
AAA Working Group P. Calhoun
Internet-Draft D. Frascone
Expires: September 2, 2005 Cisco Systems, Inc.
 J. Kempf
 DoCoMo Labs, USA
 March 2005

The Diameter API
draft-ietf-aaa-diameter-api-04

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 2, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 The Diameter authentication, authorization, and accounting (AAA)
 protocol provides support for peering AAA transactions across the
 Internet. This document describes a standardized API for the
 Diameter protocol. The API is defined for the C language. The
 intent of the API is to foster source code portability across
 multiple programming platforms.

Calhoun, et al. Expires September 2, 2005 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft The Diameter API March 2005

Table of Contents

1. Introduction . 4
2. Binding Independent Considerations 5
2.1. Multithreading . 5
2.2. Error Reporting . 5
2.3. String Format . 5
2.4. Handling Connections with Other Servers/Peers 5
2.5. Command Dictionary File 5

3. C API . 7
3.1. Constant Types . 7
3.1.1. IP Address and Port 7
3.1.2. Command Code . 7
3.1.3. Vendor Identifier 7
3.1.4. Extension Identifier 8
3.1.5. Attribute/Value Pair Code 8
3.1.6. Value Type Identifier 8
3.1.7. Value Type Identifier 8
3.1.8. Session Identifier 8
3.1.9. Message Identifier 8
3.1.10. Callback Handle 8
3.1.11. Application Identifier 9
3.1.12. API Return Codes 9
3.1.13. Callback Location Codes 11
3.1.14. AVP Data Type Codes 11
3.1.15. AVP Flags . 12
3.1.16. Domain Interconnection Types 13
3.1.17. Message Flags . 13
3.1.18. Result Codes . 13
3.1.19. Search Direction Type 14
3.1.20. Accounting Types 14
3.1.21. Security Types . 14

3.2. Structure Definitions 15
3.2.1. Dictionary Entry Definition 15
3.2.2. AVP Definition . 15
3.2.3. AVP List . 16
3.2.4. Message Definition 17

3.3. Macros and Preprocessor Definitions 18
3.4. Functions . 18
3.4.1. Initialization and Configuration 18
3.4.2. Registering Commands 19
3.4.3. Session and Server Management 22
3.4.4. Dictionary Lookup 25
3.4.5. Message Management 27
3.4.6. Message Control 35
3.4.7. Accounting . 36
3.4.8. Security Functions 36

3.5. Implementation Notes 37

Calhoun, et al. Expires September 2, 2005 [Page 2]

Internet-Draft The Diameter API March 2005

3.6. Grouped AVPs . 37
3.7. Extended AAA_AVP structure 39
3.8. Avoiding AVP Copying 40
3.9. Callback Processing Order 40

4. Security Considerations 42
5. References . 42

 Authors' Addresses . 43
 Intellectual Property and Copyright Statements 44

Calhoun, et al. Expires September 2, 2005 [Page 3]

Internet-Draft The Diameter API March 2005

1. Introduction

 The Diameter authentication, authorization and accounting (AAA)
 protocol provides scale-able AAA support for peering transactions
 across the Internet [1]. This document describes standardized API in
 C for applications to access the Diameter protocol. While a
 standardized API is not strictly necessary for protocol
 interoperability, it does help to promote the use and deployment of a
 protocol by reducing the amount of work necessary to develop and
 access applications that use the protocol.

 The Diameter protocol provides a basic attribute/value pair (AVP)
 data format, which particular application profiles extend.
 Processing of the extensions is handled by code specific to the
 application profile. Application profile customizability is
 reflected into the API as callback functions for C.

 The callbacks implement the application profile processing for
 incoming messages. For outgoing calls, the C API provides an
 asynchronous model, leaving processing of the return message to the
 callbacks.

 For the most part, the API hides the details of establishing peering
 and redirect connections, parsing and creating Diameter messages, and
 other work necessary to set up and maintain a redirect or peering
 session. The application profile code need only be concerned with
 processing of the AVPs defined in the application profile.

Calhoun, et al. Expires September 2, 2005 [Page 4]

Internet-Draft The Diameter API March 2005

2. Binding Independent Considerations

 This section discusses a number of implementation considerations for
 bindings.

2.1. Multithreading

 The C API is expected to be thread-safe. Access to data structures
 shared among threads must be coordinated to avoid corruption or
 invalid access. In addition, API implementers are encouraged to
 provide the maximum amount of parallel processing within their
 library implementations by allowing multiple threads in the API
 library at once.

2.2. Error Reporting

 The API reports errors resulting from client calls through language
 specific mechanisms. All of the functions in the API return error
 codes. API implementers are additionally encouraged to log errors
 using the appropriate platform specific error logging technique,
 especially for errors that result from network processing or other
 causes that are not directly related to an API function or method
 call.

2.3. String Format

 C API clients are required to format strings as UTF-8 if the string
 contains 16 bit characters. Since the ASCII characters and the UTF-8
 8 bit characters have the same codes, ASCII can be used for UTF-8 if
 no wide characters are in the string. All strings passed through the
 C API are standard null-terminated C strings. Processing to remove
 the null terminator for transmission on the wire is done by the
 library.

2.4. Handling Connections with Other Servers/Peers

 The API supports making a connection with an arbitrary Diameter peer.
 The API allows a client to set the server address in a message
 (AAASetServer()). If a message is not sent to a particular server,
 the API library is required to infer the servers by either looking in
 the configuration files or dynamically determining the servers that
 support the extension. Dynamic determination is possible using means
 such as SLP [3].

2.5. Command Dictionary File

 The commands that can be parsed by the local Diameter client library
 or server are defined in a command dictionary file containing the

Calhoun, et al. Expires September 2, 2005 [Page 5]

Internet-Draft The Diameter API March 2005

 command definitions including AVPs. The location and name of the
 command dictionary file is platform-specific. This file is read and
 parsed to drive creation of a command dictionary which is used by the
 library to parse commands. The syntax for the command dictionary
 file is in XML and a DTD described it is available in [4]. XML was
 selected as the definition language because support for XML parsing
 is available as an extension to the standard Java APIs [5] and as a
 wide variety of public-domain C libraries, simplifying
 implementation. Both APIs also support programmatic definition of
 commands, AVPs, and extensions so programs can add commands not in
 the dictionary for purposes of experimentation and implementing the
 library.

Calhoun, et al. Expires September 2, 2005 [Page 6]

Internet-Draft The Diameter API March 2005

3. C API

 The C language API is designed around callbacks. An application
 profile defines a collection of Diameter commands, and a library of
 callbacks for processing those commands. Each command is processed
 by a callback. Callbacks can also be defined that handle all
 commands. The API provides functions for managing callbacks,
 including registration and deregistration.

 When an incoming Diameter command arrives, the command is parsed and
 passed to the appropriate callback. The callback receives as a
 parameter the message struct, which contains the AVPs for the
 command. The callback code can process the command by stepping
 through the AVPs.

 For outgoing requests, the API provides functions for creating
 messages and adding AVPs. A collection of functions also provides
 access to the AVP dictionary.

 Unless otherwise noted, parameters to API functions and callbacks are
 non-NULL. Some parameters may have other restrictions. If a
 parameter fails to satisfy the restrictions on its value, the
 function returns AAA_ERR_PARAMETER.

