-D.ietf-core-object-security]. The OSCORE security context used
 is the one derived in Section 7.3. When a joined node receives a
 request with the Sender ID set to 0x4a5243 (ID of the JRC), it is
 able to correctly retrieve the security context with the JRC.

 o The payload is a Configuration CBOR object, as defined in
Section 8.4.2.

Vucinic, et al. Expires January 30, 2020 [Page 21]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 The JRC has implicit knowledge on the global IPv6 address of the
 joined node, as it knows the pledge identifier that the joined node
 used when it acted as a pledge, and the IPv6 network prefix. The JRC
 uses this implicitly derived IPv6 address of the joined node to
 directly address CoAP messages to it.

 In case the JRC does not receive a response to a Parameter Update
 message, it attempts multiple retransmissions, as configured by the
 underlying CoAP retransmission mechanism triggered for confirmable
 messages. Finally, if the CoAP implementation declares the
 transmission as failure, the JRC may consider this as a hint that the
 joined node is no longer in the network. How the JRC decides when to
 stop attempting to contact a previously joined node is out of scope
 of this specification but security considerations on the reuse of
 assigned resources apply, as discussed in Section 9.

8.2.2. Parameter Update Response Message

 The Parameter Update Response message that the joined node sends to
 the JRC SHALL be mapped to a CoAP response:

 o The response Code is 2.04 (Changed).

 o The payload is empty.

8.3. Error Handling

8.3.1. CoJP CBOR Object Processing

 CoJP CBOR objects are transported within both CoAP requests and
 responses. This section describes handling in case certain CoJP CBOR
 object parameters are not supported by the implementation or their
 processing fails. See Section 7.3.2 for the handling of errors that
 may be raised by the underlying OSCORE implementation.

 When such a parameter is detected in a CoAP request (Join Request
 message, Parameter Update message), a Diagnostic Response message
 MUST be returned. A Diagnostic Response message maps to a CoAP
 response and is specified in Section 8.3.2.

 When a parameter that cannot be acted upon is encountered while
 processing a CoJP object in a CoAP response (Join Response message),
 a (6LBR) pledge SHOULD reattempt to join. In this case, the (6LBR)
 pledge SHOULD include the Unsupported Configuration CBOR object
 within the Join Request object in the following Join Request message.
 The Unsupported Configuration CBOR object is self-contained and
 enables the (6LBR) pledge to signal any parameters that the
 implementation of the networking stack may not support. A (6LBR)

Vucinic, et al. Expires January 30, 2020 [Page 22]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 pledge MUST NOT attempt more than MAX_RETRANSMIT number of attempts
 to join if the processing of the Join Response message fails each
 time. If COJP_MAX_JOIN_ATTEMPTS number of attempts is reached
 without success, the (6LBR) pledge SHOULD signal to the user the
 presence of an error condition, through some out-of-band mechanism.

8.3.2. Diagnostic Response Message

 The Diagnostic Response message is returned for any CoJP request when
 the processing of the payload failed. The Diagnostic Response
 message is protected by OSCORE as any other CoJP protocol message.

 The Diagnostic Response message SHALL be mapped to a CoAP response:

 o The response Code is 4.00 (Bad Request).

 o The payload is an Unsupported Configuration CBOR object, as
 defined in Section 8.4.5, containing more information about the
 parameter that triggered the sending of this message.

8.3.3. Failure Handling

 The Parameter Update exchange may be triggered at any time during the
 network lifetime, which may span several years. During this period,
 it may occur that a joined node or the JRC experience unexpected
 events such as reboots or complete failures.

 This document mandates that the mutable parameters in the security
 context are written to persistent memory (see Section 7.3.1) by both
 the JRC and pledges (joined nodes). As the joined node (pledge) is
 typically a constrained device that handles the write operations to
 persistent memory in a predictable manner, the retrieval of mutable
 security context parameters is feasible across reboots such that
 there is no risk of AEAD nonce reuse due to reinitialized Sender
 Sequence numbers, or of a replay attack due to the reinitialized
 replay window. JRC may be hosted on a generic machine where the
 write operation to persistent memory may lead to unpredictable delays
 due to caching. In case of a reboot event at JRC occurring before
 the cached data is written to persistent memory, the loss of mutable
 security context parameters is likely which consequently poses the
 risk of AEAD nonce reuse.

 In the event of a complete device failure, where the mutable security
 context parameters cannot be retrieved, it is expected that a failed
 joined node is replaced with a new physical device, using a new
 pledge identifier and a PSK. When such a failure event occurs at the
 JRC, it is possible that the static information on provisioned
 pledges, like PSKs and pledge identifiers, can be retrieved through

Vucinic, et al. Expires January 30, 2020 [Page 23]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 available backups. However, it is likely that the information about
 joined nodes, their assigned short identifiers and mutable security
 context parameters is lost. If this is the case, during the process
 of JRC reinitialization, the network administrator MUST force through
 out-of-band means all the networks managed by the failed JRC to
 rejoin, through e.g. the reinitialization of the 6LBR nodes and
 freshly generated dynamic cryptographic keys and other parameters
 that have influence on the security properties of the network.

 In order to recover from such a failure event, the reinitialized JRC
 can trigger the renegotiation of the OSCORE security context through
 the procedure described in Appendix B.2 of
 [I-D.ietf-core-object-security]. Aware of the failure event, the
 reinitialized JRC responds to the first join request of each pledge
 it is managing with a 4.01 Unauthorized error and a random nonce.
 The pledge verifies the error response and then initiates the CoJP
 join exchange using a new OSCORE security context derived from an ID
 Context consisting of the concatenation of two nonces, one that it
 received from the JRC and the other that the pledge generates
 locally. After verifying the join request with the new ID Context
 and the derived OSCORE security context, the JRC should consequently
 take action in mapping the new ID Context with the previously used
 pledge identifier. How JRC handles this mapping is implementation
 specific.

 The described procedure is specified in Appendix B.2 of
 [I-D.ietf-core-object-security] and is RECOMMENDED in order to handle
 the failure events or any other event that may lead to the loss of
 mutable security context parameters. The length of nonces exchanged
 using this procedure SHOULD be at least 8 bytes.

 The procedure does require both the pledge and the JRC to have good
 sources of randomness. While this is typically not an issue at the
 JRC side, the constrained device hosting the pledge may pose
 limitations in this regard. If the procedure outlined in

Appendix B.2 of [I-D.ietf-core-object-security] is not supported by
 the pledge, the network administrator MUST take action in
 reprovisioning the concerned devices with freshly generated
 parameters, through out-of-band means.