3.1. Constant Types

3.1.1. IP Address and Port

 typedef sockaddr_storage IP_ADDR;

 IP_ADDR provides a way of referring to an IPv4 address, IPv6 address,
 and IP port. The default implementation (shown here) is defined in
 the Basic Socket Interface Extensions for IPv6 RFC[6]

3.1.2. Command Code

 typedef uint32_t AAACommandCode;

 AAACommandCode provides a way of referring to the AAA command code of
 a command. It is used when registering callbacks, among others.

3.1.3. Vendor Identifier

 typedef uint32_t AAAVendorId;

 AAAVendorId provides a way of referring to the vendor identification
 code. It is used when registering callbacks, among others. Note
 that vendor id 0 is reserved and is defined by the preprocessor

Calhoun, et al. Expires September 2, 2005 [Page 7]

Internet-Draft The Diameter API March 2005

 constant AAA_NO_VENDOR_ID.

3.1.4. Extension Identifier

 typedef uint32_t AAAExtensionId;

 AAAExtensionId provides a way of referring to an application profile
 extension, for registering callbacks and other purposes.

3.1.5. Attribute/Value Pair Code

 typedef uint32_t AAA_AVPCode;

 AAA_AVPCode provides a way of referring to the code number of an AVP.
 It is used as a parameter to the dictionary functions, and a field in
 the AVP struct.

3.1.6. Value Type Identifier

 typedef int32_t AAAValue

 AAAValue provides a way of referring to particular dictionary-defined
 values. It is used in the dictionary API.

3.1.7. Value Type Identifier

 typedef void AAAServer;

 AAAServer is an identifier for a particular serving peer. It is used
 in the server access functions.

3.1.8. Session Identifier

 typedef void AAASessionId;

 AAASessionId is an identifier for a particular AAA session. It is
 used in the session APIs and when a message is created.

3.1.9. Message Identifier

 typedef uint32_t AAAMsgIdentifier;

 AAAMsgIdentifier is a unique identifier for an AAA message. Each
 individual message is marked with an identifier.

3.1.10. Callback Handle

 typedef void AAACallbackHandle;

Calhoun, et al. Expires September 2, 2005 [Page 8]

Internet-Draft The Diameter API March 2005

 AAACallbackHandle is a type for representing the callback handle
 returned to the client when a callback is registered.

3.1.11. Application Identifier

 typedef void* AAAApplicationId;

 AAAApplicationId identifies a particular client session to the API.
 The application id is passed to AAAStartSession(), and is attached to
 incoming messages, to indicate with which client session the message
 is associated.

3.1.12. API Return Codes

 The following status codes are returned by functions in the AAA API:

 typedef enum {
 AAA_ERR_NOT_FOUND = -2,
 AAA_ERR_FAILURE = -1,
 AAA_ERR_SUCCESS = 0,
 AAA_ERR_NOMEM,
 AAA_ERR_PROTO,
 AAA_ERR_SECURITY,
 AAA_ERR_PARAMETER,
 AAA_ERR_CONFIG,
 AAA_ERR_UNKNOWN_CMD,
 AAA_ERR_MISSING_AVP,
 AAA_ERR_ALREADY_INIT,
 AAA_ERR_TIMED_OUT,
 AAA_ERR_CANNOT_SEND_MSG,
 AAA_ERR_ALREADY_REGISTERED,
 AAA_ERR_CANNOT_REGISTER,
 AAA_ERR_NOT_INITIALIZED,
 AAA_ERR_NETWORK_ERROR

 } AAAReturnCode;

 Note that these status codes are separate from the codes returned by
 remote AAA servers.

 The following is a description of the error codes and the reasons why
 they can be returned:

Calhoun, et al. Expires September 2, 2005 [Page 9]

Internet-Draft The Diameter API March 2005

 AAA_ERR_NOT_FOUND This code is returned if a handle or id was not
 found.

 AAA_ERR_FAILURE This code is returned if an unspecified failure
 occurred during an AAA operation.

 AAA_ERR_SUCCESS This code is returned if the AAA operation succeeded.

 AAA_ERR_NOMEM This code is returned if the operation caused memory to
 be exhausted.

 AAA_ERR_PROTO This code is returned if a AAA protocol error occurred.

 AAA_ERR_SECURITY This code is returned if a security check failed or
 another security error occurred.

 AAA_ERR_PARAMETER This code is returned if an invalid parameter was
 passed to an AAA function.

 AAA_ERR_CONFIG This code is returned if an error was encountered in a
 configuration file during library initialization.

 AAA_ERR_UNKNOWN_CMD This code is returned if the library received a
 AAA command that is not in the set of registered AAA commands.

 AAA_ERR_MISSING_AVP This code is returned if a command was received
 without a required AVP.

 AAA_ERR_ALREADY_INIT This code is returned if an attempt is made to
 initialize the AAA library when it has already been initialized.

 AAA_ERR_TIMED_OUT This code is returned when a network operation
 times out.

 AAA_ERR_CANNOT_SEND_MSG This code is returned if the library can't
 send a message. It is also of used to application profile
 extensions that encounter the same error condition.

 AAA_ERR_ALREADY_REGISTERED This code is returned by the command
 registration functions if the command was already registered.

 AAA_ERR_CANNOT_REGISTER This code is returned by the command
 registration functions if the command could not be registered.

 AAA_ERR_NOT_INITIALIZED This code is returned by any function in the
 API except AAAOpen() if the library hasn't been initialized.

Calhoun, et al. Expires September 2, 2005 [Page 10]

Internet-Draft The Diameter API March 2005

 AAA_ERR_NETWORK_ERROR This code is returned by any function if an
 error in networking occurs.

 In addition to returning the error code, functions are required to
 log errors using the platform dependent logging facility.

3.1.13. Callback Location Codes

 The following are codes used to indicate where a callback should be
 installed in callback chain for processing:

 typedef enum {
 AAA_APP_INSTALL_FIRST,
 AAA_APP_INSTALL_ANYWHERE,
 AAA_APP_INSTALL_LAST
 } AAACallbackLocation;

 Callbacks installed with AAA_APP_INSTALL_FIRST and
 AAA_APP_INSTALL_LAST operate on all commands, callbacks installed
 with AAA_APP_INSTALL_ANYWHERE just operate on the command for which
 they are installed.

 The codes have the following semantics:

 AAA_APP_INSTALL_FIRST Install this callback as the first callback in
 the chain. If subsequent callbacks are installed with this code,
 then AAA_ERR_ALREADY_REGISTERED is returned.

 AAA_APP_INSTALL_ANYWHERE Install this callback anywhere in the
 callback chain.

 AAA_APP_INSTALL_LAST Install this callback as the last callback in
 the chain. If subsequent callbacks are installed with this code,
 then AAA_ERR_ALREADY_REGISTERED is returned.

3.1.14. AVP Data Type Codes

 The following are AVP data type codes. They correspond directly to
 the AVP data types outline in the Diameter specification [1]:

 typedef enum {
 AAA_AVP_DATA_TYPE,
 AAA_AVP_STRING_TYPE,
 AAA_AVP_ADDRESS_TYPE,
 AAA_AVP_INTEGER32_TYPE,
 AAA_AVP_INTEGER64_TYPE,
 AAA_AVP_TIME_TYPE,
 } AAA_AVPDataType;

Calhoun, et al. Expires September 2, 2005 [Page 11]

Internet-Draft The Diameter API March 2005

3.1.15. AVP Flags

 The following are used for AVP header flags and for flags in the AVP
 wrapper struct and AVP dictionary definitions. The first six
 correspond to the AVP flags defined in the Diameter specification
 [1]. Some of these are also used in the wrapper struct and
 dictionary definitions also. The last four are used only in AAA_AVP
 and AAADictionaryEntry:

 typedef enum {
 AAA_AVP_FLAG_NONE = 0,
 AAA_AVP_FLAG_MANDATORY = 0x1,
 AAA_AVP_FLAG_RESERVED = 0x2,
 AAA_AVP_FLAG_VENDOR_SPECIFIC = 0x4,
 AAA_AVP_FLAG_END_TO_END_ENCRYPT = 0x10,
 AAA_AVP_FLAG_UNKNOWN = 0x10000,
 AAA_AVP_FLAG_ENCRYPT = 0x40000,
 } AAA_AVPFlag;

 The semantics of the flags are as follows:

 AAA_AVP_FLAG_NONE ndicates that no AVP flags are set.

 AAA_AVP_FLAG_MANDATORY Represents the 'M' flag in the Diameter AVP
 header [1], meaning the AVP is mandatory.

 AAA_AVP_FLAG_RESERVED Represents the 'R' flag in the Diameter AVP
 header [1]. This flag is reserved and should not be set.

 AAA_AVP_FLAG_VENDOR_SPECIFIC Represents the 'V' flag in the Diameter
 AVP header [1], meaning that the AVP is vendor specific. If this
 flag is set, the header will contain a vendor identifier.

 AAA_AVP_FLAG_END_TO_END_ENCRYPT Represents the 'P' flag in the
 Diameter AVP header [1], meaning that the AVP is end-to-end
 encrypted [2].

 AAA_AVP_FLAG_UNKNOWN Indicates that the AVP was not located in the
 AVP dictionary. This flag is only used in AAA_AVP.

 AAA_AVP_FLAG_ENCRYPT Indicates that the AVP was either marked as
 AAA_AVP_FLAG_END_TO_END_ENCRYPT or that it was hop-by-hop
 encrypted (and thus that the AAA_AVP_FLAG_END_TO_END_ENCRYPT flag
 is not set on in the AVP header). If the AVP is not end-to-end
 encrypted, then it will be either one of the two standard hop-by-
 hop encrypted AVPs, Integrity-Check-Value and Encrypted-Payload
 [1]. This flag is only used in AAA_AVP.

Calhoun, et al. Expires September 2, 2005 [Page 12]

Internet-Draft The Diameter API March 2005

3.1.16. Domain Interconnection Types

 The following domain interconnection types are returned by
 AAAGetDomainInternconnectType(). They indicate the type of domain
 interconnection:

 typedef enum {
 AAA_DOMAIN_LOCAL,
 AAA_DOMAIN_PROXY,
 AAA_DOMAIN_BROKER,
 AAA_DOMAIN_FORWARD
 } AAADomainInterconnect;

 The flags have the following semantics:

 The domain name is for the local domain.

 The domain name is for a proxy domain. A proxy is a server that
 simply forwards the request based on the user's identity or
 through some other means. The routing method used for a proxy is
 the Proxy-State method, requiring routing through a fixed chain of
 proxies [1].

 The domain name is for a broker domain. A broker is a server that
 provides redirect services, allowing all servers in a roaming
 consortium to interact directly.

 The domain name is for a forwarding domain. A forwarding domain
 is a proxy that uses Destination-NAI routing. With Destination-
 NAI routing, there is no set sequence of proxies through which
 messages must be routed [1].

3.1.17. Message Flags

 The following type is for the AAA message flags. Currently, there
 are no message flags defined in the Diameter protocol [1]:

 typedef uint8_t AAAMsgFlag;

3.1.18. Result Codes

 The following are the result codes returned from remote servers as
 part of messages. They correspond directly to the result codes in
 the Diameter specification [1]:

Calhoun, et al. Expires September 2, 2005 [Page 13]

Internet-Draft The Diameter API March 2005

 typedef enum {
 AAA_SUCCESS = 0,
 AAA_FAILURE,
 AAA_POOR_REQUEST,
 AAA_INVALID_AUTH,
 AAA_UNKNOWN_SESSION_ID,
 AAA_USER_UNKNOWN,
 AAA_COMMAND_UNSUPPORTED,
 AAA_TIMEOUT,
 AAA_AVP_UNSUPPORTED,
 AAA_REDIRECT_INDICATION,
 AAA_REALM_NOT_SERVED,
 AAA_UNSUPPORTED_TRANSFORM,
 AAA_AUTHENTICATION_REJECTED,
 AAA_AUTHORIZATION_REJECTED,
 AAA_INVALID_AVP_VALUE,
 AAA_MISSING_AVP,
 AAA_UNABLE_TO_DELIVER
 } AAAResultCode;

3.1.19. Search Direction Type

 The following type allows the client to specify which direction to
 search for an AVP in the AVP list:

 typedef enum {
 AAA_FORWARD_SEARCH = 0,
 AAA_BACKWARD_SEARCH
 } AAASearchType;

3.1.20. Accounting Types

 The following type allows the client to specify which direction to
 search for an AVP in the AVP list:

 typedef enum {
 AAA_ACCT_EVENT = 1,
 AAA_ACCT_START = 2,
 AAA_ACCT_INTERIM = 3,
 AAA_ACCT_STOP = 4
 } AAAAcctMessageType;

3.1.21. Security Types

 The following defines the possible security characteristics for a
 host.

Calhoun, et al. Expires September 2, 2005 [Page 14]

Internet-Draft The Diameter API March 2005

 typedef enum {
 AAA_SEC_NOT_DEFINED = -2,
 AAA_SEC_NOT_CONNECTED = -1,
 AAA_SEC_NO_SECURITY = 0,
 AAA_SEC_CMS_SECURITY = 1,
 AAA_SEC_CMS_PROXIED = 2
 } AAASecurityStatus;

 AAA_SEC_NOT_DEFINED This peer is not known to the API. It has either
 not connected (dynamically), or is not defined as a static client.

 AAA_SEC_NOT_CONNECTED This peer is not currently connected, but it
 has been defined.

 AAA_SEC_NO_SECURITY The peer has no security enabled. All data will
 be sent in the clear.

 AAA_SEC_CMS_SECURITY This peer has full security enabled. All
 encrypted payloads will be visible only to the far end of the
 connection.

 AAA_SEC_CMS_PROXIED This peer has a security association, but some
 proxies between the endpoints are decrypting/re-encrypting the
 data. If all proxies in the connection are trusted, then the data
 is assumed to be secure. If a connection has this status, and the
 data travels through untrusted proxies, it should be assumed that
 there is no more security than the data traveling in the clear.

3.2. Structure Definitions

3.2.1. Dictionary Entry Definition

 The following structure is returned by the dictionary entry lookup
 functions. It contains information about a particular AVP in the
 dictionary:

 typedef struct dictionaryEntry {
 AAA_AVPCode avpCode;
 char* avpName;
 AAA_AVPDataType avpType;
 AAAVendorId vendorId;
 AAA_AVPFlag flags;
 } AAADictionaryEntry;

3.2.2. AVP Definition

 The following structure contains a message AVP in parsed form:

Calhoun, et al. Expires September 2, 2005 [Page 15]

Internet-Draft The Diameter API March 2005

 typedef struct avp {
 enum {
 AAA_RADIUS,
 AAA_DIAMETER
 } packetType;
 AAA_AVPCode code;
 uint16_t length;
 AAA_AVPFlag flags;
 AAA_AVPDataType type;
 AAAVendorId vendorId;
 void* data;
 } AAA_AVP;

 The fields have the following definitions:

 packetType Indicates whether the message is for Diameter or for
 Radius compatibility. If the AVP is for Radius, then the code,
 length, type, and data fields are the only valid fields in the
 structure; the other fields are all null.

 code The AVP code. The type of the AVP can be determined by matching
 the AVP code with an AVP description from the dictionary.

 length The length of the AVP's data field.

 flags The AVP flags.

 type The data type of the AVP's data.

 vendorId The vendor id, if the AVP is vendor-specific. If the AVP is
 standardized, the vendorId field is set to AAA_NO_VENDOR_ID.

 data The AVP data, in host byte order.