8.4. CoJP Objects

 This section specifies the structure of CoJP CBOR objects that may be
 carried as the payload of CoJP messages. Some of these objects may
 be received both as part of the CoJP join exchange when the device
 operates as a (CoJP) pledge, or the parameter update exchange, when
 the device operates as a joined (6LBR) node.

Vucinic, et al. Expires January 30, 2020 [Page 24]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

8.4.1. Join Request Object

 The Join_Request structure is built on a CBOR map object.

 The set of parameters that can appear in a Join_Request object is
 summarized below. The labels can be found in the "CoJP Parameters"
 registry Section 11.1.

 o role: The identifier of the role that the pledge requests to play
 in the network once it joins, encoded as an unsigned integer.
 Possible values are specified in Table 1. This parameter MAY be
 included. In case the parameter is omitted, the default value of
 0, i.e. the role "6TiSCH Node", MUST be assumed.

 o network identifier: The identifier of the network, as discussed in
Section 3, encoded as a CBOR byte string. When present in the

 Join_Request, it hints to the JRC the network that the pledge is
 requesting to join, enabling the JRC to manage multiple networks.
 The pledge obtains the value of the network identifier from the
 received EB frames. This parameter MUST be included in a
 Join_Request object regardless of the role parameter value.

 o unsupported configuration: The identifier of the parameters that
 are not supported by the implementation, encoded as an
 Unsupported_Configuration object described in Section 8.4.5. This
 parameter MAY be included. If a (6LBR) pledge previously
 attempted to join and received a valid Join Response message over
 OSCORE, but failed to act on its payload (Configuration object),
 it SHOULD include this parameter to facilitate the recovery and
 debugging.

 The CDDL fragment that represents the text above for the Join_Request
 follows.

 Join_Request = {
 ? 1 : uint, ; role
 ? 5 : bstr, ; network identifier
 ? 8 : Unsupported_Configuration ; unsupported configuration
 }

Vucinic, et al. Expires January 30, 2020 [Page 25]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 +--------+-------+-------------------------------------+------------+
 | Name | Value | Description | Reference |
 +--------+-------+-------------------------------------+------------+
6TiSCH	0	The pledge requests to play the	[[this
Node		role of a regular 6TiSCH node, i.e.	document]]
		non-6LBR node.	
6LBR	1	The pledge requests to play the	[[this
		role of 6LoWPAN Border Router	document]]
		(6LBR).	
 +--------+-------+-------------------------------------+------------+

 Table 1: Role values.

8.4.2. Configuration Object

 The Configuration structure is built on a CBOR map object. The set
 of parameters that can appear in a Configuration object is summarized
 below. The labels can be found in "CoJP Parameters" registry

Section 11.1.

 o link-layer key set: An array encompassing a set of cryptographic
 keys and their identifiers that are currently in use in the
 network, or that are scheduled to be used in the future. The
 encoding of individual keys is described in Section 8.4.3. The
 link-layer key set parameter MAY be included in a Configuration
 object. When present, the link-layer key set parameter MUST
 contain at least one key. When a pledge is joining for the first
 time and receives this parameter, before sending the first
 outgoing frame secured with a received key, the pledge needs to
 successfully complete the security processing of an incoming
 frame. To do so, the pledge can wait to receive a new frame, or
 it can store an EB frame that it used to find the JP and use it
 for immediate security processing upon reception of the key set.
 This parameter is also used to implement rekeying in the network.
 How the keys are installed and used differs for the 6LBR and other
 (regular) nodes, and this is explained in Section 8.4.3.1 and

Section 8.4.3.2.

 o short identifier: a compact identifier assigned to the pledge.
 The short identifier structure is described in Section 8.4.4. The
 short identifier parameter MAY be included in a Configuration
 object.

 o JRC address: the IPv6 address of the JRC, encoded as a byte
 string, with the length of 16 bytes. If the length of the byte
 string is different from 16, the parameter MUST be discarded. If
 the JRC is not co-located with the 6LBR and has a different IPv6

Vucinic, et al. Expires January 30, 2020 [Page 26]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 address than the 6LBR, this parameter MUST be included. In the
 special case where the JRC is co-located with the 6LBR and has the
 same IPv6 address as the 6LBR, this parameter MAY be included. If
 the JRC address parameter is not present in the Configuration
 object, this indicates that the JRC has the same IPv6 address as
 the 6LBR. The joined node can then discover the IPv6 address of
 the JRC through network control traffic. See Section 6.

 o blacklist: An array encompassing a list of pledge identifiers that
 are blacklisted by the JRC, with each pledge identifier encoded as
 a byte string. The blacklist parameter MAY be included in a
 Configuration object. When present, the array MUST contain zero
 or more byte strings encoding pledge identifiers. The joined node
 MUST silently drop any link-layer frames originating from the
 pledge identifiers enclosed in the blacklist parameter. When this
 parameter is received, its value MUST overwrite any previously set
 values. This parameter allows the JRC to configure the node
 acting as a JP to filter out traffic from misconfigured or
 malicious pledges before their traffic is forwarded into the
 network. If the JRC decides to remove a given pledge identifier
 from a blacklist, it omits the pledge identifier in the blacklist
 parameter value it sends next.

 o join rate: Average data rate of join traffic forwarded into the
 network that should not be exceeded when a joined node operates as
 a JP, encoded as an unsigned integer in bytes per second. The
 join rate parameter MAY be included in a Configuration object.
 This parameter allows the JRC to configure different nodes in the
 network to operate as JP, and act in case of an attack by
 throttling the rate at which JP forwards unauthenticated traffic
 into the network. When this parameter is present in a
 Configuration object, the value MUST be used to set the
 PROBING_RATE of CoAP at the joined node for communication with the
 JRC. In case this parameter is set to zero, a joined node MUST
 silently drop any join traffic coming from unauthenticated
 pledges. In case this parameter is omitted, the value of positive
 infinity SHOULD be assumed. Node operating as a JP MAY use
 another mechanism that is out of scope of this specification to
 configure PROBING_RATE of CoAP in the absence of join rate
 parameter from the Configuration object.

 The CDDL fragment that represents the text above for the
 Configuration follows. Structures Link_Layer_Key and
 Short_Identifier are specified in Section 8.4.3 and Section 8.4.4.