3.2.3. AVP List

 The following structure is used for represnting lists of AVPs on the
 message:

 typedef struct avpList{
 AAA_AVP *head;
 AAA_AVP *tail;
 } AAA_AVP_LIST;

 AVPs are kept in ordered lists. The client can use a search
 direction to indicated in which direction to search when trying to
 find an AVP.

Calhoun, et al. Expires September 2, 2005 [Page 16]

Internet-Draft The Diameter API March 2005

3.2.4. Message Definition

 The following structure contains the full AAA message:

 typedef struct message {
 AAAMsgFlag flags;
 AAACommandCode commandCode;
 AAAVendorId vendorId;
 AAAResultCode resultCode;
 IP_ADDR originator;
 IP_ADDR sender;
 AAA_AVP_LIST *avpList;
 AAA_AVP *proxyAVP;
 AAAMsgIdentifier identifier;
 time_t secondsTillExpire;
 time_t startTime;
 void *appHandle;
 } AAAMessage;

 flags The message flags. Currently this field is always zero, since
 there are no flags defined for a Diameter message at this time.

 commandCode The command's message code.

 vendorId The vendor id of the vendor that defined the message.

 resultCode Code indicating the result of the client's request. This
 code is sent by the peer over the wire.

 originatorVersion The IP version of the originator's address.

 originator The IP address of the message's originator.

 senderVersion The IP version of the sender's address.

 sender The IP address of the message's previous hop sender. This is
 only the same as originator if no proxy or broker peers are being
 used.

 port The port on which the message was received.

 avpList The list of AVPs in the message.

 proxyAVP The proxy's AVP, if any. Otherwise NULL.

Calhoun, et al. Expires September 2, 2005 [Page 17]

Internet-Draft The Diameter API March 2005

 identifier The message's unique identifier.

 secondsTillExpire Number of seconds until the message expires.

 startTime The number of seconds at which the message was started.

 appHandle An identifier indicating for which client session the
 message is.

3.3. Macros and Preprocessor Definitions

 The following definition reserves the vendor id of 0:

 #define AAA_NO_VENDOR_ID 0

3.4. Functions

3.4.1. Initialization and Configuration

 This section contains definitions that perform initialization and
 configuration of the AAA library.

3.4.1.1. AAAOpen()

 The following function is used to open and configure the AAA library:

 AAAReturnCode AAAOpen(char *configFileName);

 This function must be called before any other AAA function is called.
 Some of the operations that may be performed by AAAOpen() are:
 opening and loading the AVP and vendor dictionaries, opening
 connections with Diameter peers, loading Diameter extension
 libraries, and registering Diameter callbacks. After AAAOpen()
 returns, the library must be ready for the client to open a session.

 Parameters are:

 configFileName The global configuration file name. If NULL or the
 empty string, use the default for this platform. The global
 configuration file must contain the vendor and AVP dictionary file
 names, and may contain other platform-specific information needed
 to initialize and configure the Diameter peer.

 Return values are:

Calhoun, et al. Expires September 2, 2005 [Page 18]

Internet-Draft The Diameter API March 2005

 AAA_ERR_SUCCESS If initialization succeeded.

 AAA_ERR_ALREADY_INIT If the library is already initialized.

 AAA_ERR_NETWORK_ERROR If the host name can't be determined.

 AAA_ERR_NOMEM If no memory was available.

 AAA_ERR_CONFIG If processing the dictionary or configuration
 information failed.

3.4.1.2. AAAClose()

 The following function closes the AAA library:

 AAAReturnCode AAAClose();

 After this function is called, all other AAA functions are no longer
 operative.

 Return values are:

 AAA_ERR_SUCCESS If finalization succeeded.

 AAA_ERR_NOT_INIITIALIZED If AAA was not initialized.

3.4.1.3. AAAGetDefaultConfigFileName()

 The following returns the default configuration file name on the
 platform:

 const char *AAAGetDefaultConfigFileName();

 The return value is a pointer to the full pathname for the file. The
 pointer value should not be deallocated because it is constant and
 does not change.

3.4.2. Registering Commands

 The functions in this section are used to register callback functions
 defined in a Diameter application profile extension library. The
 following typedef defines the interface between callback functions
 and the AAA library functions:

 typedef AAAReturnCode (*func)(AAAMessage *message) AAACallback;

 Authors of Diameter extensions must define command callback functions
 having this interface.

Calhoun, et al. Expires September 2, 2005 [Page 19]

Internet-Draft The Diameter API March 2005

 Parameters are:

 message The AAAMessage to be processed.

 The return value is a status code giving the operation status.

3.4.2.1. AAARegisterCommandCallback()

 The following function is used to register command callbacks for
 processing AAA commands:

 AAACallbackHandle * AAARegisterCommandCallback(AAACommandCode
 commandCode, AAAVendorId vendorId, char *commandName, AAAExtensionId
 extensionId, AAACallback callback, AAACallbackLocation position);

 Parameters are:

 commandCode The code of the command processed by the callback.

 vendorId The vendor id of the command.

 commandName A pointer to the name of the command.

 extensionId The id of the extension to which this command belongs.

 callback The callback function to perform processing.

 position The position of the callback in the chain.

 The return value is a handle used when deregistering the callback, or
 NULL if an error occurred while registering the callback.

3.4.2.2. AAARegisterNoncommandCallback()

 The following callback registers an AAA callback to process all
 messages. The callback is not associated with any command, but
 rather will process all messages as they come down the callback
 chain:

 AAACallbackHandle AAARegisterNoncommandCallback(AAACallback callback,
 AAACallbackLocation position);

 Parameters are:

 callback The callback function to perform processing.

Calhoun, et al. Expires September 2, 2005 [Page 20]

Internet-Draft The Diameter API March 2005

 position The position of the callback in the chain.

 The return value is a handle used when deregistering the callback, or
 NULL if an error occurred while registering the callback.

3.4.2.3. AAADeregisterCommandCallback()

 The following function deregisters a command callback:

 AAAReturnCode AAADeregisterCommandCallback(AAACallbackHandle
 *handle);

 Parameters are:

 handle The handle returned when the callback was registered.

 The return values are:

 AAA_ERR_SUCCESS Returned upon completion.

 AAA_ERR_FAILURE if the callback is not registered.

3.4.2.4. AAADeregisterNoncommandCallback()

 The following function is used to deregister a noncommand callback:

 AAAReturnCode AAADeregisterNoncommandCallback(AAACallbackHandle
 *handle);

 Parameters are:

 handle The handle returned when the callback was registered.

 Return values are:

 AAA_ERR_SUCCESS Returned upon completion.

 AAA_ERR_FAILURE If the callback is not registered.

3.4.2.5. AAARegisterExtension()

 The following function is used to register a Diameter extension id.
 This function is typically called when registering non-command
 specific callbacks. Extension ids for c ommand-specific callbacks
 are registered when the callback is registered:

 AAAReturnCode AAARegisterExtension(AAAExtensionId extensionId);

Calhoun, et al. Expires September 2, 2005 [Page 21]

Internet-Draft The Diameter API March 2005

 The parameters are:

 extensionId The extension id.