Vucinic, et al. Expires January 30, 2020 [Page 27]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 Configuration = {
 ? 2 : [+Link_Layer_Key], ; link-layer key set
 ? 3 : Short_Identifier, ; short identifier
 ? 4 : bstr, ; JRC address
 ? 6 : [*bstr], ; blacklist
 ? 7 : uint ; join rate
 }

Vucinic, et al. Expires January 30, 2020 [Page 28]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 +---------------+-------+----------+-------------------+------------+
 | Name | Label | CBOR | Description | Reference |
 | | | type | | |
 +---------------+-------+----------+-------------------+------------+
role	1	unsigned	Identifies the	[[this
		integer	role parameter	document]]
link-layer	2	array	Identifies the	[[this
key set			array carrying	document]]
			one or more link-	
			level	
			cryptographic	
			keys	
short	3	array	Identifies the	[[this
identifier			assigned short	document]]
			identifier	
JRC address	4	byte	Identifies the	[[this
		string	IPv6 address of	document]]
			the JRC	
network	5	byte	Identifies the	[[this
identifier		string	network	document]]
			identifier	
			parameter	
blacklist	6	array	Identifies the	[[this
			blacklist	document]]
			parameter	
join rate	7	unsigned	Identifier the	[[this
		integer	join rate	document]]
			parameter	
unsupported	8	array	Identifies the	[[this
configuration			unsupported	document]]
			configuration	
			parameter	
 +---------------+-------+----------+-------------------+------------+

 Table 2: CoJP parameters map labels.

8.4.3. Link-Layer Key

 The Link_Layer_Key structure encompasses the parameters needed to
 configure the link-layer security module: the key identifier; the
 value of the cryptographic key; the link-layer algorithm identifier

Vucinic, et al. Expires January 30, 2020 [Page 29]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 and the security level and the frame types that it should be used
 with, both for outgoing and incoming security operations; and any
 additional information that may be needed to configure the key.

 For encoding compactness, the Link_Layer_Key object is not enclosed
 in a top-level CBOR object. Rather, it is transported as a sequence
 of CBOR elements, some being optional.

 The set of parameters that can appear in a Link_Layer_Key object is
 summarized below, in order:

 o key_id: The identifier of the key, encoded as a CBOR unsigned
 integer. This parameter MUST be included. If the decoded CBOR
 unsigned integer value is larger than the maximum link-layer key
 identifier, the key is considered invalid. In case the key is
 considered invalid, the key MUST be discarded and the
 implementation MUST signal the error as specified in

Section 8.3.1.

 o key_usage: The identifier of the link-layer algorithm, security
 level and link-layer frame types that can be used with the key,
 encoded as an integer. This parameter MAY be included. Possible
 values and the corresponding link-layer settings are specified in
 IANA "CoJP Key Usage" registry (Section 11.2). In case the
 parameter is omitted, the default value of 0 from Table 3 MUST be
 assumed.

 o key_value: The value of the cryptographic key, encoded as a byte
 string. This parameter MUST be included. If the length of the
 byte string is different than the corresponding key length for a
 given algorithm specified by the key_usage parameter, the key MUST
 be discarded and the implementation MUST signal the error as
 specified in Section 8.3.1.

 o key_addinfo: Additional information needed to configure the link-
 layer key, encoded as a byte string. This parameter MAY be
 included. The processing of this parameter is dependent on the
 link-layer technology in use and a particular keying mode.

 To be able to decode the keys that are present in the link-layer key
 set, and to identify individual parameters of a single Link_Layer_Key
 object, the CBOR decoder needs to differentiate between elements
 based on the CBOR type. For example, a uint that follows a byte
 string signals to the decoder that a new Link_Layer_Key object is
 being processed.

 The CDDL fragment that represents the text above for the
 Link_Layer_Key follows.

Vucinic, et al. Expires January 30, 2020 [Page 30]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 Link_Layer_Key = (
 key_id : uint,
 ? key_usage : int,
 key_value : bstr,
 ? key_addinfo : bstr,
)

 +-----------------+-----+------------------+-------------+----------+
 | Name | Val | Algorithm | Description | Referenc |
 | | ue | | | e |
 +-----------------+-----+------------------+-------------+----------+
6TiSCH-K1K2	0	IEEE802154-AES-	Use MIC-32	[[this d
-ENC-MIC32		CCM-128	for EBs,	ocument]
			ENC-MIC-32]
			for DATA	
			and ACKNOWL	
			EDGMENT.	
6TiSCH-K1K2	1	IEEE802154-AES-	Use MIC-64	[[this d
-ENC-MIC64		CCM-128	for EBs,	ocument]
			ENC-MIC-64]
			for DATA	
			and ACKNOWL	
			EDGMENT.	
6TiSCH-K1K2	2	IEEE802154-AES-	Use MIC-128	[[this d
-ENC-MIC128		CCM-128	for EBs,	ocument]
			ENC-MIC-128]
			for DATA	
			and ACKNOWL	
			EDGMENT.	
6TiSCH-	3	IEEE802154-AES-	Use MIC-32	[[this d
K1K2-MIC32		CCM-128	for EBs,	ocument]
			DATA and AC]
			KNOWLEDGMEN	
			T.	
6TiSCH-	4	IEEE802154-AES-	Use MIC-64	[[this d
K1K2-MIC64		CCM-128	for EBs,	ocument]
			DATA and AC]
			KNOWLEDGMEN	
			T.	
6TiSCH-	5	IEEE802154-AES-	Use MIC-128	[[this d
K1K2-MIC128		CCM-128	for EBs,	ocument]
			DATA and AC]
			KNOWLEDGMEN	

Vucinic, et al. Expires January 30, 2020 [Page 31]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

			T.	
6TiSCH-K1-MIC32	6	IEEE802154-AES-	Use MIC-32	[[this d
		CCM-128	for EBs.	ocument]
]
6TiSCH-K1-MIC64	7	IEEE802154-AES-	Use MIC-64	[[this d
		CCM-128	for EBs.	ocument]
]
6TiSCH-K1-MIC12	8	IEEE802154-AES-	Use MIC-128	[[this d
8		CCM-128	for EBs.	ocument]
]
6TiSCH-K2-MIC32	9	IEEE802154-AES-	Use MIC-32	[[this d
		CCM-128	for DATA	ocument]
			and ACKNOWL]
			EDGMENT.	
6TiSCH-K2-MIC64	10	IEEE802154-AES-	Use MIC-64	[[this d
		CCM-128	for DATA	ocument]
			and ACKNOWL]
			EDGMENT.	
6TiSCH-K2-MIC12	11	IEEE802154-AES-	Use MIC-128	[[this d
8		CCM-128	for DATA	ocument]
			and ACKNOWL]
			EDGMENT.	
6TiSCH-K2-ENC-	12	IEEE802154-AES-	Use ENC-	[[this d
MIC32		CCM-128	MIC-32 for	ocument]
			DATA and AC]
			KNOWLEDGMEN	
			T.	
6TiSCH-K2-ENC-	13	IEEE802154-AES-	Use ENC-	[[this d
MIC64		CCM-128	MIC-64 for	ocument]
			DATA and AC]
			KNOWLEDGMEN	
			T.	
6TiSCH-K2-ENC-	14	IEEE802154-AES-	Use ENC-	[[this d
MIC128		CCM-128	MIC-128 for	ocument]
			DATA and AC]
			KNOWLEDGMEN	
			T.	
 +-----------------+-----+------------------+-------------+----------+

Vucinic, et al. Expires January 30, 2020 [Page 32]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 Table 3: Key Usage values.

8.4.3.1. Rekeying of (6LoWPAN) Border Routers (6LBR)

 When the 6LoWPAN Border Router (6LBR) receives the Configuration
 object containing a link-layer key set, it MUST immediately install
 and start using the new keys for all outgoing traffic, and remove any
 old keys it has installed from the previous key set after a delay of
 COJP_REKEYING_GUARD_TIME has passed. This mechanism is used by the
 JRC to force the 6LBR to start sending traffic with the new key. The
 decision is taken by the JRC when it has determined that the new key
 has been made available to all (or some overwhelming majority) of
 nodes. Any node that the JRC has not yet reached at that point is
 either non-functional or in extended sleep such that it will not be
 reached. To get the key update, such node needs to go through the
 join process anew.

8.4.3.2. Rekeying of regular (6LoWPAN) Nodes (6LN)

 When a regular 6LN node receives the Configuration object with a
 link-layer key set, it MUST install the new keys. The 6LN will use
 both the old and the new keys to decrypt and authenticate any
 incoming traffic that arrives based upon the key identifier in the
 packet. It MUST continue to use the old keys for all outgoing
 traffic until it has detected that the network has switched to the
 new key set.

 The detection of network switch is based upon the receipt of traffic
 secured with the new keys. Upon reception and successful security
 processing of a link-layer frame secured with a key from the new key
 set, a 6LN node MUST then switch to sending outgoing traffic using
 the keys from the new set for all outgoing traffic. The 6LN node
 MUST remove any old keys it has installed from the previous key set
 after a delay of COJP_REKEYING_GUARD_TIME has passed after it starts
 using the new key set.

 Sending of traffic with the new keys signals to other downstream
 nodes to switch to their new key, and the affect is that there is a
 ripple of key updates in outward concentric circles around each 6LBR.

8.4.3.3. Use in IEEE Std 802.15.4

 When Link_Layer_Key is used in the context of [IEEE802.15.4], the
 following considerations apply.

 Signaling of different keying modes of [IEEE802.15.4] is done based
 on the parameter values present in a Link_Layer_Key object.

Vucinic, et al. Expires January 30, 2020 [Page 33]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 o Key ID Mode 0x00 (Implicit, pairwise): key_id parameter MUST be
 set to 0. key_addinfo parameter MUST be present. key_addinfo
 parameter MUST be set to the link-layer address(es) of a single
 peer with whom the key should be used. Depending on the
 configuration of the network, key_addinfo may carry the peer's
 long link-layer address (i.e. pledge identifier), short link-layer
 address, or their concatenation with the long address being
 encoded first. Which address is carried is determined from the
 length of the byte string.

 o Key ID Mode 0x01 (Key Index): key_id parameter MUST be set to a
 value different than 0. key_addinfo parameter MUST NOT be
 present.

 o Key ID Mode 0x02 (4-byte Explicit Key Source): key_id parameter
 MUST be set to a value different than 0. key_addinfo parameter
 MUST be present. key_addinfo parameter MUST be set to a byte
 string, exactly 4 bytes long. key_addinfo parameter carries the
 Key Source parameter used to configure [IEEE802.15.4].

 o Key ID Mode 0x03 (8-byte Explicit Key Source): key_id parameter
 MUST be set to a value different than 0. key_addinfo parameter
 MUST be present. key_addinfo parameter MUST be set to a byte
 string, exactly 8 bytes long. key_addinfo parameter carries the
 Key Source parameter used to configure [IEEE802.15.4].

 In all cases, key_usage parameter determines how a particular key
 should be used in respect to incoming and outgoing security policies.

 For Key ID Modes 0x01 - 0x03, parameter key_id sets the "secKeyIndex"
 parameter of [IEEE802.15.4] that is signaled in all outgoing frames
 secured with a given key. The maximum value key_id can have is 254.
 The value of 255 is reserved in [IEEE802.15.4] and is therefore
 considered invalid.

 Key ID Mode 0x00 (Implicit, pairwise) enables the JRC to act as a
 trusted third party and assign pairwise keys between nodes in the
 network. How JRC learns about the network topology is out of scope
 of this specification, but could be done through 6LBR - JRC signaling
 for example. Pairwise keys could also be derived through a key
 agreement protocol executed between the peers directly, where the
 authentication is based on the symmetric cryptographic material
 provided to both peers by the JRC. Such a protocol is out of scope
 of this specification.

 Implementations MUST use different link-layer keys when using
 different authentication tag (MIC) lengths, as using the same key
 with different authentication tag lengths might be unsafe. For

Vucinic, et al. Expires January 30, 2020 [Page 34]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 example, this prohibits the usage of the same key for both MIC-32 and
 MIC-64 levels. See Annex B.4.3 of [IEEE802.15.4] for more
 information.

8.4.4. Short Identifier

 The Short_Identifier object represents an identifier assigned to the
 pledge. It is encoded as a CBOR array object, containing, in order:

 o identifier: The short identifier assigned to the pledge, encoded
 as a byte string. This parameter MUST be included. The
 identifier MUST be unique in the set of all identifiers assigned
 in a network that is managed by a JRC. In case the identifier is
 invalid, the decoder MUST silently ignore the Short_Identifier
 object.

 o lease_time: The validity of the identifier in hours after the
 reception of the CBOR object, encoded as a CBOR unsigned integer.
 This parameter MAY be included. The node MUST stop using the
 assigned short identifier after the expiry of the lease_time
 interval. It is up to the JRC to renew the lease before the
 expiry of the previous interval. The JRC updates the lease by
 executing the Parameter Update exchange with the node and
 including the Short_Identifier in the Configuration object, as
 described in Section 8.2. In case the lease expires, the node
 SHOULD initiate a new join exchange, as described in Section 8.1.
 In case this parameter is omitted, the value of positive infinity
 MUST be assumed, meaning that the identifier is valid for as long
 as the node participates in the network.