 The return codes are:

 AAA_ERR_SUCCESS If the registration was successful.

 AAA_ERR_NOMEM if a memory allocation failure occurred.

3.4.3. Session and Server Management

 The functions in this section allow the client to open, close, and
 register sessions, and to obtain server identifiers.

3.4.3.1. AAAStartSession()

 The following function allows a client to start a session and
 identify it:

 AAAReturnCode AAAStartSession(AAASessionId **sessionId,
 AAAApplicationId appHandle, char *userName, AAACallback
 abortCallback);

 Parameters are:

 sessionId On return, a pointer to the session id for this session.

 appHandle An identifier for the client application starting the
 session. This identifier is attached to messages so that the
 client callbacks can tell which messages belong to it.

 userName - The NAI of the user.

 abortCallback A function to be called if this session is aborted by
 the server..

 Return values are:

 AAA_ERR_SUCCESS If the session was successfully started.

 AAA_ERR_NOMEM If a memory allocation failure occurred.

3.4.3.2. AAARegisterPeerSession()

 The following function allows a client to register a peer session
 that it has discovered through some other means, for example, by
 receiving an unsolicited message.

Calhoun, et al. Expires September 2, 2005 [Page 22]

Internet-Draft The Diameter API March 2005

 AAAReturnCode AAARegisterPeerSession(AAASessionId **sessionId,
 AAAApplicationId *appHandle, AAAMessage *message, char *userName,
 char *hostName);

 The parameters are:

 sessionId On return, a pointer to the local session id for the
 session.

 appHandle An identifier for the client application starting the
 session. This identifier is attached to messages so that the
 client callbacks can tell which messages belong to it.

 message The message from the peer containing the session id.

 userName - The NAI of the user.

 hostName The originator of the Diameter message

 Return values are:

 AAA_ERR_SUCCESS If the session was successfully registered.

 AAA_ERR_NOMEM If a memory allocation failure occurred.

3.4.3.3. AAAEndSession()

 The following function, sent by a client, terminates a session:

 AAAReturnCode AAAEndSession(AAASessionId *sessionId);

 The parameters are:

 sessionId A pointer to the session id for the session.

 Return values are:

 AAA_ERR_SUCCESS If the session was successfully closed.

 AAA_ERR_NOT_FOUND If the handle is invalid.

3.4.3.4. AAAAbortSession()

 The following function, sent by the server, terminates a session:

 AAAReturnCode AAAAbortSession(AAASessionId *sessionId);

 The parameters are:

Calhoun, et al. Expires September 2, 2005 [Page 23]

Internet-Draft The Diameter API March 2005

 sessionId A pointer to the session id for the session.

 Return values are:

 AAA_ERR_SUCCESS If the session was successfully closed.

 AAA_ERR_NOT_FOUND If the handle is invalid.

3.4.3.5. AAALookupServer()

 The function looks up the AAA server based on IP address and port
 number. Server connections are created from the configuration file:

 AAAServer *AAALookupServer(IP_ADDR ipAddr);

 The parameters are:

 ipAddr The IP address/Port/Family of the server.

 The return value is either a valid server pointer or the NULL if the
 server can't be found.

3.4.3.6. AAASetSessionMessageTimeout()

 The following function sets the timeout, in seconds, for all
 AAAMessages in a particular session:

 AAAReturnCode AAASetSessionMessageTimeout(AAASessionId *id, time_t
 timeout);

 The parameters are:

 id The session id for the session whose timeout should be changed.

 timeout The session timeout. The default timeout is 120 seconds.

 The return values are:

 AAA_ERR_SUCCESS If setting the timeout succeeded.

 AAA_ERR_FAILURE If the setting the timeout failed.

3.4.3.7. AAAGetDomainInterconnectType()

 The following function returns the domain interconnect type for a
 particular domain name and type of service:

 AAAResultCode AAAGetDomainInterconnectType(AAAMessage *message, char

Calhoun, et al. Expires September 2, 2005 [Page 24]

Internet-Draft The Diameter API March 2005

 *domainName, char *type);

 The parameters are:

 domainName The name of the domain.

 type The type of service. This must be one of the strings "LOCAL",
 "PROXY", or "BROKER".

3.4.4. Dictionary Lookup

 The functions in this section are used to look up AVPs and commands
 in the dictionary. The client is responsible for supplying the
 structure memory into which the dictionary information is copied.

3.4.4.1. AAADictionaryEntryFromAVPCode()

 This function looks up a dictionary entry using a command code and a
 vendor id:

 AAAReturnCode AAADictionaryEntryFromAVPCode(AAA_AVPCode avpCode,
 AAAVendorId vendorId, AAADictionaryEntry *entry);

 The parameters are:

 avpCode The code number of the AVP.

 vendorId The vendor id of the AVP.

 entry an AAADictionaryEntry structure for returning the entry.

 The return value is one of:

 AAA_ERR_SUCCESS If the query succeeded.

 AAA_ERR_FAILURE If no matching dictionary entry was found.

3.4.4.2. AAADictionaryEntryFromName()

 This function looks up a dictionary entry using command code name and
 vendor id:

 AAAReturnCode AAADictionaryEntryFromName(char *avpName, AAAVendorId
 vendorId, AAADictionaryEntry *entry);

 The parameters are:

Calhoun, et al. Expires September 2, 2005 [Page 25]

Internet-Draft The Diameter API March 2005

 avpName The name of the AVP.

 vendorId The vendor id of the AVP.

 entry an AAADictionaryEntry structure for returning the entry.

 The return value is one of:

 AAA_ERR_SUCCESS If the query succeeded.

 AAA_ERR_FAILURE If no matching dictionary entry was found.

3.4.4.3. AAAValueFromName()

 This function looks up an AVP value using the AVP name and vendor
 name:

 AAAValue AAAValueFromName(char *avpName, char *vendorName, char
 *valueName);

 The parameters are:

 avpName The name of the AVP.

 vendorName The name of the vendor.

 valueName The name of the value.

 The return value is the id of the AVP, or AAA_ERR_NOT_FOUND if no
 match was found.

3.4.4.4. AAAValueFromAVPCode()

 This function looks up an AVP value using the AVP id and vendor id,
 and the value name:

 AAAValue AAAValueFromAVPCode(AAA_AVPCode avpCode, AAAVendorId
 vendorId, char *valueName);

 The parameters are:

 avpCode The code of the AVP.

 vendorId The id of the vendor.

Calhoun, et al. Expires September 2, 2005 [Page 26]

Internet-Draft The Diameter API March 2005

 valueName The name of the value.

 The return value is id of the AVP, or AAA_ERR_NOT_FOUND if no match
 was found.

3.4.4.5. AAALookupValueNameUsingValue()

 This function returns the AVP value name:

 const char *AAALookupValueNameUsingValue(AAA_AVPCode avpCode,
 AAAVendorId vendorId, AAAValue value);

 The parameters are:

 avpCode The code of the AVP.

 vendorId The id of the vendor.

 value The value.

 The value name is returned, or NULL if no match occurred.

3.4.4.6. AAAGetCommandCode()

 This function returns the command code and vendor id based on a
 string:

 boolean_t AAAGetCommandCode(char *commandName, AAACommandCode
 *commandCode, AAAVendorId *vendorId);

 The parameters are:

 commandName A string containing the command name.

 commandCode Pointer that on return holds the command code if the
 command was found.

 vendorId Pointer that on return holds the vendor id if the command
 was found.

 The return value is _B_TRUE if the command was found.