 The CDDL fragment that represents the text above for the
 Short_Identifier follows.

 Short_Identifier = [
 identifier : bstr,
 ? lease_time : uint
]

8.4.4.1. Use in IEEE Std 802.15.4

 When Short_Identifier is used in the context of [IEEE802.15.4], the
 following considerations apply.

 The identifier MUST be used to set the short address of IEEE Std
 802.15.4 module. When operating in TSCH mode, the identifier MUST be
 unique in the set of all identifiers assigned in multiple networks
 that share link-layer key(s). If the length of the byte string
 corresponding to the identifier parameter is different than 2, the

Vucinic, et al. Expires January 30, 2020 [Page 35]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 identifier is considered invalid. The values 0xfffe and 0xffff are
 reserved by [IEEE802.15.4] and their use is considered invalid.

 The security properties offered by the [IEEE802.15.4] link-layer in
 TSCH mode are conditioned on the uniqueness requirement of the short
 identifier (i.e. short address). The short address is one of the
 inputs in the construction of the nonce, which is used to protect
 link-layer frames. If a misconfiguration occurs, and the same short
 address is assigned twice under the same link-layer key, the loss of
 security properties is eminent. For this reason, practices where the
 pledge generates the short identifier locally are not safe and are
 likely to result in the loss of link-layer security properties.

 The JRC MUST ensure that at any given time there are never two same
 short identifiers being used under the same link-layer key. If the
 lease_time parameter of a given Short_Identifier object is set to
 positive infinity, care needs to be taken that the corresponding
 identifier is not assigned to another node until the JRC is certain
 that it is no longer in use, potentially through out-of-band
 signaling. If the lease_time parameter expires for any reason, the
 JRC should take into consideration potential ongoing transmissions by
 the joined node, which may be hanging in the queues, before assigning
 the same identifier to another node.

8.4.5. Unsupported Configuration Object

 The Unsupported_Configuration object is encoded as a CBOR array,
 containing at least one Unsupported_Parameter object. Each
 Unsupported_Parameter object is a sequence of CBOR elements without
 an enclosing top-level CBOR object for compactness. The set of
 parameters that appear in an Unsupported_Parameter object is
 summarized below, in order:

 o code: Indicates the capability of acting on the parameter signaled
 by parameter_label, encoded as an integer. This parameter MUST be
 included. Possible values of this parameter are specified in the
 IANA "CoJP Unsupported Configuration Code Registry"
 (Section 11.3).

 o parameter_label: Indicates the parameter. This parameter MUST be
 included. Possible values of this parameter are specified in the
 label column of the IANA "CoJP Parameters" registry
 (Section 11.1).

 o parameter_addinfo: Additional information about the parameter that
 cannot be acted upon. This parameter MUST be included. In case
 the code is set to "Unsupported", parameter_addinfo gives
 additional information to the JRC. If the parameter indicated by

Vucinic, et al. Expires January 30, 2020 [Page 36]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 parameter_label cannot be acted upon regardless of its value,
 parameter_addinfo MUST be set to null, signaling to the JRC that
 it SHOULD NOT attempt to configure the parameter again. If the
 pledge can act on the parameter, but cannot configure the setting
 indicated by the parameter value, the pledge can hint this to the
 JRC. In this case, parameter_addinfo MUST be set to the value of
 the parameter that cannot be acted upon following the normative
 parameter structure specified in this document. For example, it
 is possible to include only a subset of the link-layer key set
 object, signaling the keys that cannot be acted upon, or the
 entire key set that was received. In case the code is set to
 "Malformed", parameter_addinfo MUST be set to null, signaling to
 the JRC that it SHOULD NOT attempt to configure the parameter
 again.

 The CDDL fragment that represents the text above for
 Unsupported_Configuration and Unsupported_Parameter objects follows.

 Unsupported_Configuration = [
 + parameter : Unsupported_Parameter
]

 Unsupported_Parameter = (
 code : int,
 parameter_label : int,
 parameter_addinfo : nil / any
)

 +-------------+-------+--------------------------------+------------+
 | Name | Value | Description | Reference |
 +-------------+-------+--------------------------------+------------+
Unsupported	0	The indicated setting is not	[[this
		supported by the networking	document]]
		stack implementation.	
Malformed	1	The indicated parameter value	[[this
		is malformed.	document]]
 +-------------+-------+--------------------------------+------------+

 Table 4: Unsupported Configuration code values.

8.5. Recommended Settings

 This section gives RECOMMENDED values of CoJP settings.

Vucinic, et al. Expires January 30, 2020 [Page 37]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 +--------------------------+---------------+
 | Name | Default Value |
 +--------------------------+---------------+
 | COJP_MAX_JOIN_ATTEMPTS | 4 |
 | | |
 | COJP_REKEYING_GUARD_TIME | 12 seconds |
 +--------------------------+---------------+

 Recommended CoJP settings.

 The COJP_REKEYING_GUARD_TIME value SHOULD take into account possible
 retransmissions at the link layer due to imperfect wireless links.

9. Security Considerations

 Since this document uses the pledge identifier to set the ID Context
 parameter of OSCORE, an important security requirement is that the
 pledge identifier is unique in the set of all pledge identifiers
 managed by a JRC. The uniqueness of the pledge identifier ensures
 unique (key, nonce) pairs for AEAD algorithm used by OSCORE. It also
 allows the JRC to retrieve the correct security context, upon the
 reception of a Join Request message. The management of pledge
 identifiers is simplified if the globally unique EUI-64 is used, but
 this comes with privacy risks, as discussed in Section 10.

 This document further mandates that the (6LBR) pledge and the JRC are
 provisioned with unique PSKs. The PSK is used to set the OSCORE
 Master Secret during security context derivation. This derivation
 process results in OSCORE keys that are important for mutual
 authentication of the (6LBR) pledge and the JRC. Should an attacker
 come to know the PSK, then a man-in-the-middle attack is possible.

 Many vendors are known to use unsafe practices when generating and
 provisioning PSKs. The use of a single PSK shared among a group of
 devices is a common pitfall that results in poor security. In this
 case, the compromise of a single device is likely to lead to a
 compromise of the entire batch, with the attacker having the ability
 to impersonate a legitimate device and join the network, generate
 bogus data and disturb the network operation. As a reminder, recall
 the well-known problem with Bluetooth headsets with a "0000" pin.
 Additionally, some vendors use methods such as scrambling or hashing
 of device serial numbers or their EUI-64 to generate "unique" PSKs.
 Without any secret information involved, the effort that the attacker
 needs to invest into breaking these unsafe derivation methods is
 quite low, resulting in the possible impersonation of any device from
 the batch, without even needing to compromise a single device. The
 use of cryptographically secure random number generators to generate

Vucinic, et al. Expires January 30, 2020 [Page 38]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 the PSK is RECOMMENDED, see [NIST800-90A] for different mechanisms
 using deterministic methods.

 The JP forwards the unauthenticated join traffic into the network. A
 data cap on the JP prevents it from forwarding more traffic than the
 network can handle. The data cap can be configured by the JRC by
 including a join rate parameter in the Join Response and it is
 implemented through the CoAP's PROBING_RATE setting. The use of a
 data cap at a JP forces attackers to use more than one JP if they
 wish to overwhelm the network. Marking the join traffic packets with
 a non-zero DSCP allows the network to carry the traffic if it has
 capacity, but encourages the network to drop the extra traffic rather
 than add bandwidth due to that traffic.

 The shared nature of the "minimal" cell used for the join traffic
 makes the network prone to a DoS attack by congesting the JP with
 bogus traffic. Such an attacker is limited by its maximum transmit
 power. The redundancy in the number of deployed JPs alleviates the
 issue and also gives the pledge a possibility to use the best
 available link for joining. How a network node decides to become a
 JP is out of scope of this specification.

 At the beginning of the join process, the pledge has no means of
 verifying the content in the EB, and has to accept it at "face
 value". In case the pledge tries to join an attacker's network, the
 Join Response message will either fail the security check or time
 out. The pledge may implement a temporary blacklist in order to
 filter out undesired EBs and try to join using the next seemingly
 valid EB. This blacklist alleviates the issue, but is effectively
 limited by the node's available memory. Note that this temporary
 blacklist is different from the one communicated as part of the CoJP
 Configuration object as it helps pledge fight a DoS attack. These
 bogus beacons prolong the join time of the pledge, and so the time
 spent in "minimal" [RFC8180] duty cycle mode. The blacklist
 communicated as part of the CoJP Configuration object helps JP fight
 a DoS attack by a malicious pledge.

10. Privacy Considerations

 The join solution specified in this document relies on the uniqueness
 of the pledge identifier in the set of all pledge identifiers managed
 by a JRC. This identifier is transferred in clear as an OSCORE kid
 context. The use of the globally unique EUI-64 as pledge identifier
 simplifies the management but comes with certain privacy risks. The
 implications are thoroughly discussed in [RFC7721] and comprise
 correlation of activities over time, location tracking, address
 scanning and device-specific vulnerability exploitation. Since the
 join process occurs rarely compared to the network lifetime, long-

https://datatracker.ietf.org/doc/html/rfc8180
https://datatracker.ietf.org/doc/html/rfc7721

Vucinic, et al. Expires January 30, 2020 [Page 39]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 term threats that arise from using EUI-64 as the pledge identifier
 are minimal. In addition, the Join Response message contains a short
 address which is assigned by the JRC to the (6LBR) pledge. The
 assigned short address SHOULD be uncorrelated with the long-term
 pledge identifier. The short address is encrypted in the response.
 Once the join process completes, the new node uses the short
 addresses for all further layer 2 (and layer-3) operations. This
 reduces the aforementioned privacy risks as the short layer-2 address
 (visible even when the network is encrypted) is not traceable between
 locations and does not disclose the manufacturer, as is the case of
 EUI-64. However, an eavesdropper with access to the radio medium
 during the join process may be able to correlate the assigned short
 address with the extended address based on timing information with a
 non-negligible probability. This probability decreases with an
 increasing number of pledges joining concurrently.

11. IANA Considerations

 Note to RFC Editor: Please replace all occurrences of "[[this
 document]]" with the RFC number of this specification.

 This document allocates a well-known name under the .arpa name space
 according to the rules given in [RFC3172]. The name "6tisch.arpa" is
 requested. No subdomains are expected. No A, AAAA or PTR record is
 requested.

11.1. CoJP Parameters Registry

 This section defines a sub-registry within the "IPv6 over the TSCH
 mode of IEEE 802.15.4e (6TiSCH) parameters" registry with the name
 "Constrained Join Protocol Parameters Registry".

 The columns of the registry are:

 Name: This is a descriptive name that enables an easier reference to
 the item. It is not used in the encoding.

 Label: The value to be used to identify this parameter. The label is
 an integer.

 CBOR type: This field contains the CBOR type for the field.

 Description: This field contains a brief description for the field.

 Reference: This field contains a pointer to the public specification
 for the field, if one exists.

 This registry is to be populated with the values in Table 2.

https://datatracker.ietf.org/doc/html/rfc3172

Vucinic, et al. Expires January 30, 2020 [Page 40]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 The amending formula for this sub-registry is: Different ranges of
 values use different registration policies [RFC8126]. Integer values
 from -256 to 255 are designated as Standards Action. Integer values
 from -65536 to -257 and from 256 to 65535 are designated as
 Specification Required. Integer values greater than 65535 are
 designated as Expert Review. Integer values less than -65536 are
 marked as Private Use.

11.2. CoJP Key Usage Registry

 This section defines a sub-registry within the "IPv6 over the TSCH
 mode of IEEE 802.15.4e (6TiSCH) parameters" registry with the name
 "Constrained Join Protocol Key Usage Registry".

 The columns of this registry are:

 Name: This is a descriptive name that enables easier reference to the
 item. The name MUST be unique. It is not used in the encoding.

 Value: This is the value used to identify the key usage setting.
 These values MUST be unique. The value is an integer.

 Algorithm: This is a descriptive name of the link-layer algorithm in
 use and uniquely determines the key length. The name is not used in
 the encoding.

 Description: This field contains a description of the key usage
 setting. The field should describe in enough detail how the key is
 to be used with different frame types, specific for the link-layer
 technology in question.

 Reference: This contains a pointer to the public specification for
 the field, if one exists.

 This registry is to be populated with the values in Table 3.

 The amending formula for this sub-registry is: Different ranges of
 values use different registration policies [RFC8126]. Integer values
 from -256 to 255 are designated as Standards Action. Integer values
 from -65536 to -257 and from 256 to 65535 are designated as
 Specification Required. Integer values greater than 65535 are
 designated as Expert Review. Integer values less than -65536 are
 marked as Private Use.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Vucinic, et al. Expires January 30, 2020 [Page 41]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

11.3. CoJP Unsupported Configuration Code Registry

 This section defines a sub-registry within the "IPv6 over the TSCH
 mode of IEEE 802.15.4e (6TiSCH) parameters" registry with the name
 "Constrained Join Protocol Unsupported Configuration Code Registry".