3.4.5. Message Management

 The functions in this section allow the client to create messages,
 add AVPs, and traverse AVP lists.

Calhoun, et al. Expires September 2, 2005 [Page 27]

Internet-Draft The Diameter API March 2005

3.4.5.1. AAANewMessage()

 This function allocates an AAAMessage and returns a pointer to it.
 If a command code is provided, this function adds the command code
 AVP. If the session identifier handle is provided, the Session-Id
 AVP is also added. Lastly, if this message is allocated in response
 to a request, the request's message can be provided, and the new
 message is initialized to match the request, for fields such as the
 identifier, the server identifier, etc. If this is a new message,
 the request parameter is NULL:

 AAAMessage *AAANewMessage(AAACommandCode commandCode, AAAVendorId
 vendorId, AAASessionId *sessionId, AAAExtensionId extensionId,
 AAAMessage *request);

 The parameters are:

 commandCode The command code.

 vendorId The vendor identifier.

 sessionId Session identifier.

 extensionId The extension identifier.

 request A pointer to a request message, if this message is being
 allocated in response to a request.

 The function returns a pointer to the message or NULL if a failure
 occurred.

3.4.5.2. AAAFreeMessage()

 This function frees a message allocated through AAANewMessage():

 AAAReturnCode AAAFreeMessage(AAAMessage **message);

 The parameters are:

 message A pointer to a pointer to the allocated message.

 The return value is the AAA status code AAA_ERR_SUCCESS.

3.4.5.3. AAARespondToMessage()

 This function is called to set the AAA Message to the appropriate
 values, and to inform the library that this message is a locally
 generated response

Calhoun, et al. Expires September 2, 2005 [Page 28]

Internet-Draft The Diameter API March 2005

 AAAReturnCode AAARespondToMessage(AAAMessage* message, AAACommandCode
 commandCode, AAAVendorId vendorId, AAAResultCode resultCode);

 The parameters are:

 message The AAAMessage to respond to.

 commandCode The command code of the response.

 vendorId The vendor identifier (of the command code).

 resultCode The result code of the response.

 The function returns AAA_ERR_SUCCESS upon completion, or
 AAA_ERR_PARAMETER if a NULL pointer was provided.

3.4.5.4. AAAAddProxyState()

 This function will add a Proxy-State AVP to a message, that contains
 the FQDN of the source of the message.

 AAAReturnCode AAAAddProxyState(AAAMessage *message);

 The parameters are:

 message The AAAMessage to add state to.

 The function returns AAA_ERR_SUCCESS upon completion, or
 AAA_ERR_FAILURE if an error occured.

3.4.5.5. AAACreateAVP()

 This function creates an AVP and returns a pointer to it. The AVP is
 initialized from the arguments:

 AAAReturnCode AAACreateAVP(AAA_AVP **avp, AAA_AVPCode code,
 AAA_AVPFlag flags, AAAVendorId vendorId, char *data, size_t length);

 The parameters are:

 avp On return, contains a pointer to the allocated AVP, or NULL if no
 AVP was allocated.

 code The AVP's code.

Calhoun, et al. Expires September 2, 2005 [Page 29]

Internet-Draft The Diameter API March 2005

 flags Any AVP flags that must be passed.

 vendorId The vendor id of the AVP. If no vendor id, then
 AAA_NO_VENDOR_ID.

 data A buffer containing the AVP data.

 length The length of the data buffer.

 Return values are:

 AAA_ERR_SUCCESS Upon success.

 AAA_ERR_PARAMETER If an invalid parameter was passed.

 AAA_ERR_PROTO If a protocol error occurred.

 AAA_ERR_NOMEM Indicating a memory failure.

3.4.5.6. AAACreateAndAddAVPToList()

 This function creates an AVP and adds it to an AVP list. It returns
 a pointer to the list in the avpList argument. The AVP is
 initialized from the arguments:

 AAAReturnCode AAACreateAndAddAVPToList(AAA_AVP_LIST **avpList,
 AAA_AVPCode code, AAA_AVPFlag flags, AAAVendorId vendorId, char
 *data, size_t length);

 The parameters are:

 avpList The list to which the AVP should be added.

 code The AVP's code.

 flags Any AVP flags that must be passed.

 vendorId The vendor id of the AVP. If no vendor id, then
 AAA_NO_VENDOR_ID.

 data A buffer containing the AVP data.

 length The length of the data buffer.

 Return values are:

Calhoun, et al. Expires September 2, 2005 [Page 30]

Internet-Draft The Diameter API March 2005

 AAA_ERR_SUCCESS Upon success.

 AAA_ERR_PARAMETER If an invalid parameter was passed.

 AAA_ERR_NOMEM Indicating a memory failure.

3.4.5.7. AAAAddAVPToList()

 AAAReturnCode AAAAddAVPToList(AAA_AVP_LIST **avpList, AAA_AVP *avp,
 AAA_AVP *position);

 Insert the AVP avp into this avpList after position. If position is
 NULL, the AVP is added to the beginning of the list.

 If *avpList is NULL, a list will be allocated, and *avpList will
 point to it.

 The parameters are:

 avpList Pointer to a pointer for list. If *avpList is NULL, list
 memory is allocated.

 avp AAA_AVP to add to list.

 position AAA_AVP pointer to add data after, or NULL if the new AVP
 should go at the beginning of the list.

 The return value is one of:

 AAA_ERR_SUCCESS Upon success.

 AAA_ERR_PARAMETER If an invalid parameter was passed.

 AAA_ERR_NOMEM Indicates a memory failure.

3.4.5.8. AAAFindMatchingAVP()

 This function finds an AVP with matching code and vendor id. If none
 match, the function returns NULL:

 AAA_AVP *AAAFindMatchingAVP(AAA_AVP_LIST *avpList, AAA_AVP *startAvp,
 AAA_AVPCode avpCode, AAAVendorId vendorId, AAASearchType searchType);

 The parameters are:

Calhoun, et al. Expires September 2, 2005 [Page 31]

Internet-Draft The Diameter API March 2005

 avp A pointer to the head of the AVP list.

 avpCode The code of the sought after AVP.

 vendorId The vendor id of the sought after AVP.

 The return value is a pointer to the found AVP, or NULL if none is
 found.

3.4.5.9. AAAJoinAVPLists()

 The following function joins together two AVP lists:

 AAAReturnCode AAAJoinAVPLists(AAA_AVP_LIST *dest, AAA_AVP_LIST
 *source, AAA_AVP *position);

 The parameters are:

 dest The destination list (All of the avps in sourc will be moved
 here).

 source The source list to be added to dest.

 position The position to add the AVPs to, or NULL for the beginning
 of the list.

 The return value is one of:

 AAA_ERR_SUCCESS Upon success.

 AAA_ERR_PARAMETER If an invalid parameter was passed.

3.4.5.10. AAARemoveAVPFromList()

 This function removes an AVP from a list:

 AAAReturnCode AAARemoveAVPFromList(AAA_AVP_LIST *avpList, AAA_AVP
 *avp);

 The parameters are:

 avpList The head of the list from which to remove the AVP.

 avp Contains a pointer to the AVP to remove.

 The return value is one of:

Calhoun, et al. Expires September 2, 2005 [Page 32]

Internet-Draft The Diameter API March 2005

 AAA_ERR_SUCCESS Upon success.

 AAA_ERR_PARAMETER If an invalid parameter was passed.

3.4.5.11. AAAFreeAVP()

 The function frees an AVP:

 AAAReturnCode AAAFreeAVP(AAA_AVP **avp);

 The parameters are:

 avp Contains a pointer to a pointer to the AVP to free.

 The return value is one of:

 AAA_ERR_SUCCESS Upon success.

 AAA_ERR_PARAMETER If an invalid parameter was passed.

3.4.5.12. AAAGetFirstAVP()

 This function returns a pointer to the first AVP in the list:

 AAA_AVP *AAAGetFirstAVP(AAA_AVP_LIST *avpList);

 The parameters are:

 avpList A pointer to the list.

 The return value is a pointer to the found AVP, or NULL if none is
 found.

3.4.5.13. AAAGetLastAVP()

 This function returns a pointer to the last AVP in the list:

 AAA_AVP *AAAGetLastAVP(AAA_AVP_LIST *avpList);

 The parameters are:

 avpList A pointer to the list.

 The function returns a pointer to the found AVP, or NULL if none is
 found.

Calhoun, et al. Expires September 2, 2005 [Page 33]

Internet-Draft The Diameter API March 2005

3.4.5.14. AAAGetNextAVP()

 This function returns a pointer to the next AVP in the list.

 AAA_AVP *AAAGetNextAVP(AAA_AVP *avp);

 The parameters are:

 avp A pointer to the AVP prior to the one sought.

 The return value is the next AVP in the list, or NULL if the
 parameter is the last element in the list.

3.4.5.15. AAAGetPrevAVP()

 This function returns a pointer to the previous AVP in the list:

 AAA_AVP *AAAGetPrevAVP(AAA_AVP *avp);

 The parameters are:

 avp A pointer to the AVP after the one sought.

 The return value is the previous AVP in the list or NULL if the
 parameter is the first element in the list.

3.4.5.16. AAAConvertAVPToString()

 This function converts the data in the AVP to a format suitable for
 log or display functions.

 char *AAAConvertAVPToString(AAA_AVP *avp, char *dest, size_t
 destLen);

 The parameters are:

 avp The AVP to display.

 dest A used supplied destination buffer.

 destLen The length of the user supplied buffer.

 The return value is the passed in destination buffer.

3.4.5.17. AAASetMessageResultCode()

 This function decapsulates an encapsulated AVP, and populates the
 list with the correct pointers.

Calhoun, et al. Expires September 2, 2005 [Page 34]

Internet-Draft The Diameter API March 2005

 AAAResultCode AAASetMessageResultCode(AAAMessage *message,
 AAAResultCode resultCode);

 The parameters are:

 message A pointer to the allocated message.

 resultCode The AAA Result Code

 The eturn value is one of:

 AAA_ERR_SUCCESS Upon success.

 AAA_ERR_PARAMETER If an invalid parameter was passed.

3.4.6. Message Control

 The following functions allow the client to direct a message to a
 particular server, determine the server for a message, etc.

3.4.6.1. AAASetServer()

 This function sets the server to which the message is sent:

 AAAReturnCode AAASetServer(AAAMessage *message, IP_ADDR host);

 The parameters are:

 message The message to be sent.

 ipVersion The version number of the IP address.

 host The IP address / port / family of the server.

 The return value is

 AAA_ERR_SUCCESS If the server was found.

 AAA_ERR_NOT_FOUND If the server was not found.

3.4.6.2. AAASendMessage()

 The following function sends a message to the server assigned to the
 message by AAASetServer(). The message identifier is assigned to the
 message. If no server id has been assigned to the message, a server
 id is selected. If no servers are currently active, the message is
 queued for later sending.

Calhoun, et al. Expires September 2, 2005 [Page 35]

Internet-Draft The Diameter API March 2005

 AAAReturnCode AAASendMessage(AAAMessage *message);

 The parameter is the message to send.

 The return codes are:

 AAA_ERR_SUCCESS Upon completion.

 AAA_ERR_FAILURE If an error occurred.

3.4.7. Accounting

 The following functions allow the client to direct a message to a
 particular server, determine the server for a message, etc.

3.4.7.1. AAASendAcctRequest()

 The following function sends an accounting message to an accounting
 server.

 AAAReturnCode AAASendAcctRequest(AAASessionId *aaaSessionId,
 AAAExtensionId extensionId, AAA_AVP_LIST *acctAvpList,
 AAAAcctMessageType msgType)

 The parameters are:

 aaaSessionId The session id that this accounting data corresponds to.

 extensionId The extension type associated with this accounting
 message.

 acctAvpList A list of AVPs to send in the accounting message.

 msgType The type of accounting message.

 The return codes are:

 AAA_ERR_SUCCESS Upon completion.

 AAA_ERR_PARAMETER If a parameter is invalid.

3.4.8. Security Functions

 The following functions control the security/encryption features of
 the connection.

 All encryption/signing of packets is handled internally by the
 library, based on the settings in the dictionary.

Calhoun, et al. Expires September 2, 2005 [Page 36]

Internet-Draft The Diameter API March 2005

3.4.8.1. AAAGetPeerSecurityStatus()

 The following function will return the security characteristics of
 the current connection.

 AAASecurityStatus AAAGetPeerSecurityStatus(IP_ADDR remoteHost);

 The parameters are:

 remoteHost The host that is being inquired.

 The possible return values are defined in Section 3.1.21.

3.5. Implementation Notes

 The following are some implementation notes that library designers
 may want to keep in mind.

3.6. Grouped AVPs

 In order to create grouped AVPs, an application creates an
 AAA_AVP_LIST that is not attached to an AAAMessage structure (also
 known as an orphaned AAA_AVP_LIST). All of the necessary AVPs within
 the Group are added to the orphaned AAA_AVP_LIST using the existing
 list manipulation functions. Lastly, the grouped AVP is added to the
 AAAMessage structure.

 The following is an example that adds a Proxy-State Grouped AVP to an
 existing AAAMessage structure.

Calhoun, et al. Expires September 2, 2005 [Page 37]

Internet-Draft The Diameter API March 2005

 addProxyState(AAAMessage *message, ipaddr_t *ourAddress,
 void *state, size_t stateLen)
 {
 AAA_AVP_LIST *avpList = NULL;

 /*
 * Add the Proxy-Address AVP to the AAAList
 */
 if (AAACreateAndAddAVPToList(&avpList,
 DIAM_AVP_PROXY_ADDRESS, AAA_AVPI_FLAG_NONE,
 NO_VENDOR_ID, (char *) ourAddress,
 sizeof (ipaddr_t))) {
 loggerSyslog(LOG_AVP_PROBLEMS,
 "Unable to add Proxy-Address AVP");
 return (AAA_ERR_FAILURE);
 }
 /*
 * Now we add the Proxy-Info AVP to the AAAList
 */
 if (AAACreateAndAddAVPToList(&avpList,
 DIAM_AVP_PROXY_INFO, AAA_AVPI_FLAG_NONE, NO_VENDOR_ID,
 state, stateLen)) {
 loggerSyslog(LOG_AVP_PROBLEMS,
 "Unable to add Proxy-Info AVP");
 return (AAA_ERR_FAILURE);
 }
 /*
 * Now the AAAList is added to the AAAMessage as
 * a Proxy-State AVP.
 */
 if (AAACreateAndAddAVPToList(&message->avpList,
 DIAM_AVP_PROXY_STATE, AAA_AVPI_FLAG_NONE,
 NO_VENDOR_ID, (char *)avpList,
 AAA_AVP_GROUPED_LENGTH)) {
 loggerSyslog(LOG_AVP_PROBLEMS,
 "Unable to add Proxy-State AVP");
 return (AAA_ERR_FAILURE);
 }

 return (AAA_ERR_SUCCESS);
 }

 As shown above, the procedures is to create a new AAA_AVP_LIST
 structure, adding all of the necessary AVPs that are within the
 Grouped AVP, then calling AAACreateAndAddAVPToList() to add the
 AAA_AVP_LIST as a Grouped AVP to the AAAMessage.