 The columns of this registry are:

 Name: This is a descriptive name that enables easier reference to the
 item. The name MUST be unique. It is not used in the encoding.

 Value: This is the value used to identify the diagnostic code. These
 values MUST be unique. The value is an integer.

 Description: This is a descriptive human-readable name. The
 description MUST be unique. It is not used in the encoding.

 Reference: This contains a pointer to the public specification for
 the field, if one exists.

 This registry is to be populated with the values in Table 4.

 The amending formula for this sub-registry is: Different ranges of
 values use different registration policies [RFC8126]. Integer values
 from -256 to 255 are designated as Standards Action. Integer values
 from -65536 to -257 and from 256 to 65535 are designated as
 Specification Required. Integer values greater than 65535 are
 designated as Expert Review. Integer values less than -65536 are
 marked as Private Use.

12. Acknowledgments

 The work on this document has been partially supported by the
 European Union's H2020 Programme for research, technological
 development and demonstration under grant agreements: No 644852,
 project ARMOUR; No 687884, project F-Interop and open-call project
 SPOTS; No 732638, project Fed4FIRE+ and open-call project SODA.

 The following individuals provided input to this document (in
 alphabetic order): Christian Amsuss, Tengfei Chang, Klaus Hartke,
 Tero Kivinen, Jim Schaad, Goeran Selander, Yasuyuki Tanaka, Pascal
 Thubert, William Vignat, Xavier Vilajosana, Thomas Watteyne.

13. References

https://datatracker.ietf.org/doc/html/rfc8126

Vucinic, et al. Expires January 30, 2020 [Page 42]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

13.1. Normative References

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", draft-ietf-core-object-security-16 (work in
 progress), March 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2597] Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,
 "Assured Forwarding PHB Group", RFC 2597,
 DOI 10.17487/RFC2597, June 1999,
 <https://www.rfc-editor.org/info/rfc2597>.

 [RFC3172] Huston, G., Ed., "Management Guidelines & Operational
 Requirements for the Address and Routing Parameter Area
 Domain ("arpa")", BCP 52, RFC 3172, DOI 10.17487/RFC3172,
 September 2001, <https://www.rfc-editor.org/info/rfc3172>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://datatracker.ietf.org/doc/html/draft-ietf-core-object-security-16
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2597
https://www.rfc-editor.org/info/rfc2597
https://datatracker.ietf.org/doc/html/bcp52
https://datatracker.ietf.org/doc/html/rfc3172
https://www.rfc-editor.org/info/rfc3172
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Vucinic, et al. Expires January 30, 2020 [Page 43]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

13.2. Informative References

 [I-D.ietf-6tisch-architecture]
 Thubert, P., "An Architecture for IPv6 over the TSCH mode
 of IEEE 802.15.4", draft-ietf-6tisch-architecture-24 (work
 in progress), July 2019.

 [I-D.ietf-6tisch-terminology]
 Palattella, M., Thubert, P., Watteyne, T., and Q. Wang,
 "Terms Used in IPv6 over the TSCH mode of IEEE 802.15.4e",

draft-ietf-6tisch-terminology-10 (work in progress), March
 2018.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-

cddl-08 (work in progress), March 2019.

 [I-D.ietf-core-stateless]
 Hartke, K., "Extended Tokens and Stateless Clients in the
 Constrained Application Protocol (CoAP)", draft-ietf-core-

stateless-01 (work in progress), March 2019.

 [IEEE802.15.4]
 IEEE standard for Information Technology, ., "IEEE Std
 802.15.4 Standard for Low-Rate Wireless Networks", n.d..

 [NIST800-90A]
 NIST Special Publication 800-90A, Revision 1, ., Barker,
 E., and J. Kelsey, "Recommendation for Random Number
 Generation Using Deterministic Random Bit Generators",
 2015.

 [RFC4231] Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
 224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",

RFC 4231, DOI 10.17487/RFC4231, December 2005,
 <https://www.rfc-editor.org/info/rfc4231>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-architecture-24
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-terminology-10
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-08
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-08
https://datatracker.ietf.org/doc/html/draft-ietf-core-stateless-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-stateless-01
https://datatracker.ietf.org/doc/html/rfc4231
https://www.rfc-editor.org/info/rfc4231
https://datatracker.ietf.org/doc/html/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869

Vucinic, et al. Expires January 30, 2020 [Page 44]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 [RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
 Low-Power and Lossy Networks", RFC 6550,
 DOI 10.17487/RFC6550, March 2012,
 <https://www.rfc-editor.org/info/rfc6550>.

 [RFC7554] Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
 IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
 Internet of Things (IoT): Problem Statement", RFC 7554,
 DOI 10.17487/RFC7554, May 2015,
 <https://www.rfc-editor.org/info/rfc7554>.

 [RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
 Considerations for IPv6 Address Generation Mechanisms",

RFC 7721, DOI 10.17487/RFC7721, March 2016,
 <https://www.rfc-editor.org/info/rfc7721>.

 [RFC8180] Vilajosana, X., Ed., Pister, K., and T. Watteyne, "Minimal
 IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH)
 Configuration", BCP 210, RFC 8180, DOI 10.17487/RFC8180,
 May 2017, <https://www.rfc-editor.org/info/rfc8180>.

 [RFC8480] Wang, Q., Ed., Vilajosana, X., and T. Watteyne, "6TiSCH
 Operation Sublayer (6top) Protocol (6P)", RFC 8480,
 DOI 10.17487/RFC8480, November 2018,
 <https://www.rfc-editor.org/info/rfc8480>.

 [RFC8505] Thubert, P., Ed., Nordmark, E., Chakrabarti, S., and C.
 Perkins, "Registration Extensions for IPv6 over Low-Power
 Wireless Personal Area Network (6LoWPAN) Neighbor
 Discovery", RFC 8505, DOI 10.17487/RFC8505, November 2018,
 <https://www.rfc-editor.org/info/rfc8505>.