 Note that the AAA_AVP_LIST pointed to by orphaned avpList MUST NOT be

Calhoun, et al. Expires September 2, 2005 [Page 38]

Internet-Draft The Diameter API March 2005

 accessed by the application after the Grouped avp has been created.
 The list will be freed along with the AVP by the AAA Library.

 In order to parse a Grouped AVP, the AAA_AVP data field contains a
 pointer to an AAA_AVP_LIST, as shown below.

 boolean_t
 isProxyStateOurs(AAA_AVP *proxyState, ipaddr_t *ourAddress)
 {
 AAA_AVP_LIST *avpList;
 AAA_AVP *proxyAddress;
 AAA_AVP *proxyInfo;
 ipaddr_t *proxyAddress;

 /*
 * Get the pointer to the Grouped AAA_AVP_LIST
 */
 avpList = (AAA_AVP_LIST *)proxyState->data;

 /*
 * First, for the Proxy-Address, and see if it is ours.
 */
 if ((proxyAddress = AAAFindMatchingAVP(avpList, NULL,
 DIAM_AVP_PROXY_ADDRESS, NO_VENDOR_ID,
 AAA_FORWARD_SEARCH)) != NULL) {
 /*
 * Check if this one is ours.
 */
 address2 = (ipaddr_t *)proxyAddress->data;
 if (*address2 == *address) {
 /*
 * This one is ours... return TRUE
 */
 return (B_TRUE);
 }
 }

 return (B_FALSE);
 }

3.7. Extended AAA_AVP structure

 The AAA_AVP structure that is defined in this specification is a
 subset of the structure used by the internal library. The internal
 structure, known as the extended AAA_AVP, may contain many private
 fields, such as pointers to AAA_AVPs. Applications do not directly
 access the next (and previous) AAA_AVP pointers directly, but instead
 access them via the AAAGetNextAVP() and AAAGetPreviousAVP()

Calhoun, et al. Expires September 2, 2005 [Page 39]

Internet-Draft The Diameter API March 2005

 functions.

 The following is an example of an extended AAA_AVP structure:

 typedef struct {
 // API Public variables here
 } AAA_AVP;

 typedef struct xavp {
 AAA_AVP avp;
 struct xavp *next;
 struct xavp *prev;
 int privateFlags;
 } Extended_AAA_Avp;

 Of course, when AAACreateAVP is called, sufficient memory is
 allocated for the extended AAA_AVP structure, however the function
 returns a pointer to the AAA_AVP.

3.8. Avoiding AVP Copying

 The AAA_AVP struct does not provide an exact mapping to the Diameter
 protocol AVP packet format; however, library implementors can avoid
 having to copy the AVP data by putting a pointer to a packet format
 structure into a hidden part of the AAA_AVP struct. A pointer to the
 AVP data is then deposited into the AAA_AVP data field. This allows
 proper deallocation of the packet format structure when the AAA_AVP
 structure is deallocated.

3.9. Callback Processing Order

 The C API allows API clients to register message processors, or
 callbacks, that are invoked before and after the bulk of the
 processing functions for a message. Only one pre- or post-processor
 is allowed for all incoming messages, regardless of command or
 extension type. If the API client adds another, any existing pre-
 and post-processors are removed.

 Message processing can be best explained by the following diagram:

Calhoun, et al. Expires September 2, 2005 [Page 40]

Internet-Draft The Diameter API March 2005

 +-------+ +-------+ +-------+ +-------+
 | First | | Any | | Any | | Last | Apps
 +-------+ +-------+ +-------+ +-------+
 ^ ^ ^ ^
 1 | 2 | 3 | 4 |
 +---+
 | AAA Library |
 +---+
 ^
 | MSG

 In the above diagram, "First", "Any", and "Last" are added by the API
 client. The message processor labeled "First" is given access to the
 message before any other, the message processor "Last" after all
 others are finished. There is no guarantee on ordering for the other
 message processors. If the client adds a new "First" or "Last"
 message processor, the existing ones removed. There is one "First"
 and "Last" processor for all commands regardless of type; whereas,
 the "Any" processors are command-specific.

 If one of the "Any" processors completes successfully, the message is
 not passed on any further. A successful completion means the success
 return code is returned from the C API callback, but the callback is
 responsible for freeing the message before returning.

Calhoun, et al. Expires September 2, 2005 [Page 41]

Internet-Draft The Diameter API March 2005

4. Security Considerations

 This document describes an API and therefore depends on the security
 mechanisms defined in the Diameter protocol [1].

5. References

 [1] Calhoun, Loughney, Guttman, Zorn, and Arkko, "Diameter Base
 Protocol", draft-ietf-aaa-diameter-14.txt , October 2002, <http:
 //www.ietf.org/internet-drafts/draft-ietf-aaa-diameter-14.txt>.

 [2] Calhoun, Farrell, and Bulley, "Diameter CMS Security
 Application", draft-ietf-aaa-cms-sec-04.txt , March 2002, <http:
 //www.ietf.org/internet-drafts/

draft-ietf-aaa-diameter-cms-sec-04.txt>.

 [3] Guttman, Perkins, Veizades, and Day, "Service Location Protocol,
 Version 2", rfc 2608, June 1999,
 <http://www.ietf.org/rfc/rfc2608.txt>.

 [4] "Diameter XML Dictionary", , June 1999,
 <http://www.diameter.org/XML/>.

 [5] "Standard Java APIs", , June 1999,
 <http://www.javasoft.com/xml/jaxp-docs-1.1/readme.html>.

 [6] Gilligan, Thomson, Bound, and Stevens, "Basic Socket Interface
 Extensions for IPv6", rfc 2553, March 1999,
 <http://www.ietf.org/rfc/rfc2553.txt>.

https://datatracker.ietf.org/doc/html/draft-ietf-aaa-diameter-14.txt
https://datatracker.ietf.org/doc/html/draft-ietf-aaa-cms-sec-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-aaa-diameter-cms-sec-04.txt
https://datatracker.ietf.org/doc/html/rfc2608
http://www.ietf.org/rfc/rfc2608.txt
http://www.diameter.org/XML/
http://www.javasoft.com/xml/jaxp-docs-1.1/readme.html
https://datatracker.ietf.org/doc/html/rfc2553
http://www.ietf.org/rfc/rfc2553.txt

Calhoun, et al. Expires September 2, 2005 [Page 42]

Internet-Draft The Diameter API March 2005

Authors' Addresses

 Pat R. Calhoun
 Cisco Systems, Inc.
 170 West Tasman
 San Jose, CA 95134

 Phone: +1 408-853-5269
 Email: pcalhoun@airespace.com

 David Frascone
 Cisco Systems, Inc.
 605 N. Frances Street
 Terrell, TX 75160

 Phone: +1 972-524-6346
 Fax: +1 978-334-0249
 Email: dave@frascone.com

 James Kempf
 DoCoMo Labs, USA
 180 Metro Drive, Suite 300
 San Jose, CA 95110

 Phone: +1 408-451-4711
 Email: kempf@docomolabs-usa.com

Calhoun, et al. Expires September 2, 2005 [Page 43]

Internet-Draft The Diameter API March 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Calhoun, et al. Expires September 2, 2005 [Page 44]