Appendix A. Example

 Figure 3 illustrates a successful join protocol exchange. The pledge
 instantiates the OSCORE context and derives the OSCORE keys and
 nonces from the PSK. It uses the instantiated context to protect the
 Join Request addressed with a Proxy-Scheme option, the well-known
 host name of the JRC in the Uri-Host option, and its EUI-64 as pledge
 identifier and OSCORE kid context. Triggered by the presence of a
 Proxy-Scheme option, the JP forwards the request to the JRC and sets
 the CoAP token to the internally needed state. The JP has learned
 the IPv6 address of the JRC when it acted as a pledge and joined the
 network. Once the JRC receives the request, it looks up the correct
 context based on the kid context parameter. The OSCORE data
 authenticity verification ensures that the request has not been

https://datatracker.ietf.org/doc/html/rfc6550
https://www.rfc-editor.org/info/rfc6550
https://datatracker.ietf.org/doc/html/rfc7554
https://www.rfc-editor.org/info/rfc7554
https://datatracker.ietf.org/doc/html/rfc7721
https://www.rfc-editor.org/info/rfc7721
https://datatracker.ietf.org/doc/html/bcp210
https://datatracker.ietf.org/doc/html/rfc8180
https://www.rfc-editor.org/info/rfc8180
https://datatracker.ietf.org/doc/html/rfc8480
https://www.rfc-editor.org/info/rfc8480
https://datatracker.ietf.org/doc/html/rfc8505
https://www.rfc-editor.org/info/rfc8505

Vucinic, et al. Expires January 30, 2020 [Page 45]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 modified in transit. In addition, replay protection is ensured
 through persistent handling of mutable context parameters.

 Once the JP receives the Join Response, it authenticates the state
 within the CoAP token before deciding where to forward. The JP sets
 its internal state to that found in the token, and forwards the Join
 Response to the correct pledge. Note that the JP does not possess
 the key to decrypt the CBOR object (configuration) present in the
 payload. The Join Response is matched to the Join Request and
 verified for replay protection at the pledge using OSCORE processing
 rules. In this example, the Join Response does not contain the IPv6
 address of the JRC, the pledge hence understands the JRC is co-
 located with the 6LBR.

Vucinic, et al. Expires January 30, 2020 [Page 46]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 <---E2E OSCORE-->
 Client Proxy Server
 Pledge JP JRC
 | | |
 | Join | | Code: 0.02 (POST)
 | Request | | Token: -
 +--------->| | Proxy-Scheme: coap
 | | | Uri-Host: 6tisch.arpa
 | | | OSCORE: kid: -,
 | | | kid_context: EUI-64,
 | | | Partial IV: 1
 | | | Payload: { Code: 0.02 (POST),
 | | | Uri-Path: "j",
 | | | join_request, <Tag> }
 | | |
 | | Join | Code: 0.02 (POST)
 | | Request | Token: opaque state
 | +--------->| OSCORE: kid: -,
 | | | kid_context: EUI-64,
 | | | Partial IV: 1
 | | | Payload: { Code: 0.02 (POST),
 | | | Uri-Path: "j",
 | | | join_request, <Tag> }
 | | |
 | | |
 | | Join | Code: 2.04 (Changed)
 | | Response | Token: opaque state
 | |<---------+ OSCORE: -
 | | | Payload: { Code: 2.04 (Changed),
 | | | configuration, <Tag> }
 | | |
 | | |
 | Join | | Code: 2.04 (Changed)
 | Response | | Token: -
 |<---------+ | OSCORE: -
 | | | Payload: { Code: 2.04 (Changed),
 | | | configuration, <Tag> }
 | | |

 Figure 3: Example of a successful join protocol exchange. { ... }
 denotes authenticated encryption, <Tag> denotes the authentication
 tag.

 Where the join_request object is:

Vucinic, et al. Expires January 30, 2020 [Page 47]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 join_request:
 {
 5 : h'cafe' / PAN ID of the network pledge is attempting to join /
 }

 Since the role parameter is not present, the default role of "6TiSCH
 Node" is implied.

 The join_request object encodes to h'a10542cafe' with a size of 5
 bytes.

 And the configuration object is:

 configuration:
 {
 2 : [/ link-layer key set /
 1, / key_id /
 h'e6bf4287c2d7618d6a9687445ffd33e6' / key_value /
],
 3 : [/ short identifier /
 h'af93' / assigned short address /
]
 }

 Since the key_usage parameter is not present in the link-layer key
 set object, the default value of "6TiSCH-K1K2-ENC-MIC32" is implied.
 Since key_addinfo parameter is not present and key_id is different
 than 0, Key ID Mode 0x01 (Key Index) is implied. Similarly, since
 the lease_time parameter is not present in the short identifier
 object, the default value of positive infinity is implied.

 The configuration object encodes to

 h'a202820150e6bf4287c2d7618d6a9687445ffd33e6038142af93' with a size
 of 26 bytes.

Appendix B. Lightweight Implementation Option

 In environments where optimizing the implementation footprint is
 important, it is possible to implement this specification without
 having the implementations of HKDF [RFC5869] and SHA [RFC4231] on
 constrained devices. HKDF and SHA are used during the OSCORE
 security context derivation phase. This derivation can also be done
 by the JRC or a provisioning device, on behalf of the (6LBR) pledge
 during the provisioning phase. In that case, the derived OSCORE
 security context parameters are written directly into the (6LBR)
 pledge, without requiring the PSK be provisioned to the (6LBR)
 pledge.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc4231

Vucinic, et al. Expires January 30, 2020 [Page 48]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 The use of HKDF to derive OSCORE security context parameters ensures
 that the resulting OSCORE keys have good security properties, and are
 unique as long as the input for different pledges varies. This
 specification ensures the uniqueness by mandating unique pledge
 identifiers and a unique PSK for each (6LBR) pledge. From the AEAD
 nonce reuse viewpoint, having a unique pledge identifier is a
 sufficient condition. However, as discussed in Section 9, the use of
 a single PSK shared among many devices is a common security pitfall.
 The compromise of this shared PSK on a single device would lead to
 the compromise of the entire batch. When using the implementation/
 deployment scheme outlined above, the PSK does not need to be written
 to individual pledges. As a consequence, even if a shared PSK is
 used, the scheme offers the same level of security as in the scenario
 where each pledge is provisioned with a unique PSK.

Authors' Addresses

 Malisa Vucinic (editor)
 Inria
 2 Rue Simone Iff
 Paris 75012
 France

 Email: malisa.vucinic@inria.fr

 Jonathan Simon
 Analog Devices
 32990 Alvarado-Niles Road, Suite 910
 Union City, CA 94587
 USA

 Email: jonathan.simon@analog.com

 Kris Pister
 University of California Berkeley
 512 Cory Hall
 Berkeley, CA 94720
 USA

 Email: pister@eecs.berkeley.edu

Vucinic, et al. Expires January 30, 2020 [Page 49]

Internet-Draft Minimal Security Framework for 6TiSCH July 2019

 Michael Richardson
 Sandelman Software Works
 470 Dawson Avenue
 Ottawa, ON K1Z5V7
 Canada

 Email: mcr+ietf@sandelman.ca

Vucinic, et al. Expires January 30, 2020 [Page 50]

